Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA-766-3p-mediated downregulation of HNF4G inhibits proliferation in colorectal cancer cells through the PI3K/AKT pathway

Abstract

Nuclear receptors (NRs) are a class of transcription factors that play a pivotal role in carcinogenesis, but their function in colorectal cancer (CRC) remains unclear. Here, we investigate the role NRs play in CRC pathogenesis. We found that hepatocyte nuclear factor 4 gamma (HNF4G; NR2A2), hepatocyte nuclear factor 4α (HNF4A; NR2A1), and retinoid-related orphan receptor γ (RORC; NR1F3) were significantly upregulated in CRC tissues analyzed by GEPIA bioinformatics tool. The expression of HNF4G was examined in CRC samples and cell lines by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry. Increased expression of HNF4G was strongly associated with high tumor-node-metastasis stage and poor prognosis. Moreover, overexpression of HNF4G significantly promoted the proliferation of CRC cells in vitro. Next, we found that HNF4G promoted CRC proliferation via the PI3K/AKT pathway through targeting of GNG12 and PTK2. In addition, HNF4G was verified as a direct target of microRNA-766-3p (miR-766-3p). miR-766-3p inhibited the proliferation of CRC cells by targeting HNF4G in vitro and in vivo. Collectively, our study indicates that miR-766-3p reduces the proliferation of CRC cells by targeting HNF4G expression and thus inhibits the PI3K/AKT pathway. Therefore, development of therapies which target the miR-766-3p/HNF4G axis may aid in the treatment of CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HNF4G is highly expressed in CRC patient tissues with node metastasis and high TNM stage.
Fig. 2: HNF4G increases CRC cell proliferation.
Fig. 3: HNF4G directly interacts with GNG12, PTK2, and activates the PI3K/AKT pathway in CRC cells.
Fig. 4: HNF4G is directly targeted by miR-766-3p in CRC cells.
Fig. 5: HNF4G reverses the repressive effects of miR-766-3p on the proliferation of CRC cells.
Fig. 6: Schematic diagram outlining the mechanism by which miR-766-3p regulated CRC progression.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Vermeer NC, Snijders HS, Holman FA, Liefers GJ, Bastiaannet E, van de Velde CJ, et al. Colorectal cancer screening: systematic review of screen-related morbidity and mortality. Cancer Treat Rev. 2017;54:87–98.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW. Colorectal cancer. Lancet. 2005;365:153–65.

    Article  PubMed  Google Scholar 

  4. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  CAS  PubMed  Google Scholar 

  5. Germain P, Staels B, Dacquet C, Spedding M, Laudet V. Overview of nomenclature of nuclear receptors. Pharm Rev. 2006;58:685–704.

    Article  CAS  PubMed  Google Scholar 

  6. Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, et al. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharm Rev. 2006;58:798–836.

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki T, Miki Y, Moriya T, Shimada N, Ishida T, Hirakawa H, et al. Estrogen-related receptor alpha in human breast carcinoma as a potent prognostic factor. Cancer Res. 2004;64:4670–6.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang T, Ma Y, Fang J, Liu C, Chen L. A deregulated PI3K-AKT signaling pathway in patients with colorectal cancer. J Gastrointest Cancer. 2019;50:35–41.

    Article  CAS  PubMed  Google Scholar 

  9. Oda T, Tian T, Inoue M, Ikeda J, Qiu Y, Okumura M, et al. Tumorigenic role of orphan nuclear receptor NR0B1 in lung adenocarcinoma. Am J Pathol. 2009;175:1235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cho SD, Lee SO, Chintharlapalli S, Abdelrahim M, Khan S, Yoon K, et al. Activation of nerve growth factor-induced B alpha by methylene-substituted diindolylmethanes in bladder cancer cells induces apoptosis and inhibits tumor growth. Mol Pharmacol. 2010;77:396–404.

    Article  CAS  PubMed  Google Scholar 

  11. Inamoto T, Czerniak BA, Dinney CP, Kamat AM. Cytoplasmic mislocalization of the orphan nuclear receptor Nurr1 is a prognostic factor in bladder cancer. Cancer. 2010;116:340–6.

