Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advances in immune therapies for gastric cancer

Abstract

Gastric cancer (GC) is an aggressive malignancy that is the third leading cause of cancer mortality worldwide. Localized GC can be cured with surgery, but most patients present with more advanced non-operable disease. Until recently, treatment options for relapsed and refractory advanced GC have been limited to combination chemotherapy regimens, HER-2 directed therapy, and radiation, which lead to few durable responses. Over the past decade, there have been significant advances in our understanding of the molecular and immune pathogenesis of GC. The infectious agents Epstein-Barr virus and Helicobacter pylori perturb the gastric mucosa immune equilibrium, which creates a microenvironment that favors GC tumorigenesis and evasion of immune surveillance. Insights into immune mechanisms of GC have translated into novel therapeutics, including immune checkpoint inhibitors, which have become a treatment option for select patients with GC. Furthermore, chimeric antigen receptor T-cell therapies have emerged as a breakthrough treatment for many cancers, with recent studies showing this to be a potential therapy for GC. In this review, we summarize the current state of knowledge on immune mechanisms of GC and the status of emerging immunotherapies to treat this aggressive cancer, as well as outline current challenges and directions for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GC tumor microenvironment.
Fig. 2: Schematic of GC CAR T-cell design and mechanism of action.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. The online GLOBOCAN 2018 database is accessible at http://gco.iarc.fr/, as part of IARC’s Global Cancer Observatory. CA Cancer J Clin. 2018;68:394–424.

  2. Melkonian SC, Pete D, Jim MA, Haverkamp D, Wiggins CL, Bruce MG, et al. Gastric cancer among American Indian and Alaska Native populations in the united states, 2005–2016. Am J Gastroenterol. 2020;115:1989–97.

  3. Martinson HA, Shelby NJ, Alberts SR, Olnes MJ. Gastric cancer in Alaska Native people: a cancer health disparity. World J Gastroenterol. 2018;24:2722–32.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroentero Hepatol. 2020;18:545–2.

    Article  Google Scholar 

  5. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van De Velde CJH, Nicholson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl J Med. 2006;355:11–20.

    Article  CAS  PubMed  Google Scholar 

  6. Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai BC, et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2017;8(Aug):CD004064.

    PubMed  Google Scholar 

  7. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  CAS  Google Scholar 

  8. Martinson HA, Mallari D, Richter C, Wu TT, Tiesinga J, Alberts SR, et al. Molecular classification of gastric cancer among Alaska Native people. Cancers. 2020;12:198.

    Article  CAS  PubMed Central  Google Scholar 

  9. Owen GI, Pinto MP, Retamal IN, Fernádez FM, Cisternas B, Mondaca S, et al. Chilean gastric cancer task force: a study protocol to obtain a clinical and molecular classification of a cohort of gastric cancer patients. Medicine. 2018;97:e0419.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cordova-Delgado M, Pinto MP, Retamal IN, Muñoz-Medel M, Bravo ML, Fernández MF, et al. High proportion of potential candidates for immunotherapy in a Chilean cohort of gastric cancer patients: results of the FORCE1 Study. Cancers (Basel). 2019;11:1275.

    Article  CAS  Google Scholar 

  11. Murphy G, Pfeiffer R, Camargo MC, Rabkin CS. Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology. 2009;137:824–33.

    Article  PubMed  Google Scholar 

  12. Saito R, Abe H, Kunita A, Yamashita H, Seto Y, Fukayama M. Overexpression and gene amplification of PD-L1 in cancer cells and PD-L1+ immune cells in Epstein-Barr virus-associated gastric cancer: the prognostic implications. Mod Pathol. 2017;30(Mar):427–39.

    Article  CAS  PubMed  Google Scholar 

  13. Derks S, Liao X, Chiaravalli AM, Xu X, Camargo MC, Solcia E, et al. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget. 2016;7:32925–32.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sukawa Y, Yamamoto H, Nosho K, Kunimoto H, Suzuki H, Adachi Y, et al. Alterations in the human epidermal growth factor receptor 2-phosphatidylinositol 3-kinase-v-Akt pathway in gastric cancer. World J Gastroenterol. 2012;18:6577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang WL, Huang KH, Lan YT, Lin CH, Chang SC, Chen MH, et al. Mutations in PI3K/AKT pathway genes and amplifications of PIK3CA are associated with patterns of recurrence in gastric cancers. Oncotarget. 2016;7:6201–20.

