Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: Targeting KDM1B-dependent miR-215-AR-AGR2-axis promotes sensitivity to enzalutamide-resistant prostate cancer

Subjects

This article was retracted on 21 September 2023

This article has been updated

Abstract

Post-translational modifications of histones by histone demethylases plays an important role in the regulation of gene transcription and are implicated in cancers. Castrate resistant prostate cancer (CRPC) is often driven by constitutively active androgen receptor and commonly becomes resistant to established hormonal therapy strategies such as enzalutamide as a result. However, the role of KDM1B involved in next generation anti-enzalutamide resistance and the mechanisms of KDM1B regulation are poorly defined. Here, we show that KDM1B is upregulated and correlated with prostate cancer progression and poor prognosis. Downregulation of miR-215 is correlated with overexpression of KDM1B in enzalutamide-resistant prostate cancer cells, which promotes AR-dependent AGR2 transcription and regulates the sensitivity to next generation AR-targeted therapy. Inhibition of KDM1B significantly inhibits prostate tumor growth and improves enzalutamide treatments through AGR2 suppression. Our studies demonstrate inhibition of KDM1B can offer a viable therapeutic option to overcome enzalutamide resistance in tumors with deregulated miR-215-KDM1B-AR-AGR2 signaling axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The correlation between KDM1B and clinical features of PC patients.
Fig. 2: Abnormal expression of KDM1B regulates proliferation and survival of prostate cancer cells.
Fig. 3: KDM1B suppressing inhibits AGR2 transcription in vitro and vivo.
Fig. 4: KDM1B promotes androgen-dependent AGR2 expression through recruitment of AR to the AGR2 gene promoter.
Fig. 5: Enzalutamide-resistant VCaP cells show relatively low levels of miR-215 and high levels of KDM1B.
Fig. 6: KDM1B inhibitor enhances enzalutamide-resistant VCaP cells response to enzalutamide in vitro and in vivo.

Similar content being viewed by others

Data availability

Data generated for the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Damber JE, Aus G. Prostate cancer. Lancet. 2008;371:1710–21.

    Article  PubMed  Google Scholar 

  2. Miyamoto H, Messing EM, Chang C. Does androgen deprivation improve treatment outcomes in patients with low-risk and intermediate-risk prostate cancer? Nat Clin Pract Oncol. 2005;2:236–7.

    Article  PubMed  Google Scholar 

  3. Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol. 2002;167:948–51. discussion 952

    Article  CAS  PubMed  Google Scholar 

  4. Schweizer MT, Yu EY. Persistent androgen receptor addiction in castration-resistant prostate cancer. J Hematol Oncol. 2015;8:128.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Palapattu GS. Commentary on “AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer.” Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, Lotan TL, Zheng Q, De Marzo AM, Isaacs JT, Isaacs WB, Nadal R, Paller CJ, Denmeade SR, Carducci MA, Eisenberger MA, Luo J, Division of Urologic Oncology, Department of Urology, University of Michigan, MI. N Engl J Med 2014; 371(11):1028–38. Urol Oncol. 2016;34:520.

  6. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM, et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res. 2011;17:5913–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang M, Xie W, Mostaghel E, Nakabayashi M, Werner L, Sun T, et al. SLCO2B1 and SLCO1B3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer. J Clin Oncol. 2011;29:2565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vander Ark A, Cao J, Li X. Mechanisms and approaches for overcoming enzalutamide resistance in prostate cancer. Front Oncol. 2018;8:180.

    Article  Google Scholar 

  10. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–53.

    Article  CAS  PubMed  Google Scholar 

  11. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature. 2009;461:415–8.

    Article  CAS  PubMed  Google Scholar 

  12. Hu J, Sun T, Wang H, Chen Z, Wang S, Yuan L, et al. MiR-215 is induced post-transcriptionally via HIF-drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B. Cancer Cell. 2016;29:49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katz TA, Vasilatos SN, Harrington E, Oesterreich S, Davidson NE, Huang Y. Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor-induced apoptosis in breast cancer cells. Breast Cancer Res Treat. 2014;146:99–108.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Sun L, Luo Y, He S. Knockdown of KDM1B inhibits cell proliferation and induces apoptosis of pancreatic cancer cells. Pathol Res Pract. 2019;215:1054–60.

