Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication

Abstract

Cancer immunotherapy emerged as a novel therapeutic option that employs enhanced or amended native immune system to create a robust response against malignant cells. The systemic therapies with immune-stimulating cytokines have resulted in substantial dose-limiting toxicities. Targeted cytokine immunotherapy is being explored to overcome the heterogeneity of malignant cells and tumor cell defense with a remarkable reduction of systemic side effects. Cell-based strategies, such as dendritic cells (DCs), fibroblasts or mesenchymal stem cells (MSCs) seek to minimize the numerous toxic side effects of systemic administration of cytokines for extended periods of time. The usual toxicities comprised of a vascular leak, hypotension, and respiratory insufficiency. Natural and strong tropism of MSCs toward malignant cells made them an ideal systemic delivery vehicle to direct the proposed therapeutic genes to the vicinity of a tumor where their expression could evoke an immune reaction against the tumor. Compared with other methods, the delivery of cytokines via engineered MSCs is safer and renders a more practical, and promising strategy. Large numbers of genes code for cytokines have been utilized to reengineer MSCs as therapeutic cells. This review highlights the recent findings on the cytokine gene therapy for human malignancies by focusing on MSCs application in cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential of MSCs in targeted cancer therapy.

Similar content being viewed by others

References

  1. Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S, et al. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem. 2014;2:105.

    PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: Cancer J Clin. 2016;66:7–30.

    Google Scholar 

  3. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893–917.

    CAS  PubMed  Google Scholar 

  4. Choti MA. Chemotherapy-associated hepatotoxicity: do we need to be concerned? Ann Surgical Oncol. 2009;16:2391–4.

    Google Scholar 

  5. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang I, Han S, Parsa AT. Heat-shock protein vaccines as active immunotherapy against human gliomas. Expert Rev Anticancer Ther. 2009;9:1577–82.

    CAS  PubMed  Google Scholar 

  7. Rosenberg SA, Terry WD. Passive immunotherapy of cancer in animals and man. Advances in cancer research. 25: Elsevier; 1977;323–88.

  8. Torka P, Barth M, Ferdman R, Hernandez-Ilizaliturri FJ. Mechanisms of resistance to monoclonal antibodies (mAbs) in lymphoid malignancies. Curr Hematologic Malignancy Rep. 2019;14:426–38.

    Google Scholar 

  9. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12:278.

    CAS  PubMed  Google Scholar 

  10. Brahmer JR, Tykodi SS, Chow LQ, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. New Engl J Med. 2012;366:2455–65.

    CAS  PubMed  Google Scholar 

  11. Oldham RK, Dillman RO. Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol. 2008;26:1774–7.

    PubMed  Google Scholar 

  12. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157:220–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kubota T, Niwa R, Satoh M, Akinaga S, Shitara K, Hanai N. Engineered therapeutic antibodies with improved effector functions. Cancer Sci. 2009;100:1566–72.

    CAS  PubMed  Google Scholar 

  14. Miller MJ, Foy KC, Kaumaya PT. Cancer immunotherapy: present status, future perspective, and a new paradigm of peptide immunotherapeutics. Discov Med. 2013;15:166–76.

    PubMed  Google Scholar 

  15. Cohen JE, Merims S, Frank S, Engelstein R, Peretz T, Lotem M. Adoptive cell therapy: past, present and future. Immunotherapy. 2017;9:183–96.

    CAS  PubMed  Google Scholar 

  16. Makkouk A, Weiner GJ. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res. 2015;75:5–10.

    CAS  PubMed  Google Scholar 

  17. Melief CJ. Cancer immunotherapy by dendritic cells. Immunity. 2008;29:372–83.

    CAS  PubMed  Google Scholar 

  18. Kunert A, Debets R. Engineering T cells for adoptive therapy: outsmarting the tumor. Curr Opin Immunol. 2018;51:133–9.

