Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

FOXO3-induced lncRNA LOC554202 contributes to hepatocellular carcinoma progression via the miR-485-5p/BSG axis

A Correction to this article was published on 21 April 2022

This article has been updated

Abstract

Long non-coding RNAs (LncRNAs) have played very important roles in the malignancy behaviors of hepatocellular carcinoma (HCC). LncRNA LOC554202 (LOC554202) was a newly identified tumor-related lncRNA. However, its expression and function in HCC remained unknown. In this study, we firstly reported that LOC554202 expression was distinctly upregulated in HCC specimens and cell lines. Clinical assays indicated that increased LOC554202 expression had a diagnostic value for HCC patients and was positively associated with advanced stages and poor clinical prognosis. Additionally, forkhead box O3(FOXO3) could bind directly to the LOC554202 promoter region and activate its transcription. Functionally, we observed that knockdown of LOC554202 suppressed the proliferation, migration, invasion, and epithelial–mesenchymal transition (EMT) progress of HCC cells, and promoted apoptosis. Mechanistically, LOC554202 competitively bound to miR-485-5p and prevented the suppressive effects of miR-485-5p on its target gene basigin (BSG), which finally led to HCC metastasis, EMT, and docetaxel chemoresistance. Our data demonstrated that FOXO3-induced LOC554202 contributed to HCC progression by upregulating BSG via competitively binding to miR-485-5p, which suggested that the regulation of the FOXO3/LOC554202/miR-485-5p/BSG axis may have beneficial effects in the treatment of HCC.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The distinct upregulation of LOC554202 in HCC patients and its clinical significance.
Fig. 2: LOC554202 is activated by FOXO3 in HCC.
Fig. 3: The effect of LOC554202 on HCC cell proliferation and apoptosis.
Fig. 4: Knockdown of LOC554202 suppressed the migration and invasion of HCC cells.
Fig. 5: LOC554202 competitively sponged miR-485-5p.
Fig. 6: BSG was a target gene for miR-485-5p.
Fig. 7: Deficiency of miR-485-5p attenuates the regulatory effect of LOC554202 knockdown on the progression of HCC cells.
Fig. 8: Hypothetical model for LOC554202 function in HCC.

Data availability

The data used to support the findings of this study are available from the corresponding author upon request

Change history

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA A Cancer J Clin. 2018;68:7–30.

    Google Scholar 

  2. Liu S, Chan KW, Wang B, Qiao L. Fibrolamellar hepatocellular carcinoma. Am J Gastroenterol. 2009;104:2617–24. quiz 2625

    PubMed  Google Scholar 

  3. Villanueva A. Hepatocellular carcinoma. N. Engl J Med. 2019;380:1450–62.

    CAS  PubMed  Google Scholar 

  4. Wirth TC, Manns MP. The impact of the revolution in hepatitis C treatment on hepatocellular carcinoma. Ann Oncol. 2016;27:1467–74.

    CAS  PubMed  Google Scholar 

  5. Reynaert H, Colle I. Treatment of advanced hepatocellular carcinoma with somatostatin analogues: a review of the literature. Int J Mol Sci. 2019;20:4811.

    CAS  PubMed Central  Google Scholar 

  6. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.

    CAS  PubMed  Google Scholar 

  7. Romero-Barrios N, Legascue MF, Benhamed M, Ariel F, Crespi M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res. 2018;46:2169–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172:393–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154:26–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Giraldez MD, Spengler RM, Etheridge A, Goicochea AJ, Tuck M, Choi SW. Phospho-RNA-seq: a modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma. EMBO J. 2019;38:e101695.

    PubMed  PubMed Central  Google Scholar 

  11. Chandra Gupta S, Nandan, Tripathi Y. Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer. 2017;140:1955–67.

    CAS  PubMed  Google Scholar 

  12. Huang T, Wang G, Yang L, Peng B, Wen Y, Ding G, et al. Transcription factor YY1 modulates lung cancer progression by activating lncRNA-PVT1. DNA Cell Biol. 2017;36:947–58.

    CAS  PubMed  Google Scholar 

  13. Dong H, Wang W, Mo S, Chen R, Zou K, Han J, et al. SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J Exp Clin Cancer Res. 2018;37:202.

    PubMed  PubMed Central  Google Scholar 

  14. Fitzwalter BE, Thorburn A. FOXO3 links autophagy to apoptosis. Autophagy. 2018;14:1467–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yao S, Fan LY, Lam EW. The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol. 2018;50:77–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Li Z, Xu B, Yao H, Qi S, Tai J. Long noncoding RNA PRR34-AS1 aggravates the progression of hepatocellular carcinoma by adsorbing microRNA-498 and thereby upregulating FOXO3. Cancer Manag Res. 2020;12:10749–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Song SS, Ying JF, Zhang YN, Pan HY, He XL, Hu ZM, et al. High expression of FOXO3 is associated with poor prognosis in patients with hepatocellular carcinoma. Oncol Lett. 2020;19:3181–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Augoff K, McCue B, Plow EF, Sossey-Alaoui K. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer. 2012;11:5.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin Y, Zhang CS, Li SJ, Li Z, Sun FB. LncRNA LOC554202 promotes proliferation and migration of gastric cancer cells through regulating p21 and E-cadherin. Eur Rev Med Pharmacol Sci. 2018;22:8690–7.

    CAS  PubMed  Google Scholar 

  20. Yang L, Wei H, Xiao HJ. Long non-coding RNA Loc554202 expression as a prognostic factor in patients with colorectal cancer. Eur Rev Med Pharmacol Sci. 2016;20:4243–7.