    Article  CAS  PubMed  Google Scholar 

  15. Huang Z, Yang H. Upregulation of the long noncoding RNA ADPGK-AS1 promotes carcinogenesis and predicts poor prognosis in gastric cancer. Biochem Biophys Res Commun. 2019;513:127–34.

    Article  CAS  PubMed  Google Scholar 

  16. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 2005;437:436–9.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Bolton EC, Jones JO. Androgens and androgen receptor signaling in prostate tumorigenesis. J Mol Endocrinol. 2015;54:R15–29.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang JS, Gong A, Cheville JC, Smith DI, Young CY. AGR2, an androgen-inducible secretory protein overexpressed in prostate cancer. Genes Chromosomes Cancer. 2005;43:249–59.

    Article  CAS  PubMed  Google Scholar 

  19. Tian SB, Tao KX, Hu J, Liu ZB, Ding XL, Chu YN, et al. The prognostic value of AGR2 expression in solid tumours: a systematic review and meta-analysis. Sci Rep. 2017;7:15500.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hu Z, Gu Y, Han B, Zhang J, Li Z, Tian K, et al. Knockdown of AGR2 induces cellular senescence in prostate cancer cells. Carcinogenesis. 2012;33:1178–86.

    Article  CAS  PubMed  Google Scholar 

  21. Kani K, Malihi PD, Jiang Y, Wang H, Wang Y, Ruderman DL, et al. Anterior gradient 2 (AGR2): blood-based biomarker elevated in metastatic prostate cancer associated with the neuroendocrine phenotype. Prostate. 2013;73:306–15.

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez-Blanco G, Zeneyedpour L, Duijvesz D, Hoogland AM, Verhoef EI, Kweldam CF, et al. Tissue proteomics outlines AGR2 AND LOX5 as markers for biochemical recurrence of prostate cancer. Oncotarget. 2018;9:36444–56.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Forootan SS, Liu D, Barraclough R, Foster CS, Rudland PS, et al. Increased expression of anterior gradient-2 is significantly associated with poor survival of prostate cancer patients. Prostate Cancer Prostatic Dis. 2007;10:293–300.

    Article  CAS  PubMed  Google Scholar 

  24. Xiu B, Chi Y, Liu L, Chi W, Zhang Q, Chen J, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol Cancer. 2019;18:187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao QY, Lei PJ, Zhang X, Zheng JY, Wang HY, Zhao J, et al. Global histone modification profiling reveals the epigenomic dynamics during malignant transformation in a four-stage breast cancer model. Clin Epigenetics. 2016;8:34.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fan L, Zhang F, Xu S, Cui X, Hussain A, Fazli L, et al. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci USA. 2018;115:E4584–E4593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang DE, Dai Y, Fan LL, Geng XY, Fu DX, Jiang HW, et al. Histone demethylase JMJD1A promotes tumor progression via activating snail in prostate cancer. Mol Cancer Res. 2020;18:698–708.

    Article  CAS  PubMed  Google Scholar 

  28. Caselli D, Arico M. 2019-nCoV: polite with children! Pediatr Rep. 2020;12:8495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu S, Fan L, Jeon HY, Zhang F, Cui X, Mickle MB. et al. p300-mediated acetylation of histone demethylase JMJD1A prevents its degradation by ubiquitin ligase STUB1 and enhances its activity in prostate cancer. Cancer Res. 2020;80:3074–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roubaud G, Liaw BC, Oh WK, Mulholland DJ. Strategies to avoid treatment-induced lineage crisis in advanced prostate cancer. Nat Rev Clin Oncol. 2017;14:269–83.

    Article  CAS  PubMed  Google Scholar 

  31. Fang R, Chen F, Dong Z, Hu D, Barbera AJ, Clark EA, et al. LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol Cell. 2013;49:558–70.