    CAS  PubMed  Google Scholar 

  19. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol. 2004;173:7125–30.

    CAS  PubMed  Google Scholar 

  20. Voena C, Chiarle R. Advances in cancer immunology and cancer immunotherapy. Discov Med. 2016;21:125–33.

    PubMed  Google Scholar 

  21. Li W, Song C, Li Q, Su Q, Li Y, Li L. Generation of antitumor T cells from embryonic stem cells modified with tumor antigen-specific TCR genes. Nanosci Nanotechnol Lett. 2019;11:486–99.

    CAS  Google Scholar 

  22. Qian C, Liu XY, Prieto J. Therapy of cancer by cytokines mediated by gene therapy approach. Cell Res. 2006;16:182.

    CAS  PubMed  Google Scholar 

  23. Lotze MT, Chang AE, Seipp CA, Simpson C, Vetto JT, Rosenberg SA. High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer: responses, treatment-related morbidity, and histologic findings. JAMA. 1986;256:3117–24.

    CAS  PubMed  Google Scholar 

  24. Shau H, Isacescu V, Ibayashi Y, Tokuda Y, Golub SH, Fahey JL, et al. A pilot study of intralymphatic interleukin-2. I. Cytotoxic and surface marker changes of peripheral blood lymphocytes. J Biol Response Mod. 1990;9:71–80.

    CAS  PubMed  Google Scholar 

  25. Ozer H, Wiernik PH, Giles F, Tendler C. Recombinant interferon‐α therapy in patients with follicular lymphoma. Cancer: Interdisciplinary International. J Am Cancer Soc. 1998;82:1821–30.

    CAS  Google Scholar 

  26. Motzer RJ, Rakhit A, Schwartz LH, Olencki T, Malone TM, Sandstrom K, et al. Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma. Clin Cancer Res. 1998;4:1183–91.

    CAS  PubMed  Google Scholar 

  27. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nature Reviews Drug Disco. 2019;18:175–96.

    CAS  Google Scholar 

  28. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    CAS  PubMed  Google Scholar 

  29. Eliopoulos N, Al-Khaldi A, Crosato M, Lachapelle KA, Galipeau J. A neovascularized organoid derived from retrovirally engineered bone marrow stroma leads to prolonged in vivo systemic delivery of erythropoietin in nonmyeloablated, immunocompetent mice. Gene Ther. 2003;10:478.

    CAS  PubMed  Google Scholar 

  30. Glennie S, Soeiro I, Dyson PJ, Lam EW-F, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7.

    CAS  PubMed  Google Scholar 

  31. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.

    CAS  PubMed  Google Scholar 

  32. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96:1593–603.

    CAS  PubMed  Google Scholar 

  33. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Perez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120:6–15.

    CAS  PubMed  Google Scholar 

  34. Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspec Biol. 2018;10:a028472.

    Google Scholar 

  35. Parmiani G, Rivoltini L, Andreola G, Carrabba M. Cytokines in cancer therapy. Immunol Lett. 2000;74:41–4.

    CAS  PubMed  Google Scholar 

  36. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med. 1993;178:1223–30.

    CAS  PubMed  Google Scholar 

  37. Tepper RI, Pattengale PK, Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell. 1989;57:503–12.

    CAS  PubMed  Google Scholar 

  38. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl J Med. 1987;316:889–97.

    CAS  PubMed  Google Scholar 

  39. Mackensen A, Lindemann A, Mertelsmann R. Immunostimulatory cytokines in somatic cells and gene therapy of cancer. Cytokine Growth Factor Rev. 1997;8:119–28.

    CAS  PubMed  Google Scholar 

  40. Atkins MB, Kunkel L, Sznol M, Rosenberg SA. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: Long-term survival update. Cancer J Sci Am. 2000;6:S11–4.

    PubMed  Google Scholar 

  41. Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am. 2000;6:S55–7.

    PubMed  Google Scholar 

  42. Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193:1007–8.