    Article  PubMed  Google Scholar 

  16. Chang MS, Uozaki H, Chong JM, Ushiku T, Sakuma K, Ishikawa S, et al. CpG island methylation status in gastric carcinoma with and without infection of Epstein-Barr virus. Clin Cancer Res. 2006;12:2995–3002.

    Article  CAS  PubMed  Google Scholar 

  17. Kang GH, Lee S, Kim WH, Lee HW, Kim JC, Rhyu MG, et al. Epstein-barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol. 2002;160:787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chong JM, Sakuma K, Sudo M, Ushiku T, Uozaki H, Shibahara J, et al. Global and non-random CpG-island methylation in gastric carcinoma associated with Epstein-Barr virus. Cancer Sci. 2003;94:76–80.

    Article  CAS  PubMed  Google Scholar 

  19. Yue W, Zhu M, Zuo L, Xin S, Zhang J, Liu L, et al. Early pattern of epstein-barr virus infection in gastric epithelial cells by “Cell-in-cell”. Virol Sin. 2019;34:253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cárdenas-Mondragón MG, Torres J, Sánchez-Zauco N, Gómez-Delgado A, Camorlinga-Ponce M, Maldonado-Bernal C, et al. Elevated levels of interferon-γ are associated with high levels of epstein-barr virus reactivation in patients with the intestinal type of gastric cancer. J Immunol Res. 2017;2017:7069242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yau TO, Tang CM, Yu J. Epigenetic dysregulation in Epstein-Barr virus-associated gastric carcinoma: disease and treatments. World J Gastroenterol. 2014;20:6448–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kim SY, Park C, Kim HJ, Park J, Hwang J, et al. Deregulation of immune response genes in patients with Epstein-Barr virus-associated gastric cancer and outcomes. Gastroenterology. 2015;148:137–47.e9.

    Article  CAS  PubMed  Google Scholar 

  23. Kang BW, Seo AN, Yoon S, Bae HI, Jeon SW, Kwon OK, et al. Prognostic value of tumor-infiltrating lymphocytes in Epstein-Barr virus-associated gastric cancer. Ann Oncol. 2016;27:494–501.

    Article  CAS  PubMed  Google Scholar 

  24. Chiaravalli AM, Feltri M, Bertolini V, Bagnoli E, Furlan D, Cerutti R, et al. Intratumour T cells, their activation status and survival in gastric carcinomas characterised for microsatellite instability and Epstein-Barr virus infection. Virchows Arch. 2006;448:344–53.

    Article  PubMed  Google Scholar 

  25. Cho J, Kang MS, Kim KM. Epstein-Barr virus-associated gastric carcinoma and specific features of the accompanying immune response. J Gastric Cancer. 2016;16:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer. 2014;2:3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Abe H, Saito R, Ichimura T, Iwasaki A, Yamazawa S, Shinozaki-Ushiku A, et al. CD47 expression in Epstein-Barr virus-associated gastric carcinoma: coexistence with tumor immunity lowering the ratio of CD8+/Foxp3+ T cells. Virchows Arch. 2018;472:643–51.

    Article  CAS  PubMed  Google Scholar 

  28. Cárdenas-Mondragón MG, Torres J, Flores-Luna L, Camorlinga-Ponce M, Carreón-Talavera R, Gomez-Delgado A, et al. Case–control study of Epstein–Barr virus and Helicobacter pylori serology in Latin American patients with gastric disease. Br J Cancer. 2015;112:1866–73.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cárdenas-Mondragón MG, Carreón-Talavera R, Camorlinga-Ponce M, Gomez-Delgado A, Torres J, Fuentes-Pananá EM. Epstein Barr virus and Helicobacter pylori co-infection are positively associated with severe gastritis in pediatric patients. PLoS One. 2013;8(Apr):e62850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Minoura-Etoh J, Gotoh K, Sato R, Ogata M, Kaku N, Fujioka T, et al. Helicobacter pylori-associated oxidant monochloramine induces reactivation of Epstein-Barr virus (EBV) in gastric epithelial cells latently infected with EBV. J Med Microbiol. 2006;55:905–11.

    Article  CAS  PubMed  Google Scholar 

  31. Allison CC, Ferrand J, McLeod L, Hassan M, Kaparakis-Liaskos M, Grubman A, et al. Nucleotide oligomerization domain 1 enhances IFN-γ signaling in gastric epithelial cells during Helicobacter pylori infection and exacerbates disease severity. J Immunol. 2013;190:3706–15.