    CAS  PubMed  Google Scholar 

  21. He J, Jin S, Zhang W, Wu D, Li J, Xu J, et al. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. J Cancer. 2019;10:6003–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang S, Wang J, Ge W, Jiang Y. Long non-coding RNA LOC554202 promotes laryngeal squamous cell carcinoma progression through regulating miR-31. J Cell Biochem. 2018;119:6953–60.

    CAS  PubMed  Google Scholar 

  23. Li Y, Guo D, Zhao Y, Ren M, Lu G, Wang Y, et al. Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway. Cell death & dis. 2018;9:888 https://doi.org/10.1038/s41419-018-0882-5.

    CAS  Article  Google Scholar 

  24. Liang H, Yu T, Han Y, Jiang H, Wang C, You T, et al. LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer. 2018;17:119.

    PubMed  PubMed Central  Google Scholar 

  25. Wang H, Huo X, Yang XR, He J, Cheng L, Wang N, et al. STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer. 2017;16:136.

    PubMed  PubMed Central  Google Scholar 

  26. Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics. 2017;15:177–86.

    PubMed  PubMed Central  Google Scholar 

  27. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang WT, Yang X, He RQ, Ma J, Hu XH, Mo WJ, et al. Overexpressed BSG related to the progression of lung adenocarcinoma with high-throughput data-mining, immunohistochemistry, in vitro validation and in silico investigation. Am J Transl Res. 2019;11:4835–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi S, Su L, Li J, Zhang C, Ma Z, Liu G, et al. Arf6-driven endocytic recycling of CD147 determines HCC malignant phenotypes. J Exp Clin Cancer Res. 2019;38:471.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Forrest ME, Khalil AM. Review: regulation of the cancer epigenome by long non-coding RNAs. Cancer Lett. 2017;407:106–12.

    CAS  PubMed  Google Scholar 

  31. Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, et al. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer. 2019;18:147.

    PubMed  PubMed Central  Google Scholar 

  32. Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription? Sci Adv. 2017;3:eaao2110.

    PubMed  PubMed Central  Google Scholar 

  33. Shen Y, Gao X, Tan W, Xu T. STAT1-mediated upregulation of lncRNA LINC00174 functions a ceRNA for miR-1910-3p to facilitate colorectal carcinoma progression through regulation of TAZ. Gene. 2018;666:64–71.

    CAS  PubMed  Google Scholar 

  34. Zhou Y, Huang Y, Hu K, Zhang Z, Yang J, Wang Z. HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis. 2020;11:176.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu M, Hartmann D, Braren R, Gupta A, Wang B, Wang Y, et al. Oncogenic Akt-FOXO3 loop favors tumor-promoting modes and enhances oxidative damage-associated hepatocellular carcinogenesis. BMC Cancer. 2019;19:887.

    PubMed  PubMed Central  Google Scholar 

  36. Li Y, Xin S, Wu H, Xing C, Duan L, Sun W, et al. High expression of microRNA‑31 and its host gene LOC554202 predict favorable outcomes in patients with colorectal cancer treated with oxaliplatin. Oncol Rep. 2018;40:1706–24.

    CAS  PubMed  Google Scholar 

  37. Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. J Med Genet. 2015;52:710–8.

    PubMed  Google Scholar 

  38. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tu J, Zhao Z, Xu M, Chen M, Weng Q, Ji J. LINC00460 promotes hepatocellular carcinoma development through sponging miR-485-5p to up-regulate PAK1. Biomed Pharmacother. 2019;118:109213.

    CAS  PubMed  Google Scholar 

  40. Gao F, Wu H, Wang R, Guo Y, Zhang Z, Wang T, et al. MicroRNA-485-5p suppresses the proliferation, migration and invasion of small cell lung cancer cells by targeting flotillin-2. Bioengineered. 2019;10:1–12.

    PubMed  PubMed Central  Google Scholar 

  41. Zhang W, Han L, Xing P, Liu B, Sun Z, Zhou W, et al. LncRNA RHPN1-AS1 accelerates proliferation, migration, and invasion via regulating miR-485-5p/BSG axis in hepatocellular carcinoma. Naunyn-Schmiedeberg’s Arch Pharmacol. 2020;393:2543–51.

    CAS  Google Scholar 

  42. Gabison EE, Huet E, Baudouin C, Menashi S. Direct epithelial-stromal interaction in corneal wound healing: role of EMMPRIN/CD147 in MMPs induction and beyond. Prog Retinal Eye Res. 2009;28:19–33.

    CAS  Google Scholar 

  43. Toole BP, Slomiany MGHyaluronan. CD44 and Emmprin: partners in cancer cell chemoresistance. Drug Resist Updat. 2008;11:110–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, et al. Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma. J Hepatol. 2017;67:282–92.

    CAS  PubMed  Google Scholar 

  45. Marchiq I, Pouysségur J. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters. J Mol Med. 2016;94:155–71.

    CAS  PubMed  Google Scholar 

  46. Li J, Huang Q, Long X, Zhang J, Huang X, Aa J, et al. CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARα pathways. J Hepatol. 2015;63:1378–89.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation Youth Project of Shaanxi Province (No. 2018JQ8014) and the Subject Innovation Team of Shaanxi University of Chinese Medicine (2019-YL06).

Author information

Authors and Affiliations

Authors

Contributions

LY, W-lD, and H-jX: designed the experiment, interpreted the data, and prepared the manuscript. B-gZ, YX, X-wW, YF, and LY conducted the experiment, collected the data, and reviewed the manuscript.

Corresponding author

Correspondence to Hai-juan Xiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Our study was approved by the ethics review board of the Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Deng, Wl., Zhao, Bg. et al. FOXO3-induced lncRNA LOC554202 contributes to hepatocellular carcinoma progression via the miR-485-5p/BSG axis. Cancer Gene Ther 29, 326–340 (2022). https://doi.org/10.1038/s41417-021-00312-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00312-w

Further reading

Search

Quick links