    CAS  PubMed  Google Scholar 

  43. Smith KA. Interleukin-2: inception, impact, and implications. Science. 1988;240:1169–76.

    CAS  PubMed  Google Scholar 

  44. Waldmann TA, Dubois S, Tagaya Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001;14:105–10.

    CAS  PubMed  Google Scholar 

  45. Swain SL. Lymphokines and the immune response: the central role of interleukin-2. Curr Opin Immunol. 1991;3:304–10.

    CAS  PubMed  Google Scholar 

  46. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990;76:2421–38.

    CAS  PubMed  Google Scholar 

  47. Mingari M, Gerosa F, Carra G, Accolla R, Moretta A, Zubler R, et al. Human interleukin-2 promotes proliferation of activated B cells via surface receptors similar to those of activated T cells. Nature 1984;312:641.

    CAS  PubMed  Google Scholar 

  48. Espinoza‐Delgado I, Bosco MC, Musso T, Gusella GL, Longo DL, Varesio L. Interleukin‐2 and human monocyte activation. J Leukoc Biol. 1995;57:13–9.

    PubMed  Google Scholar 

  49. Ferrante A. Activation of neutrophils by interleukins-1 and-2 and tumor necrosis factors. Immunol Ser. 1992;57:417–36.

    CAS  PubMed  Google Scholar 

  50. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.

    CAS  PubMed  Google Scholar 

  51. Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 1994;271:907–13.

    CAS  PubMed  Google Scholar 

  52. Rosenberg SA. Keynote address: perspectives on the use of interleukin-2 in cancer treatment. Cancer J Sci Am. 1997;3:S2.

    PubMed  Google Scholar 

  53. Cavallo F, Giovarelli M, Gulino A, Vacca A, Stoppacciaro A, Modesti A, et al. Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene. J Immunol. 1992;149:3627–35.

    CAS  PubMed  Google Scholar 

  54. Fakhrai H, Shawler DL, Gjerset R, Naviaux RK, Koziol J, Royston I, et al. Cytokine gene therapy with interleukin-2-transduced fibroblasts: effects of IL-2 dose on anti-tumor immunity. Hum Gene Ther. 1995;6:591–601.

    CAS  PubMed  Google Scholar 

  55. Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990;60:397–403.

    CAS  PubMed  Google Scholar 

  56. Glick RP, Lichtor T, de Zoeten E, Deshmukh P, Cohen EP. Prolongation of survival of mice with glioma treated with semiallogeneic fibroblasts secreting interleukin-2. Neurosurgery. 1999;45:867–74.

    CAS  PubMed  Google Scholar 

  57. Kim TS, Russell SJ, Collins MK, Cohen EP. Immunization with interleukin‐2‐secreting allogeneic mouse fibroblasts expressing melanoma‐associated antigens prolongs the survival of mice with melanoma. Int J Cancer. 1993;55:865–72.

    CAS  PubMed  Google Scholar 

  58. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med. 1990;172:1217–24.

    CAS  PubMed  Google Scholar 

  59. Ley V, Roth C, Langlade-Demoyen P, Larsson-Sciard E-L, Kourilsky P. A novel approach to the induction of specific cytolytic T cells in vivo. Res Immunol. 1990;141:855–63.

    CAS  PubMed  Google Scholar 

  60. Russell SJ, Eccles SA, Flemming CL, Johnson CA, Collins MK. Decreased tumorigenicity of a transplantable rat sarcoma following transfer and expression of an IL‐2 cDNA. Int J Cancer. 1991;47:244–51.

    CAS  PubMed  Google Scholar 

  61. Alosco T, Croy BA, Gansbacher B, Wang H-Q, Rao U, Bankert R. Antitumor response independent of functional B or T lymphocytes induced by the local and sustained release of interleukin-2 by the tumor cells. Cancer Immunol, Immunother. 1993;36:364–72.