    Article  CAS  PubMed  Google Scholar 

  32. De Re V, Caggiari L, De Zorzi M, Fanotto V, Miolo G, Puglisi F, et al. Epstein-Barr virus BART microRNAs in EBV- associated Hodgkin lymphoma and gastric cancer. Infect Agent Cancer. 2020;15(Jun):42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Eaton KA, Mefford M, Thevenot T. The role of T cell subsets and cytokines in the pathogenesis of Helicobacter pylori gastritis in mice. J Immunol. 2001;166:7456–61.

    Article  CAS  PubMed  Google Scholar 

  34. Zhuang Y, Shi Y, Liu XF, Zhang JY, Liu T. Fan Xet al. Helicobacter pylori-infected macrophages induce Th17 cell differentiation. Immunobiology. 2011;216:200–7.

    Article  CAS  PubMed  Google Scholar 

  35. Su Z, Sun Y, Zhu H, Liu Y, Lin X, Shen H, et al. Th17 cell expansion in gastric cancer may contribute to cancer development and metastasis. Immunol Res. 2014;58:118–24.

    Article  CAS  PubMed  Google Scholar 

  36. Pernot S, Terme M, Radosevic-Robin N, Castan F, Badoual C, Marcheteau E, et al. Infiltrating and peripheral immune cell analysis in advanced gastric cancer according to the Lauren classification and its prognostic significance. Gastric Cancer. 2020;23:73–81.

    Article  CAS  PubMed  Google Scholar 

  37. Li R, Zhang H, Cao Y, Liu X, Chen Y, Qi Y, et al. Lauren classification identifies distinct prognostic value and functional status of intratumoral CD8+ T cells in gastric cancer. Cancer Immunol Immunother. 2020;69:1327–36.

    Article  CAS  PubMed  Google Scholar 

  38. Kim TS, da Silva E, Coit DG, Tang LH. Intratumoral immune response to gastric cancer varies by molecular and histologic subtype. Am J Surg Pathol. 2019;43:851–60.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Teh M, Lee YS. HLA-DR antigen expression in intestinal-type and diffuse-type gastric carcinoma. Cancer. 1992;69:1104–7.

    Article  CAS  PubMed  Google Scholar 

  40. Humar B, Blair V, Charlton A, More H, Martin I, Guilford P. E-cadherin deficiency initiates gastric signet-ring cell carcinoma in mice and man. Cancer Res. 2009;69:2050–6.

    Article  CAS  PubMed  Google Scholar 

  41. Hofmann M, Pircher H. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc Natl Acad Sci USA. 2011;108:16741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Finn OJ. Cancer immunology. N. Engl J Med. 2008;358:2704–15.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng X, Song X, Shao Y, Xu B, Chen L, Zhou Q, et al. Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: a meta-analysis. Oncotarget. 2017;8:57386–98.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li F, Sun Y, Huang J, Xu W, Liu J, Yuan Z. CD4/CD8 + T cells, DC subsets, Foxp3, and IDO expression are predictive indictors of gastric cancer prognosis. Cancer Med. 2019;8:7330–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lazarevic V, Glimcher L, Lord G. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol. 2013;13:777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen L, Zheng X, Shen Y, Zhu Y, Li Q, Chen J, et al. Higher numbers of T-bet(+) intratumoral lymphoid cells correlate with better survival in gastric cancer. Cancer Immunol Immunother. 2013;62:553–61.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Wang X, Shen Z, Xu J, Qin J, Sun Y. Infiltration of diametrically polarized macrophages predicts overall survival of patients with gastric cancer after surgical resection. Gastric Cancer. 2015;18:740–50.

    Article  CAS  PubMed  Google Scholar 

  48. Lin C, He H, Liu H, Li R, Chen Y, Qi Y, et al. Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer. Gut. 2019;68:1764–73.

    Article  CAS  PubMed  Google Scholar 

  49. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 2020;12:738. 20

    Article  CAS  Google Scholar 

  50. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–71.

    Article  CAS  PubMed  Google Scholar 

  51. Kato K, Satoh T, Muro K, Yoshikawa T, Tamura T, Hamamoto Y, et al. A subanalysis of Japanese patients in a randomized, double-blind, placebo-controlled, phase 3 trial of nivolumab for patients with advanced gastric or gastro-esophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2). Gastric Cancer. 2019;22:344–54.

