Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanomedicine-based cancer immunotherapy: recent trends and future perspectives

Abstract

The combination of cancer immunotherapy with efficient functionalized nanosystems has emerged as a beneficial treatment strategy and its use has increased rapidly. The roles of stimuli-responsive nanosystems and nanomedicine-based cancer immunotherapy, a subsidiary discipline in the field of immunology, are pivotal. The present era is witnessing rapid advancements in the use of nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. The development of cancer nanomedicine has posthaste ratified the outcomes of immunotherapy to the subsequent stage in the current era of medical research. This review focuses on key findings with respect to the effectiveness of nanomedicine-based cancer immunotherapies and their applications, which include i) immune checkpoint inhibitors and nanomedicine, ii) CRISPR-Cas nanoparticles (NPs) in cancer immunotherapy, iii) combination cancer immunotherapy with core-shell nanoparticles, iv) biomimetic NPs for cancer immunotherapy, and v) CAR-T cells and cancer nanoimmunotherapy. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cancer immunotherapy using CRISPR–Cas nanoparticles.
Fig. 2: Cancer immunotherapy using core-shell nanoparticles.
Fig. 3: Various mechanisms of nanomedicine based tumor targeting.
Fig. 4: Comparison of the actions of CAR-T cells.
Fig. 5: Effective strategy for CAR-T DNA nanocomplex formation.

Similar content being viewed by others

References

  1. Schumacher T, Schreiber R. Neoantigens in cancer immunotherapy. Science 2015;348:69–74.

    Article  CAS  PubMed  Google Scholar 

  2. Hodi F, O’Day ST, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Waldman A, Fritz J, Lenardo M. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020;20:1–18.

    Article  CAS  Google Scholar 

  4. O’Donnell J, Teng M, Smyth M. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2018;16:151–67.

    Article  CAS  Google Scholar 

  5. Riley R, June C, Langer R, Mitchell M. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019;18:175–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldberg M. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 2019;19:587–602.

    Article  CAS  PubMed  Google Scholar 

  7. Mi Y, Hagan C, Vincent B, Wang A. Emerging nano-/microapproaches for cancer immunotherapy. Adv Sci. 2019;6:1801847.

    Article  CAS  Google Scholar 

  8. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup LM, Mitra S, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 2020;577:561–5.

    Article  CAS  PubMed  Google Scholar 

  9. Lu J, Liu X, Liao YP, Salazar F, Sun B, Jiang W, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 2017;8:1–14.

  10. Wang C, Wang J, Zhang X, Yu S, Wen D, Hu Q, et al. In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci Transl Med 2018;10:eaan3682.

    Article  PubMed  CAS  Google Scholar 

  11. Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol 2017;12:877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gurbatri C, Lia I, Vincent R, Coker C, Castro S, Treuting PM, et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci Transl Med. 2020;12:eaax0876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang D, Wang T, Yu H, Feng B, Zhou L, Zhou F, et al. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Sci Immunol. 2019;4:eaau6584.

    Article  CAS  PubMed  Google Scholar 

  14. Galstyan A, Markman JL, Shatalova ES, Chiechi A, Korman AJ, Patil R, et al. Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun 2019;10:3850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Phuengkham H, Song C, Lim Y. A designer scaffold with immune nanoconverters for reverting immunosuppression and enhancing immune checkpoint blockade therapy. Adv Mater 2019;31:1903242.

    Article  CAS  Google Scholar 

  16. Duan X, Chan C, Han W, Guo N, Weichselbaum RR, Lin W. Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors. Nat Commun 2019;10:1899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wilson DR, Sen R, Sunshine JC, Pardoll DM, Green JJ, Kim YJ. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomedicine 2018;14:237–46.