    CAS  Google Scholar 

  62. Bannerji R, Arroyo CD, Cordon-Cardo C, Gilboa E. The role of IL-2 secreted from genetically modified tumor cells in the establishment of antitumor immunity. J Immunol. 1994;152:2324–32.

    CAS  PubMed  Google Scholar 

  63. Gansbacher B, Rosenthal FM, Zier K. Retroviral vector—mediated cytokine-gene transfer into tumor cells. Cancer Investig. 1993;11:345–54.

    CAS  Google Scholar 

  64. Iwanuma Y, Kato K, Yagita H, Okumura K. Induction of tumor-specific cytotoxic T lymphocytes and natural killer cells by tumor cells transfected with the interleukin-2 gene. Cancer Immunol, Immunother. 1995;40:17–23.

    CAS  Google Scholar 

  65. Rosenthal FM, Cronin K, Bannerji R, Golde DW, Gansbacher B. Augmentation of antitumor immunity by tumor cells transduced with a retroviral vector carrying the interleukin-2 and interferon-gamma cDNAs. Blood. 1994;83:1289–98.

    CAS  PubMed  Google Scholar 

  66. Chaurasiya S, Hew P, Crosley P, Sharon D, Potts K, Agopsowicz K, et al. Breast cancer gene therapy using an adenovirus encoding human IL-2 under control of mammaglobin promoter/enhancer sequences. Cancer gene Ther. 2016;23:178.

    CAS  PubMed  Google Scholar 

  67. Palmer K, Moore J, Everard M, Harris J, Rodgers S, Rees R, et al. Gene therapy with autologous, interleukin 2-secreting tumor cells in patients with malignant melanoma. Hum gene Ther. 1999;10:1261–8.

    CAS  PubMed  Google Scholar 

  68. Kowalczyk DW, Wysocki PJ, Mackiewicz A. Cancer immunotherapy using cells modified with cytokine genes. Acta Biochim Pol. 2003;50:613–24.

    CAS  PubMed  Google Scholar 

  69. Haight AE, Bowman LC, Ng CY, Vanin EF, Davidoff AM. Humoral response to vaccination with interleukin-2-expressing allogeneic neuroblastoma cells after primary therapy. Med Pediatr Oncol. 2000;35:712–5.

    CAS  PubMed  Google Scholar 

  70. Osanto S, Schiphorst P, Weijl N, Dijkstra N, Wees AV, Brouwenstein N, et al. Vaccination of melanoma patients with an allogeneic, genetically modified interleukin 2-producing melanoma cell line. Hum Gene Ther. 2000;11:739–50.

    CAS  PubMed  Google Scholar 

  71. Trudel S, Li Z, Dodgson C, Nanji S, Wan Y, Voralia M, et al. Adenovector engineered interleukin-2 expressing autologous plasma cell vaccination after high-dose chemotherapy for multiple myeloma-a phase 1 study. Leukemia. 2001;15:846.

    CAS  PubMed  Google Scholar 

  72. Siapati K, Barker S, Kinnon C, Michalski A, Anderson R, Brickell P, et al. Improved antitumour immunity in murine neuroblastoma using a combination of IL-2 and IL-12. Br J Cancer. 2003;88:1641.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, et al. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell. 1995;80:707–18.

    CAS  PubMed  Google Scholar 

  74. Mazzocchi A, Melani C, Rivoltini L, Castelli C, Del Vecchio M, Lombardo C, et al. Simultaneous transduction of B7-1 and IL-2 genes into human melanoma cells to be used as vaccine: enhancement of stimulatory activity for autologous and allogeneic lymphocytes. Cancer Immunol Immunother. 2001;50:199–211.

    CAS  PubMed  Google Scholar 

  75. Seo S, Kim K, Park S, Suh Y, Kim S, Jeun S, et al. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther. 2011;18:488.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Eguchi J, Kuwashima N, Hatano M, Nishimura F, Dusak JE, Storkus WJ, et al. IL-4-transfected tumor cell vaccines activate tumor-infiltrating dendritic cells and promote type-1 immunity. J Immunol. 2005;174:7194–201.