    Article  CAS  PubMed  Google Scholar 

  52. Mishima S, Kawazoe A, Nakamura Y, Sasaki A, Kotani D, Kuboki Y, et al. Clinicopathological and molecular features of responders to nivolumab for patients with advanced gastric cancer. J Immunother Cancer. 2019;7:24.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bang YJ, Cho JY, Kim YH, Kim JW, Di Bartolomeo M, Ajani JA, et al. Efficacy of sequential ipilimumab monotherapy versus best supportive care for unresectable locally advanced/metastatic gastric or gastroesophageal junction cancer. Clin Cancer Res. 2017;23:5671–8.

    Article  CAS  PubMed  Google Scholar 

  54. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 Study. J Clin Oncol. 2020;38:1–10.

    Article  CAS  PubMed  Google Scholar 

  55. Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17:717–26.

    Article  CAS  PubMed  Google Scholar 

  56. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 Trial. JAMA Oncol. 2018;4:e180013.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim ST, Cristescu R, Bass AJ, Kim K-M, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24:1449–58.

    Article  CAS  PubMed  Google Scholar 

  58. Shitara K, Özgüroğlu M, Bang YJ, Di Bartolomeo M, Mandalà M, Ryu MH, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018;392:123–33.

    Article  CAS  PubMed  Google Scholar 

  59. Bang YJ, Ruiz EY, Van Cutsem E, Lee KW, Wyrwicz L, Schenker M, et al. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol. 2018;29:2052–60.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shitara K, Van Cutsem E, Bang YJ, Fuchs C, Wyrwicz L, Lee KW, et al. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 2020;6:1–10.

    Article  PubMed Central  Google Scholar 

  61. Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P, et al. CheckMate-032 Study: efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J Clin Oncol. 2018;36:2836–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kelly RJ, Lee J, Bang Y-J, Almhanna K, Blum-Murphy M, Catenacci DVT. Safety and efficacy of durvalumab and tremelimumab alone or in combination in patients with advanced gastric and gastroesophageal junction adenocarcinoma. Clin Cancer Res. 2020;26:846–54.

    Article  CAS  PubMed  Google Scholar 

  63. Bang YJ, Golan T, Dahan L, Fu S, Moreno V, Park K, et al. Ramucirumab and durvalumab for previously treated, advanced non-small-cell lung cancer, gastric/gastro-oesophageal junction adenocarcinoma, or hepatocellular carcinoma: An open-label, phase Ia/b study (JVDJ). Eur J Cancer. 2020;137:272–84.

    Article  CAS  PubMed  Google Scholar 

  64. Kawazoe A, Yamaguchi K, Yasui H, Negoro Y, Azuma M, Amagai K, et al. Safety and efficacy of pembrolizumab in combination with S-1 plus oxaliplatin as a first-line treatment in patients with advanced gastric/gastroesophageal junction cancer: Cohort 1 data from the KEYNOTE-659 phase IIb study. Eur J Cancer. 2020;129:97–106.

    Article  CAS  PubMed  Google Scholar 

  65. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.

    Article  CAS  PubMed  Google Scholar 

  66. Jain T, Bar M, Kansagra AJ, Chong EA, Hashmi SK, Neelapu SS, et al. Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-hodgkin lymphoma: an expert panel opinion from the american society for transplantation and cellular therapy. Biol Blood Marrow Transplant. 2019;25:2305–21.

    Article  CAS  PubMed  Google Scholar 

  67. Bębnowska D, Grywalska E, Niedźwiedzka-Rystwej P, Sosnowska-Pasiarska B, Smok-Kalwat J, Pasiarski M, et al. CAR-T cell therapy—an overview of targets in gastric cancer. J Clin Med. 2020;9:1894.

    Article  PubMed Central  CAS  Google Scholar 

  68. Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, et al. Claudin18.2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J Natl Cancer Inst. 2019;111:409–18.

    Article  PubMed  CAS  Google Scholar 

  69. Zhan X, Wang B, Li Z, Li J, Wang H, Chen H, et al. Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. J Clin Oncol. 2019;37(15_suppl):2509–2509.

    Article  Google Scholar 

  70. Wang X, Che X, Liu C, Fan Y, Bai M, Hou K, et al. Cancer-associated fibroblasts-stimulated interleukin-11 promotes metastasis of gastric cancer cells mediated by upregulation of MUC1. Exp Cell Res. 2018;368:184–93.

    Article  CAS  PubMed  Google Scholar 

  71. Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol. 2008;180:4901–9.

    Article  CAS  PubMed  Google Scholar 

  72. Xu F, Liu F, Zhao H, An G, Feng G. Prognostic significance of mucin antigen MUC1 in various human epithelial cancers: a meta-analysis. Med (Baltim). 2015;94:e2286.