    Article  PubMed  Google Scholar 

  12. Okegawa T, Ushio K, Imai M, Morimoto M, Hara T. Orphan nuclear receptor HNF4G promotes bladder cancer growth and invasion through the regulation of the hyaluronan synthase 2 gene. Oncogenesis. 2013;2:e58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li XB, Jiao S, Sun H, Xue J, Zhao WT, Fan L, et al. The orphan nuclear receptor EAR2 is overexpressed in colorectal cancer and it regulates survivability of colon cancer cells. Cancer Lett. 2011;309:137–44.

    Article  CAS  PubMed  Google Scholar 

  14. Gerdin AK, Surve VV, Jonsson M, Bjursell M, Bjorkman M, Edenro A, et al. Phenotypic screening of hepatocyte nuclear factor (HNF) 4-gamma receptor knockout mice. Biochem Biophys Res Commun. 2006;349:825–32.

    Article  CAS  PubMed  Google Scholar 

  15. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  16. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  17. Amirkhah R, Schmitz U, Linnebacher M, Wolkenhauer O, Farazmand A. MicroRNA-mRNA interactions in colorectal cancer and their role in tumor progression. Genes Chromosomes Cancer. 2015;54:129–41.

    Article  CAS  PubMed  Google Scholar 

  18. Dassow H, Aigner A. MicroRNAs (miRNAs) in colorectal cancer: from aberrant expression towards therapy. Curr Pharm Des. 2013;19:1242–52.

    CAS  PubMed  Google Scholar 

  19. Zhai H, Ju J. Implications of microRNAs in colorectal cancer development, diagnosis, prognosis, and therapeutics. Front Genet. 2011;2:78.

    Article  PubMed Central  Google Scholar 

  20. Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren N, et al. MicroRNAs in colorectal cancer: small molecules with big functions. Cancer Lett. 2015;360:89–105.

    Article  CAS  PubMed  Google Scholar 

  21. Feng Y, Zhu J, Ou C, Deng Z, Chen M, Huang W, et al. MicroRNA-145 inhibits tumour growth and metastasis in colorectal cancer by targeting fascin-1. Br J Cancer. 2014;110:2300–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian X, Yu J, Yin Y, He J, Wang L, Li Q, et al. MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle. 2013;12:1385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kern HB, Niemeyer BF, Parrish JK, Kerr CA, Yaghi NK, Prescott JD, et al. Control of MicroRNA-21 expression in colorectal cancer cells by oncogenic epidermal growth factor/Ras signaling and Ets transcription factors. DNA Cell Biol. 2012;31:1403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shan L, Ji Q, Cheng G, Xia J, Liu D, Wu C, et al. Diagnostic value of circulating miR-21 for colorectal cancer: a meta-analysis. Cancer Biomark. 2015;15:47–56.

    Article  CAS  PubMed  Google Scholar 

  25. Osanto S, Qin Y, Buermans HP, Berkers J, Lerut E, Goeman JJ, et al. Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PLoS ONE. 2012;7:e38298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao J, Li Z, Chen Y, Zhang S, Guo L, Gao B, et al. MicroRNA766 inhibits papillary thyroid cancer progression by directly targeting insulin receptor substrate 2 and regulating the PI3K/Akt pathway. Int J Oncol. 2019;54:315–25.

    CAS  PubMed  Google Scholar 

  27. Yang C, Ma X, Guan G, Liu H, Yang Y, Niu Q, et al. MicroRNA-766 promotes cancer progression by targeting NR3C2 in hepatocellular carcinoma. FASEB J. 2019;33:1456–67.

    Article  CAS  PubMed  Google Scholar 

  28. Kriegsmann M, Harms A, Longuespee R, Muley T, Winter H, Kriegsmann K, et al. Role of conventional immunomarkers, HNF4-alpha and SATB2, in the differential diagnosis of pulmonary and colorectal adenocarcinomas. Histopathology. 2018;72:997–1006.