    CAS  PubMed  Google Scholar 

  77. Tepper RI, Coffman RL, Leder P. An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science. 1992;257:548–51.

    CAS  PubMed  Google Scholar 

  78. Saito S, Bannerji R, Gansbacher B, Rosenthal FM, Romanenko P, Heston WD, et al. Immunotherapy of bladder cancer with cytokine gene-modified tumor vaccines. Cancer Res. 1994;54:3516–20.

    CAS  PubMed  Google Scholar 

  79. Sun WH, Burkholder JK, Sun J, Culp J, Turner J, Lu XG, et al. In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc Natl Acad Sci USA. 1995;92:2889–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cao X, Chen C, Zhang W, Tao Q, Yu Y, Ye T. Enhanced efficacy of combination of IL-2 gene and IL-6 gene-transfected tumor cells in the treatment of established metastatic tumors. Gene Ther. 1996;3:421–6.

    CAS  PubMed  Google Scholar 

  81. McBride WH, Thacker JD, Comora S, Economou JS, Kelley D, Hogge D, et al. Genetic modification of a murine fibrosarcoma to produce interleukin 7 stimulates host cell infiltration and tumor immunity. Cancer Res. 1992;52:3931–7.

    CAS  PubMed  Google Scholar 

  82. Fabbi M, Groh V, Strominger JL. IL-7 induces proliferation of CD3−/low CD4− CD8− human thymocyte precursors by an IL-2 independent pathway. Int Immunol. 1992;4:1–5.

    CAS  PubMed  Google Scholar 

  83. Yoshioka R, Shimizu S, Tachibana J, Hirose Y, Fukutoku M, Takeuchi Y, et al. Interleukin-7 (IL-7)-induced proliferation of CD8+ T-chronic lymphocytic leukemia cells. J Clin Immunol. 1992;12:101–6.

    CAS  PubMed  Google Scholar 

  84. Miller AR, McBride WH, Dubinett SM, Dougherty GJ, Thacker JD, Shau H, et al. Transduction of human melanoma cell lines with the human interleukin-7 gene using retroviral-mediated gene transfer: comparison of immunologic properties with interleukin-2. Blood. 1993;82:3686–94.

    CAS  PubMed  Google Scholar 

  85. Murphy WJ, Back TC, Conlon KC, Komschlies KL, Ortaldo JR, Sayers TJ, et al. Antitumor effects of interleukin-7 and adoptive immunotherapy on human colon carcinoma xenografts. J Clin Investig. 1993;92:1918–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lasek W, Basak G, Świtaj T, Jakubowska AB, Wysocki PJ, Mackiewicz A, et al. Complete tumour regressions induced by vaccination with IL-12 gene-transduced tumour cells in combination with IL-15 in a melanoma model in mice. Cancer Immunol Immunother. 2004;53:363–72.

    CAS  PubMed  Google Scholar 

  87. Tahara H, Zitvogel L, Storkus WJ, Zeh HR, McKinney TG, Schreiber RD, et al. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J Immunol. 1995;154:6466–74.

    CAS  PubMed  Google Scholar 

  88. Naume B, Gately M, Espevik T. A comparative study of IL-12 (cytotoxic lymphocyte maturation factor)-, IL-2-, and IL-7-induced effects on immunomagnetically purified CD56+ NK cells. J Immunol. 1992;148:2429–36.

    CAS  PubMed  Google Scholar 

  89. Lohoff M, Mak TW. Roles of interferon-regulatory factors in T-helper-cell differentiation. Nat Rev Immunol. 2005;5:125.