    Article  CAS  Google Scholar 

  73. Wang XT, Kong FB, Mai W, Li L, Pang LM. MUC1 Immunohistochemical expression as a prognostic factor in gastric cancer: meta-analysis. Dis Markers. 2016;2016:9421571.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Maher J, Wilkie S. CAR mechanics: driving T cells into the MUC of cancer. Cancer Res. 2009;69:4559–62.

    Article  CAS  PubMed  Google Scholar 

  75. Fong D, Seeber A, Terracciano L, Kasal A, Mazzoleni G, Lehne F, et al. Expression of EpCAMMF and EpCAMMT variants in human carcinomas. J Clin Pathol. 2014;67:408–14.

    Article  PubMed  Google Scholar 

  76. Dai M, Yuan F, Fu C, Shen G, Hu S, Shen G. Relationship between epithelial cell adhesion molecule (EpCAM) overexpression and gastric cancer patients: a systematic review and meta-analysis. PLoS ONE. 2017;12:e0175357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Knödler M, Körfer J, Kunzmann V, Trojan J, Daum S, Schenk M, et al. Randomised phase II trial to investigate catumaxomab (anti-EpCAM × anti-CD3) for treatment of peritoneal carcinomatosis in patients with gastric cancer. Br J Cancer. 2018;119:296–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Zhang B-L, Li D, Gong Y-L, Huang Y, Qin D-Y, Jiang L, et al. Preclinical evaluation of chimeric antigen receptor-modified T cells specific to epithelial cell adhesion molecule for treating colorectal cancer. Hum Gene Ther. 2019;4:402–12.

    Article  CAS  Google Scholar 

  79. Cheung A, Bax HJ, Josephs DH, Ilieva KM, Pellizzari G, Opzoomer J, et al. Targeting folate receptor alpha for cancer treatment. Oncotarget. 2016;7:52553–74.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kim M, Pyo S, Kang CH, Lee CO, Lee HK, Choi SU, et al. Folate receptor 1 (FOLR1) targeted chimeric antigen receptor (CAR) T cells for the treatment of gastric cancer. PLoS ONE. 2018;13:e0198347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Song Y, Tong C, Wang Y, Gao Y, Dai H, Guo Y, et al. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell. 2018;9:867–78.

    Article  CAS  PubMed  Google Scholar 

  82. Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov. 2016;6:133–46.

    Article  CAS  PubMed  Google Scholar 

  83. Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer. 2008;44:46–53.

    Article  CAS  PubMed  Google Scholar 

  84. Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med. 2014;6:261ra151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Holzinger A, Abken HCAR. T cells targeting solid tumors: carcinoembryonic antigen (CEA) proves to be a safe target. Cancer Immunol Immunother. 2017;66:1505–7.

    Article  PubMed  Google Scholar 

  86. Tao K, He M, Tao F, Xu G, Ye M, Zheng Y, et al. Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment. Cancer Chemother Pharmacol. 2018;82:815–27.

    Article  CAS  PubMed  Google Scholar 

  87. Demoulin B, Cook WJ, Murad J, Graber DJ, Sentman ML, Lonez C, et al. Exploiting natural killer group 2D receptors for CAR T-cell therapy. Future Oncol. 2017;13:1593–605.

    Article  CAS  PubMed  Google Scholar 

  88. Hege KM, Bergsland EK, Fisher GA, Nemunaitis JJ, Warren RS, McArthur JG, et al. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J Immunother Cancer. 2017;5:22.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Murad JP, Kozlowska AK, Lee HJ, Ramamurthy M, Chang WC, Yazaki P, et al. Effective targeting of TAG72+ peritoneal ovarian tumors via regional delivery of CAR-engineered T cells. Front Immunol. 2018;9:2268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wu MR, Zhang T, DeMars LR, Sentman CL. B7H6-specific chimeric antigen receptors lead to tumor elimination and host anti-tumor immunity. Gene Ther. 2015;22:675–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  CAS  PubMed  Google Scholar 

  92. Sharma P, Hu-Lieskovan S, Wargo JS, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grosser R, Cherkassky L, Chintala N, Adusumilli PS. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell. 2019;36:471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Figures illustrations were created with BioRender.com. Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number 2P20GM103395. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Olnes.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olnes, M.J., Martinson, H.A. Recent advances in immune therapies for gastric cancer. Cancer Gene Ther 28, 924–934 (2021). https://doi.org/10.1038/s41417-021-00310-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00310-y

This article is cited by

Search

Quick links