    Article  CAS  PubMed  Google Scholar 

  18. Mi Y, Smith CC, Yang F, Qi Y, Roche KC, Serody JS, et al. A dual immunotherapy nanoparticle improves T-cell activation and cancer immunotherapy. Adv Mater 2018;30:e1706098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lu K, He C, Guo N, Chan C, Ni K, Lan G, et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat Biomed Eng 2018;2:600–10.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang YX, Zhao YY, Shen J, Sun X, Liu Y, Liu H, et al. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. Nano Lett 2019;19:2774–83.

    Article  CAS  PubMed  Google Scholar 

  21. Deng H, Zhang Z. The application of nanotechnology in immune checkpoint blockade for cancer treatment. J Control. Release 2018;290:28–45.

    Article  CAS  PubMed  Google Scholar 

  22. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017;543:113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci 2015;112:10437 LP–10442.

    Article  CAS  Google Scholar 

  25. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 2017;23:2255 LP–2266.

    Article  CAS  Google Scholar 

  26. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 2017;547:413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med 2015;21:256–62.

    Article  CAS  PubMed  Google Scholar 

  28. Y, Xue J, Deng T, Zhou X, Yu K, Huang M, et al. A phase I trial of PD-1 deficient engineered T cells with CRISPR/Cas9 in patients with advanced non-small cell lung cancer. J Clin Oncol 2018;36:3050.

    Article  Google Scholar 

  29. Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov 2017;16:387–99.

    Article  CAS  PubMed  Google Scholar 

  30. Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 2017;266:17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 2015;33:102–6.

    Article  CAS  PubMed  Google Scholar 

  32. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015;520:186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mout R, Ray M, Lee YW, Scaletti F, Rotello VM. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem 2017;28:880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med 2015;21:121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo YL, Xu CF, Li HJ, Cao ZT, Liu J, Wang JL, et al. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano. 2018;12:994–1005.

    Article  CAS  PubMed  Google Scholar 

  36. Tu K, Deng H, Kong L, Wang Y, Yang T, Hu Q, et al. Reshaping tumor immune microenvironment through acidity-responsive nanoparticles featured with CRISPR/Cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS Appl Mater Interfaces 2020;12:16018–30.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng WJ, Chen LC, Ho HO, Lin HL, Sheu MT. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy. Int J Nanomed 2018;13:7079–94.

    Article  CAS  Google Scholar 

  38. Ray M, Lee YW, Hardie J, Mout R, Yeşilbag Tonga G. CRISPRed macrophages for cell-based cancer immunotherapy. Bioconjug Chem 2018;29:445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leonard F, Curtis LT, Hamed AR, Zhang C, Chau E, Sieving D, et al. Nonlinear response to cancer nanotherapy due to macrophage interactions revealed by mathematical modeling and evaluated in a murine model via CRISPR-modulated macrophage polarization. Cancer Immunol Immunother 2020;69:731–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 2013;24:319–33.

    Article  CAS  PubMed  Google Scholar 

  41. Shao F, Zang M, Xu L, Yin D, Li M, Q J, et al. Multiboosting of cancer immunotherapy by a core–shell delivery System. Mol Pharm 2020;17:338–48.

    Article  CAS  PubMed  Google Scholar 

  42. He C, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun 2016;7:12499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, et al. Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J Am Chem Soc 2016;138:16686–95.

    Article  CAS  Google Scholar 

  44. Cho NH, Cheong TC, Min JH, Wu JH, Lee SJ, Kim D, et al. A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 2011;6:675–82.

    Article  CAS  PubMed  Google Scholar 

  45. Ni J, Song J, Wang B, Hua H, Zhu H, Guo X, et al. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother 2020;126:110046.

    Article  CAS  PubMed  Google Scholar 

  46. Yan S, Zeng X, Tang Y, Liu BF, Wang Y, Liu X. Activating Antitumor immunity and antimetastatic effect through polydopamine-encapsulated core–shell upconversion nanoparticles. Adv Mater 2019;31:1905825.