    CAS  PubMed  Google Scholar 

  90. Dolei A, Capobianchi MR, Ameglio F. Human interferon-γ enhances the expression of class I and class II major histocompatibility complex products in neoplastic cells more effectively than interferon-α and interferon-β. Infect Immun. 1983;40:172–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Trepiakas R, Pedersen AE, Met Ö, Svane IM. Addition of interferon-alpha to a standard maturation cocktail induces CD38 up-regulation and increases dendritic cell function. Vaccine. 2009;27:2213–9.

    CAS  PubMed  Google Scholar 

  92. Jewett A, Bonavida B. Interferon-α activates cytotoxic function but inhibits interleukin-2-mediated proliferation and tumor necrosis factor-α secretion by immature human natural killer cells. J Clin Immunol. 1995;15:35–44.

    CAS  PubMed  Google Scholar 

  93. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science. 1999;284:1835–7.

    CAS  PubMed  Google Scholar 

  94. Tsuruoka N, Sugiyama M, Tawaragi Y, Tsujimoto M, Nishihara T, Goto T, et al. Inhibition of in vitro angiogenesis by lymphotoxin and interferon-γ. Biochemical Biophysical Res Commun. 1988;155:429–35.

    CAS  Google Scholar 

  95. Wagner TC, Velichko S, Chesney SK, Biroc S, Harde D, Vogel D, et al. Interferon receptor expression regulates the antiproliferative effects of interferons on cancer cells and solid tumors. Int J Cancer. 2004;111:32–42.

    CAS  PubMed  Google Scholar 

  96. Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev. 2012;64:739–48.

    CAS  PubMed  Google Scholar 

  97. Collins SA, Guinn B-a, Harrison PT, Scallan MF, O’Sullivan GC, Tangney M. Viral vectors in cancer immunotherapy: which vector for which strategy? Curr Gene Ther. 2008;8:66–78.

    CAS  PubMed  Google Scholar 

  98. Dong Z, Greene G, Pettaway C, Dinney CP, Eue I, Lu W, et al. Suppression of angiogenesis, tumorigenicity, and metastasis by human prostate cancer cells engineered to produce interferon-β. Cancer Res. 1999;59:872–9.

    CAS  PubMed  Google Scholar 

  99. Chawla-Sarkar M, Lindner D, Liu Y-F, Williams B, Sen G, Silverman R, et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003;8:237–49.

    CAS  PubMed  Google Scholar 

  100. Lens M. Cutaneous melanoma: interferon alpha adjuvant therapy for patients at high risk for recurrent disease. Dermatologic Ther. 2006;19:9–18.

    Google Scholar 

  101. Tsugawa T, Kuwashima N, Sato H, Fellows-Mayle W, Dusak J, Okada K, et al. Sequential delivery of interferon-α gene and DCs to intracranial gliomas promotes an effective antitumor response. Gene Ther 2004;11:1551.

    CAS  PubMed  Google Scholar 

  102. Ferrantini M, Belardelli F, editors. Gene therapy of cancer with interferon: lessons from tumor models and perspectives for clinical applications. Seminars in cancer biology; 2000: Elsevier.

  103. Ogasawara M, Rosenberg SA. Enhanced expression of HLA molecules and stimulation of autologous human tumor infiltrating lymphocytes following transduction of melanoma cells with γ-interferon genes. Cancer Res 1993;53:3561–8.

    CAS  PubMed  Google Scholar 

  104. Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S, et al. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med. 1995;182:155–62.

    CAS  PubMed  Google Scholar 

  105. Sadanaga N, Nagoshi M, Lederer JA, Joo HG, Eberlein TJ, Goedegebuure PS. Local secretion of IFN-gamma induces an antitumor response: comparison between T cells plus IL-2 and IFN-gamma transfected tumor cells. J Immunother (Hagerstown, Md: 1997). 1999;22:315–23.

    CAS  Google Scholar 

  106. Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, et al. Mesenchymal stem cells: A new platform for targeting suicide genes in cancer. J Cell Physiol. 2018;233:3831–45.

