Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An organoid-based drug screening identified a menin-MLL inhibitor for endometrial cancer through regulating the HIF pathway

Abstract

Tumor organoids recapitulate pathological properties and would serve as an excellent ex vivo model for drug discovery. Here, we performed an unbiased drug screening on drivers-defined tumor organoids from mouse endometrial cancer, the most prevalent gynecological malignancy in human, with a small molecule library targeting epigenetic factors. Among them, menin-MLL inhibitors MI-136 and MI-463 scored. The therapeutic capacity of MI-136 was further validated in tumor organoids in vitro and an orthotopic model in vivo. CRISPR/cas9-mediated mutations of major components of the menin-MLL complex, Men1, Kmt2a and Ash2l, inhibited the growth of tumor organoids, suggesting that the complex was the target of MI-136. Transcriptome analysis showed that the hypoxia-inducible factor (HIF) pathway was the most significantly downregulated pathway by MI-136 treatment. Consistently, Men1, Kmt2a, and Ash2l knockout also repressed the expressions of the HIF target genes. Loss of Hif1a or Hif1b partially phenocopied the inhibition of the menin-MLL complex by MI-136 or mutations in term of tumor organoid growth. Further, we found that MEN1 was upregulated in human endometrial cancers, which were tightly correlated with the expression levels of HIF1A, and associated with poor prognosis. Importantly, MI-136 also significantly inhibited the growth of endometrial cancer organoids derived from patients. Thus, our study identified MI-136 as a potential inhibitor for endometrial cancer through regulating the HIF pathway, a novel molecular mechanism distinguished from those in AML and prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organoid-based small molecule screening with an epigenetic drug library for endometrial cancer.
Fig. 2: Menin-MLL inhibitor MI-136 inhibited the growth of endometrial cancer organoids in vitro.
Fig. 3: MI-136 repressed in vivo tumor growth in an orthotopic endometrial cancer model.
Fig. 4: MI-136 treatment inhibited the HIF signaling pathway in endometrial cancer organoids.
Fig. 5: Menin directly bound on the promoters and gene bodies of multiple HIF pathway genes which were downregulated by MI-136.
Fig. 6: Analysis of the menin-HIF axis in human endometrial cancers and the effect of MI-136 on the growth of patient-derived endometrial cancer organoids.

Similar content being viewed by others

References

  1. Roy A, Matzuk MM. Reproductive tract function and dysfunction in women. Nat Rev Endocrinol. 2011;7:517–25.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Cente MM, Ferlay JJ, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E, Morice P, et al. Endometrial cancer. Lancet 2016;387:1094–108.

    Article  PubMed  Google Scholar 

  4. Grywalska E, Sobstyl M, Putowski L, Rolinski J. Current possibilities of gynecologic cancer treatment with the use of immune checkpoint inhibitors. Int J Mol Sci. 2019;20:4705.

    Article  PubMed Central  CAS  Google Scholar 

  5. Lheureux S, Oza AM. Endometrial cancer-targeted therapies myth or reality? Review of current targeted treatments. Eur J Cancer 2016;59:99–108.

    Article  PubMed  Google Scholar 

  6. Cherniack AD, Shen H, Walter V, Stewart C, Murray BA, Bowlby R, et al. Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell 2017;31:411–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Getz G, Gabriel SB, Cibulskis K, Lander E, Sivachenko A, Sougnez C, et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497:67–73.

    Article  CAS  Google Scholar 

  8. Kuhn E, Wu RC, Guan B, Wu G, Zhang JH, Wang Y. Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J Natl Cancer Inst. 2012;104:1503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheung LWT, Hennessy BT, Li J, Yu S, Myers AP, Djordjevic B, et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Disco. 2011;1:170–85.

    Article  CAS  Google Scholar 

  10. Levine RL, Cargile CB, Blazes MS, van Rees B, Kurman RJ, Ellenson LH. PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res. 1998;58:3254–8.

    CAS  PubMed  Google Scholar 

  11. Petrella BL, Brinckerhoff CE. PTEN suppression of YY1 induces HIF-2 activity in von-Hippel-Lindau-null renal-cell carcinoma. Cancer Biol Ther. 2009;8:1389–401.