    Article  CAS  Google Scholar 

  47. Huang KW, Hsu FF, Qiu JT, Chern GJ, Lee YA, Chang CC, et al. Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Sci Adv 2020;6:eaax5032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin J, Krishnamachary B, Barnett JD, Chatterjee S, Chang D, Mironchik Y, et al. Human cancer cell membrane-coated biomimetic nanoparticles reduce fibroblast-mediated invasion and metastasis and induce T-cells. ACS Appl Mater Interfaces. 2019;11:7850–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao P, Wang M, Chen M, Chen Z, Peng X, Zhou F, et al. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials 2020;254:120142.

    Article  CAS  PubMed  Google Scholar 

  50. Yu W, He X, Yang Z, Yang X, Xiao W, Liu R, et al. Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials 2019;217:119309.

    Article  CAS  PubMed  Google Scholar 

  51. Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N. CAR T cell therapy: a new era for cancer treatment. Oncol Rep. 2019;42:2183–3195.

    CAS  PubMed  Google Scholar 

  52. Abdalla A, Xiao L, Miao Y, Huang L, Fadlallah GM, Gauthier M, et al. Nanotechnology promotes genetic and functional modifications of therapeutic T cells against cancer. Adv Sci. 2020;7:1903164.

    Article  CAS  Google Scholar 

  53. Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol. 2018;36:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP, Xie YQ, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol. 2018;36:707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang F, Stephan SB, Ene CI, Smith TT, Holland EC, Stephan MT. Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T cell therapy in solid malignancies. Cancer Res 2018;78:3718–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Siriwon N, Kim YJ, Siegler E, Chen X, Rohrs JA, Liu Y, et al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol Res. 2018;6:812–24.

    Article  CAS  PubMed  Google Scholar 

  57. Bai C, Gao S, Hu S, Liu X, Li H, Dong J, et al. Self-assembled multivalent aptamer nanoparticles with potential CAR-like characteristics could activate T cells and inhibit melanoma growth. Mol Ther. 2020;17:9–20.

    CAS  Google Scholar 

  58. Yu Q, Zhang M, Chen Y, Chen X, Shi S, Sun K, et al. Self Assembled nanoparticles prepared from low-molecular-weight PEI and low-generation PAMAM for EGFRvIII-chimeric antigen receptor gene loading and T-cell transient modification. Int J Nanomed 2020;15:483–95.

    Article  CAS  Google Scholar 

  59. Wu X, Li Y, Huang B, Ma X, Zhu L, Zheng N, et al. Nanotechnology and immunoengineering: how nanotechnology can boost CAR-T therapy. Acta Biomaterialia 2020;109:21–36.

    Article  PubMed  CAS  Google Scholar 

  60. Korangath P, Barnett JD, Sharma A, Henderson ET, Stewart J, Yu SH, et al. Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer. Sci Adv 2020;25:eaay1601. 6

    Article  CAS  Google Scholar 

  61. Liu X, Feng Z, Wang C, Su Q, Song H, Zhang C, et al. Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials 2020;230:119649.

    Article  CAS  PubMed  Google Scholar 

  62. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020;17:147–67.

    Article  PubMed  Google Scholar 

  63. Tomitaka A, Kaushik A, Kevadiya BD, Mukadam I, Gendelman HE, Khalili K, et al. Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Discov Today 2019;24:873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vellampatti S, Chandrasekaran G, Mitta SB, Dugasani SR, Lakshmanan VK, Park SH. Bacterial resistance and prostate cancer susceptibility toward metal-ion-doped DNA complexes. ACS Appl Mater Interfaces 2018;26:44290–44300. 10