    Article  PubMed  Google Scholar 

  29. Saandi T, Baraille F, Derbal-Wolfrom L, Cattin AL, Benahmed F, Martin E, et al. Regulation of the tumor suppressor homeogene Cdx2 by HNF4alpha in intestinal cancer. Oncogene. 2013;32:3782–8.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida N, Kinugasa T, Miyoshi H, Sato K, Yuge K, Ohchi T, et al. A high RORgammaT/CD3 ratio is a strong prognostic factor for postoperative survival in advanced colorectal cancer: analysis of helper T cell lymphocytes (Th1, Th2, Th17 and regulatory T cells). Ann Surg Oncol. 2016;23:919–27.

    Article  PubMed  Google Scholar 

  31. Kano H, Takayama T, Midorikawa Y, Nagase H. Promoter hypomethylation of RAR-related orphan receptor alpha 1 is correlated with unfavorable clinicopathological features in patients with colorectal cancer. Biosci Trends. 2016;10:202–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao J, Guan JL. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009;28:35–49.

    Article  PubMed  Google Scholar 

  33. Pylayeva Y, Gillen KM, Gerald W, Beggs HE, Reichardt LF, Giancotti FG. Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J Clin Invest. 2009;119:252–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen JS, Huang XH, Wang Q, Huang JQ, Zhang LJ, Chen XL, et al. Sonic hedgehog signaling pathway induces cell migration and invasion through focal adhesion kinase/AKT signaling-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9 in liver cancer. Carcinogenesis. 2013;34:10–9.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng HS, Lee JXT, Wahli W, Tan NS. Exploiting vulnerabilities of cancer by targeting nuclear receptors of stromal cells in tumor microenvironment. Mol Cancer. 2019;18:51.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kelly ME, Mohan HM, Baird AW, Ryan EJ, Winter DC. Orphan nuclear receptors in colorectal cancer. Pathol Oncol Res. 2018;24:815–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kong D, Wang Y. Knockdown of lncRNA HULC inhibits proliferation, migration, invasion, and promotes apoptosis by sponging miR-122 in osteosarcoma. J Cell Biochem. 2018;119:1050–61.

    Article  CAS  PubMed  Google Scholar 

  38. Sun H, Tian J, Xian W, Xie T, Yang X. miR-34a inhibits proliferation and invasion of bladder cancer cells by targeting orphan nuclear receptor HNF4G. Dis Markers. 2015;2015:879254.

    PubMed  PubMed Central  Google Scholar 

  39. Wang J, Zhang J, Xu L, Zheng Y, Ling D, Yang Z. Expression of HNF4G and its potential functions in lung cancer. Oncotarget. 2018;9:18018–28.

    Article  PubMed  Google Scholar 

  40. Yasuda H, Lindorfer MA, Myung CS, Garrison JC. Phosphorylation of the G protein gamma12 subunit regulates effector specificity. J Biol Chem. 1998;273:21958–65.

    Article  CAS  PubMed  Google Scholar 

  41. Luo C, Zhao S, Dai W, Zheng N, Wang J. Proteomic analyses reveal GNG12 regulates cell growth and casein synthesis by activating the Leu-mediated mTORC1 signaling pathway. Biochim Biophys Acta Proteins Proteom. 2018;1866:1092–101.

    Article  CAS  PubMed  Google Scholar 

  42. Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014;14:598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jean C, Chen XL, Nam JO, Tancioni I, Uryu S, Lawson C, et al. Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J Cell Biol. 2014;204:247–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cabrita MA, Jones LM, Quizi JL, Sabourin LA, McKay BC, Addison CL. Focal adhesion kinase inhibitors are potent anti-angiogenic agents. Mol Oncol. 2011;5:517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Konstantinidou G, Ramadori G, Torti F, Kangasniemi K, Ramirez RE, Cai Y, et al. RHOA-FAK is a required signaling axis for the maintenance of KRAS-driven lung adenocarcinomas. Cancer Discov. 2013;3:444–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu X, Cai J, Zuo Z, Li J. Collagen facilitates the colorectal cancer stemness and metastasis through an integrin/PI3K/AKT/Snail signaling pathway. Biomed Pharmacother. 2019;114:108708.