    Article  CAS  PubMed  Google Scholar 

  12. Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 1: DNA methylation. Epigenomics 2017;9:737–55.

    Article  CAS  PubMed  Google Scholar 

  13. Salvesen HB, Macdonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, et al. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 2001;91:22–6.

    Article  CAS  PubMed  Google Scholar 

  14. Dewdney SB, Rimel B, Thaker H, Thompson DM, Schmidt A. Huettner, et al. Aberrant methylation of the X-linked ribosomal S6 kinase RPS6KA6 (RSK4) in endometrial cancers. Clin Cancer Res. 2011;17:2120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seeber LMS, Zweemer R, Marchionni L, Massuger LFAG, Smit VTHBM, Van Baal WM, et al. Methylation profiles of endometrioid and serous endometrial cancers. Endocr Relat Cancer 2010;17:663–73.

    Article  CAS  PubMed  Google Scholar 

  16. Suehiro Y, Okada T, Okada T, Anno K, Okayama N, Ueno K, et al. Aneuploidy predicts outcome in patients with endometrial carcinoma and is related to lack of CDH13 hypermethylation. Clin Cancer Res. 2008;14:3354–61.

    Article  CAS  PubMed  Google Scholar 

  17. Guida M, Sanguedolce F, Bufo, Sardo ADS, Pannone G. Aberrant DNA hypermethylation of hMLH-1 and CDKN2A/p16 genes in benign, premalignant and malignant endometrial lesions. Eur J Gynaecol Oncol. 2009;30:267–70.

    CAS  PubMed  Google Scholar 

  18. Daniela F, Ileana C, Barbara M, Roberta C, Emanuele D, Carlo C, et al. The high frequency of de novo promoter methylation in synchronous primary endometrial and ovarian carcinomas. Clin Cancer Res. 2006;12:3329–36.

    Article  Google Scholar 

  19. Xu S, Ren J, Bin Chen H, Wang Y, Liu Q, Zhang R, et al. Cytostatic and apoptotic effects of DNMT and HDAC inhibitors in endometrial cancer cells. Curr Pharm Des. 2014;20:1881–7.

    Article  CAS  PubMed  Google Scholar 

  20. Satoshi I, Jyoji I, Keiko S. Protein expression, mRNA expression and gene amplification of DNA methyltransferase 1 in endometrial tumor tissues. Mol Clin Oncol. 2013;1:423–9.

    Article  CAS  Google Scholar 

  21. Claudia AK, Anne JV, Irmgard CL, Ulrike von R, Henning MB, Joachim A. Class I histone deacetylase expression in the human cyclic endometrium and endometrial adenocarcinomas. Hum Reprod. 2007;22:2956–66.

    Article  CAS  Google Scholar 

  22. Wilko W, Carsten D, Aurelia N, Silvia DE, Manfred D, Steve EK, et al. Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia 2008;10:1021–7.

    Article  CAS  Google Scholar 

  23. Asaka R, Miyamoto T, Yamada Y, Ando H, Mvunta DH, Kobara H, et al. Sirtuin 1 promotes the growth and cisplatin resistance of endometrial carcinoma cells: a novel therapeutic target. Lab Invest. 2015;95:1363–73.

    Article  CAS  PubMed  Google Scholar 

  24. Theisen ER, Gajiwala S, Bearss J, Sorna V, Sharma S, Janat-Amsbury M. Reversible inhibition of lysine specific demethylase 1 is a novel anti-tumor strategy for poorly differentiated endometrial carcinoma. BMC Cancer 2014;14:752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bartosch C, Lopes JM, jeronimo C. Epigenetics in endometrial carcinogenesis - part 2: histone modifications, chromatin remodeling and noncoding RNAs. Epigenomics 2017;9:873–92.

    Article  CAS  PubMed  Google Scholar 

  26. Tom VN, Moiola CP, Eva C, Daniela A. Modeling endometrial cancer: past, present, and future. Int J Mol Sci. 2018;19:2348.

    Article  CAS  Google Scholar 

  27. Fatehullah A, Si Hui T, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18:246–54.

    Article  PubMed  CAS  Google Scholar 

  28. Huang L, Holtzinger A, Jagan I, Nostro C, Wang RN, Muthuswamy L, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer 2018;18:407–18.