    Article  CAS  PubMed  Google Scholar 

  32. Coffey K, Rogerson L, Ryan-Munden C, Alkharaif D, Stockley J, Heer R, et al. The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res. 2013;41:4433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bu H, Schweiger MR, Manke T, Wunderlich A, Timmermann B, Kerick M, et al. Anterior gradient 2 and 3–two prototype androgen-responsive genes transcriptionally upregulated by androgens and by oestrogens in prostate cancer cells. FEBS J. 2013;280:1249–66.

    Article  CAS  PubMed  Google Scholar 

  34. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu C, Lou W, Yang JC, Liu L, Armstrong CM, Lombard AP, et al. Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun. 2018;9:4700.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Binda C, Valente S, Romanenghi M, Pilotto S, Cirilli R, Karytinos A, et al. Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. J Am Chem Soc. 2010;132:6827–33.

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt DM, McCafferty DG. trans-2-Phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry. 2007;46:4408–16.

    Article  CAS  PubMed  Google Scholar 

  39. Tang DE, Dai Y, He JX, Lin LW, Leng QX, Geng XY. et al. Targeting the KDM4B-AR-c-Myc axis promotes sensitivity to androgen receptor targeted therapy in advanced prostate cancer. J. Pathol. 2020;252:101–13.

    Article  CAS  PubMed  Google Scholar 

  40. Broustas CG, Hopkins KM, Panigrahi SK, Wang L, Virk RK, Lieberman HB. RAD9A promotes metastatic phenotypes through transcriptional regulation of anterior gradient 2 (AGR2). Carcinogenesis. 2019;40:164–72.

    Article  CAS  PubMed  Google Scholar 

  41. Park K, Chung YJ, So H, Kim K, Park J, Oh M, et al. AGR2, a mucinous ovarian cancer marker, promotes cell proliferation and migration. Exp Mol Med. 2011;43:91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cato L, de Tribolet-Hardy J, Lee I, Rottenberg JT, Coleman I, Melchers D, et al. ARv7 represses tumor-suppressor genes in castration-resistant prostate cancer. Cancer Cell. 2019;35:401–13. e406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 2015;4:365–80.

    PubMed  PubMed Central  Google Scholar 

  44. Kaniskan HU, Martini ML, Jin J. Inhibitors of protein methyltransferases and demethylases. Chem Rev. 2018;118:989–1068.

    Article  CAS  PubMed  Google Scholar 

  45. Morera L, Lubbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics. 2016;8:57.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee MG, Wynder C, Schmidt DM, McCafferty DG, Shiekhattar R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem Biol. 2006;13:563–7.

    Article  CAS  PubMed  Google Scholar 

  47. Liu C, Lou W, Zhu Y, Nadiminty N, Schwartz CT, Evans CP, et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin Cancer Res. 2014;20:3198–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu C, Lou W, Zhu Y, Yang JC, Nadiminty N, Gaikwad NW, et al. Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res. 2015;75:1413–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank professor Mixson James (University of Maryland School of Medicine, USA) to give us a language editing and members of Cui and He laboratories for discussion and comments on the paper.

Funding

Support by the National Natural Science Foundation of China (No. 81370804), the Guangdong Provincial Science and Technology Plan Project (No. 2017B030314108), and the High-level Hospital Construction Project of Guangdong Provincial People’s Hospital (KJ012021011) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.H.X. and D.E.T. conceived and designed the experiments, S.H.X. analyzed the data and prepared the paper; D.E.T., Y.D., J.X.H., and X.Y.G. performed the experiments; H.W.J. and R.S. provided the statistical support; D.E.T. and Y.D. collected the sample tissues; Q.X.L. analyzed the IHC data. All authors read and approved the final paper.

Corresponding author

Correspondence to Songhui Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Ethics declarations

Ethics approval and consent to participate. For the use of these clinical materials for research purposes, prior patient consent and approval from the medical ethics committee of Shenzhen People’s Hospital. Animal studies were approved by the Animal Care and Use Committee of the College of Jinan University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1038/s41417-023-00669-0

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., He, J., Dai, Y. et al. RETRACTED ARTICLE: Targeting KDM1B-dependent miR-215-AR-AGR2-axis promotes sensitivity to enzalutamide-resistant prostate cancer. Cancer Gene Ther 29, 543–557 (2022). https://doi.org/10.1038/s41417-021-00332-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00332-6

This article is cited by

Search

Quick links