    Article  CAS  PubMed  Google Scholar 

  47. Hu F, He Z, Sun C, Rong D. Knockdown of GRHL2 inhibited proliferation and induced apoptosis of colorectal cancer by suppressing the PI3K/Akt pathway. Gene. 2019;700:96–104.

    Article  CAS  PubMed  Google Scholar 

  48. Ryland GL, Bearfoot JL, Doyle MA, Boyle SE, Choong DY, Rowley SM, et al. MicroRNA genes and their target 3′-untranslated regions are infrequently somatically mutated in ovarian cancers. PLoS ONE. 2012;7:e35805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fu Y, Lin L, Xia L. MiR-107 function as a tumor suppressor gene in colorectal cancer by targeting transferrin receptor 1. Cell Mol Biol Lett. 2019;24:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Li G, Xu Y, Wang S, Yan W, Zhao Q, Guo J. MiR-873-5p inhibits cell migration, invasion and epithelial-mesenchymal transition in colorectal cancer via targeting ZEB1. Pathol Res Pract.2019;215:34–9.

    Article  CAS  PubMed  Google Scholar 

  51. Liu L, Qi X, Gui Y, Huo H, Yang X, Yang L. Overexpression of circ_0021093 circular RNA forecasts an unfavorable prognosis and facilitates cell progression by targeting the miR-766-3p/MTA3 pathway in hepatocellular carcinoma. Gene. 2019;714:143992.

    Article  CAS  PubMed  Google Scholar 

  52. Chen C, Xue S, Zhang J, Chen W, Gong D, Zheng J, et al. DNA-methylation-mediated repression of miR-766-3p promotes cell proliferation via targeting SF2 expression in renal cell carcinoma. Int J Cancer. 2017;141:1867–78.

    Article  CAS  PubMed  Google Scholar 

  53. Afgar A, Fard-Esfahani P, Mehrtash A, Azadmanesh K, Khodarahmi F, Ghadir M, et al. MiR-339 and especially miR-766 reactivate the expression of tumor suppressor genes in colorectal cancer cell lines through DNA methyltransferase 3B gene inhibition. Cancer Biol Ther. 2016;17:1126–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hayakawa K, Kawasaki M, Hirai T, Yoshida Y, Tsushima H, Fujishiro M, et al. MicroRNA-766-3p contributes to anti-inflammatory responses through the indirect inhibition of NF-kappaB signaling. Int J Mol Sci. 2019;20:809.

    Article  CAS  PubMed Central  Google Scholar 

  55. You Y, Que K, Zhou Y, Zhang Z, Zhao X, Gong J, et al. MicroRNA-766-3p inhibits tumour progression by targeting Wnt3a in hepatocellular carcinoma. Mol Cells. 2018;41:830–41.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study has been funded by the Natural Science Foundation of Guangxi Province (Grant number: 2018GXNSFAA294013).

Author information

Authors and Affiliations

Authors

Contributions

X-XH and X-WM conceived and designed the study. X-XH, H-QQ, and S-SL performed the experiments. X-XH, S-SL, and X-WM analyzed the data and drafted the manuscript. H-QQ revised the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Xian-Wei Mo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

The protocol has been approved by the Ethics Committee of Guangxi Medical University Cancer Hospital and Ethics Committee of Xiangya Hospital, Central South University. Written informed consent was obtained from all the participants in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, XX., Luo, SS., Qin, HQ. et al. MicroRNA-766-3p-mediated downregulation of HNF4G inhibits proliferation in colorectal cancer cells through the PI3K/AKT pathway. Cancer Gene Ther 29, 803–813 (2022). https://doi.org/10.1038/s41417-021-00362-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00362-0

This article is cited by

Search

Quick links