    Article  CAS  PubMed  Google Scholar 

  30. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018;172:373–86.

    Article  CAS  PubMed  Google Scholar 

  31. Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol. 2017;19:568–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boretto M, Maenhoudt N, Luo XL, Hennes A, Boeckx B, Bui B, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol. 2019;21:1041–51.

    Article  CAS  PubMed  Google Scholar 

  33. Takai N. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res. 2004;10:1141–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kiyoko U, Umene K, Yanokura M, Banno K, Irie H, Adachi M, et al. Aurora kinase A has a significant role as a therapeutic target and clinical biomarker in endometrial cancer. Int J Oncol. 2015;46:1498–506.

    Article  CAS  Google Scholar 

  35. Bestvina CM, Fleming GF. Chemotherapy for endometrial cancer in adjuvant and advanced disease settings. Oncologist 2016;21:1250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi A, Murai MJ, He S, Lund G, Hartley T, Purohit T, et al. Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia. Blood 2012;120:4461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol. 2012;8:277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malik R, Khan AP, Asangani IA, Cielik M, Chinnaiyan AM. Targeting the MLL complex in castration-resistant prostate cancer. Nat Med. 2015;21:344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salimian Rizi B, Caneba C, Nowicka A, Nabiyar AW, Liu X, Chen K, et al. Nitric oxide mediates metabolic coupling of omentum-derived adipose stroma to ovarian and endometrial cancer cells. Cancer Res. 2015;75:456–71.

    Article  CAS  PubMed  Google Scholar 

  40. Basudhar D, Glynn SA, Greer M, Somasundaram V, No JH, Scheiblin DA, et al. Coexpression of NOS2 and COX2 accelerates tumor growth and reduces survival in estrogen receptor-negative breast cancer. Proc Natl Acad Sci USA. 2017;114:13030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi L, Pan H, Liu Z, Xie J, Han W. Roles of PFKFB3 in cancer. Signal Transduct Target Ther. 2017;2:17044.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gustafsson NMS, Färnegårdh K, Bonagas N, Ninou AH, Groth P, Wiita E, et al. Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination. Nat Commun. 2018;9:3872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nwosu ZC, Ebert MP, Dooley S, Meyer C. Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol Cancer 2016;15:71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Krivtsov AV, Evans K, Gadrey JY, Eschle BK, Hatton C, Uckelmann HJ, et al. A menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell 2019;36:660–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ning Z, Jia NF, Ting CC. Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro: experimental design and data analysis using the combination index method. Am J Cancer Res. 2016;6:97–104.

    Google Scholar 

  46. Alexander D, Carrie AD, Felix S, Jorg D, Chris Z, Sonali J, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

    Article  CAS  Google Scholar 

  47. Guang CY, Li GW, Yan YH, Qing YH. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012;16:284–7.

    Article  CAS  Google Scholar 

  48. Aravind S, Pablo T, Vamsi KM, Sayan M, Benjamin LE, Michael AG, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  Google Scholar 

  49. Hanbo C, Paul CB. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinforma 2011;12:35.

    Article  Google Scholar 

  50. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010;38:576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. H Wickham. ggplot2: Elegant Graphics for Data Analysis. 2nd edn. (Springer Nature, New York, 2016).

  53. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all Chen-Liu laboratory members for their invaluable discussions and technical support.

Funding

This work was supported by the National Key R&D Program of China (2017YFA0505600).

Author information

Authors and Affiliations

Authors

Contributions

JC, LZ, YL, CC, and FN conceived the project, designed experiments, and wrote the paper. JC, HP, SD, MW, JW, YQ, ZB, YZ, and SZ performed experiments and analyzed data. LZ and JC performed RNA-seq and ChIP-seq analysis.

Corresponding authors

Correspondence to Chong Chen or Feifei Na.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

All the collection of specimens and animal handling in this work was reviewed and approved by the Medical Ethics Committee of the Sichuan University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhao, L., Peng, H. et al. An organoid-based drug screening identified a menin-MLL inhibitor for endometrial cancer through regulating the HIF pathway. Cancer Gene Ther 28, 112–125 (2021). https://doi.org/10.1038/s41417-020-0190-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-0190-y

This article is cited by

Search

Quick links