    Article  CAS  Google Scholar 

  65. Vellampatti S, Chandrasekaran G, Mitta SB, Lakshmanan VK, Park SH. Metallo-Curcumin-conjugated DNA complexes induces preferential prostate cancer cells cytotoxicity and pause growth of bacterial cells. Sci Rep. 2018;8:14929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kuai R, Yuan W, Son S, Nam J, Xu Y, Fan Y, et al. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci Adv 2018;4:eaao1736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Fan Y, Kuai R, Xu Y, Ochyl LJ, Irvine DJ, Moon JJ. Immunogenic cell death amplified by co-localized adjuvant delivery for cancer immunotherapy. Nano Lett 2017;17:7387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lan G, Ni K, Xu Z, Veroneau SS, Song Y, Lin W. Nanoscale metal–organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J Am Chem Soc 2018;140:5670–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dai L, Li K, Li M, Zhao X, Luo Z, Lu L, et al. Size/charge Changeable acidity-responsive micelleplex for photodynamic-improved PD-L1 immunotherapy with enhanced tumor penetration. Adv Funct Mater 2018;8:1707249.

    Article  CAS  Google Scholar 

  70. Liu Y, Maccarini P, Palmer GM, Etienne W, Zhao Y, Lee CT, et al. Synergistic immuno photothermal nanotherapy (SYMPHONY) for the treatment of unresectable and metastatic cancers. Sci Rep. 2017;7:8606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, et al. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Control Release 2016;231:17–28.

    Article  CAS  PubMed  Google Scholar 

  72. Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 2011;29:1005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Akita H, Kogure K, Moriguchi R, Nakamura Y, Higashi T, Nakamura T, et al. Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: programmed endosomal escape and dissociation. J Control Release 2010;143:311–7.

    Article  CAS  PubMed  Google Scholar 

  74. Warashina S, Nakamura T, Harashima H. A20 silencing by lipid envelope-type nanoparticles enhances the efficiency of lipopolysaccharide-activated dendritic cells. Biol Pharm Bull 2011;34:1348–51.

    Article  CAS  PubMed  Google Scholar 

  75. Conde J, Bao C, Tan Y, Cui D, Edelman ER, Azevedo HS, et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv Funct Mater 2015;25:4183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alshamsan A, Hamdy S, Haddadi A, Samuel J, El-Kadi AO, Uludağ H, et al. STAT3 Knockdown in B16 melanoma by siRNA lipopolyplexes induces bystander immune response in vitro and in vivo. Transl Oncol 2011;4:178–88.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang Y, Xu Z, Guo S, Zhang L, Sharma A, Robertson GP, et al. Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis. Mol Ther 2013;21:1919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Heo MB, Lim YT. Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells. Biomaterials 2014;35:590–600.

    Article  CAS  PubMed  Google Scholar 

  79. Jadidi-Niaragh F, Atyabi F, Rastegari A, Kheshtchin N, Arab S, Hassannia H, et al. CD73 specific siRNA loaded chitosan lactate nanoparticles potentiate the antitumor effect of a dendritic cell vaccine in 4T1 breast cancer bearing mice. J Control Release 2017;246:46–59.

    Article  CAS  PubMed  Google Scholar 

  80. Wu Y, Gu W, Li L, Chen C, Xu ZP. Enhancing PD-1 gene silence in T lymphocytes by comparing the delivery performance of two inorganic nanoparticle platforms. Nanomaterials 2019;9:159.

    Article  CAS  PubMed Central  Google Scholar 

  81. Heo MB, Cho MY, Lim YT. Polymer nanoparticles for enhanced immune response: combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells. Acta Biomater 2014;10:2169–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

VKL and SC are thankful to the Thumbay Research Institute for Precision Medicine (TRIPM) for providing infrastructural facilities. SJ is thankful to the Department of Biotechnology, Government of India, for awarding the fellowship. GP acknowledges the Department of Biotechnology, Government of India (BT/PR 25095/NER/95/1011/2017) and Shastri Institutional Collaborative Research Grant (SICRG) 2020–21.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinoth-Kumar Lakshmanan, Gopinath Packirisamy or Salem Chouaib.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmanan, VK., Jindal, S., Packirisamy, G. et al. Nanomedicine-based cancer immunotherapy: recent trends and future perspectives. Cancer Gene Ther 28, 911–923 (2021). https://doi.org/10.1038/s41417-021-00299-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00299-4

This article is cited by

Search

Quick links