    CAS  PubMed  Google Scholar 

  107. Chen X, Lin X, Zhao J, Shi W, Zhang H, Wang Y, et al. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther. 2008;16:749–56.

    CAS  PubMed  Google Scholar 

  108. Mamidi MK, Nathan KG, Singh G, Thrichelvam ST, Mohd Yusof NAN, Fakharuzi NA, et al. Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. J Cell Biochem. 2012;113:3153–64.

    CAS  PubMed  Google Scholar 

  109. Berebichez-Fridman R, Montero-Olvera PRSources. and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ Med J. 2018;18:e264.

    PubMed  PubMed Central  Google Scholar 

  110. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003;31:890–6.

    PubMed  Google Scholar 

  111. Amorin B, Alegretti AP, Valim V, Pezzi A, Laureano AM, da Silva MAL, et al. Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Hum cell 2014;27:137–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhao K, Lou R, Huang F, Peng Y, Jiang Z, Huang K, et al. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21:97–104.

    CAS  PubMed  Google Scholar 

  113. McGuirk J, Weiss M. Promising cellular therapeutics for prevention or management of graft-versus-host disease (a review). Placenta. 2011;32:S304–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dander E, Lucchini G, Vinci P, Introna M, Bonanomi S, Balduzzi A, et al. Understanding the immunomodulatory effect of mesenchymal stem cell infused in transplanted patients with steroid-refractory GVHD. Blood. 2010;116:2306.

    Google Scholar 

  115. De Wolf C, Van De Bovenkamp M, Hoefnagel M. Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy. Cytotherapy. 2017;19:784–97.

    PubMed  Google Scholar 

  116. Jiang J, Wei D, Sun L, Wang Y, Wu X, Li Y, et al. A preliminary study on the construction of double suicide gene delivery vectors by mesenchymal stem cells and the in vitro inhibitory effects on SKOV3 cells. Oncol Rep. 2014;31:781–7.

    CAS  PubMed  Google Scholar 

  117. Hu C, Yong X, Li C, Lü M, Liu D, Chen L, et al. CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. J Surgical Res. 2013;183:427–34.

    CAS  Google Scholar 

  118. Yellowley C. CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. BoneKEy reports. 2013;2:300.

    PubMed  PubMed Central  Google Scholar 

  119. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–7.

    CAS  PubMed  Google Scholar 

  120. Ma Y, Hao X, Zhang S, Zhang J. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast cancer Res Treat. 2012;133:473–85.

    CAS  PubMed  Google Scholar 

  121. Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL. Potential implications of mesenchymal stem cells in cancer therapy. Cancer Lett. 2011;305:8–20.

    CAS  PubMed  Google Scholar 

  122. Mohr A, Zwacka R. The future of mesenchymal stem cell-based therapeutic approaches for cancer–From cells to ghosts. Cancer Lett. 2018;414:239–49.

    CAS  PubMed  Google Scholar 

  123. Yu R, Deedigan L, Albarenque S, Mohr A, Zwacka R. Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects. Cell death Dis. 2013;4:e503.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zischek C, Niess H, Ischenko I, Conrad C, Huss R, Jauch K-W, et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg. 2009;250:747–53.

    PubMed  Google Scholar 

  125. Yan C, Song X, Yu W, Wei F, Li H, Lv M, et al. Human umbilical cord mesenchymal stem cells delivering sTRAIL home to lung cancer mediated by MCP-1/CCR2 axis and exhibit antitumor effects. Tumor Biol. 2016;37:8425–35.

    CAS  Google Scholar 

  126. Dwyer RM, Ryan J, Havelin RJ, Morris JC, Miller BW, Liu Z, et al. Mesenchymal stem cell‐mediated delivery of the sodium iodide symporter supports radionuclide imaging and treatment of breast cancer. Stem Cells. 2011;29:1149–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Serakinci N, Christensen R, Fahrioglu U, Sorensen FB, Dagnæs-Hansen F, Hajek M, et al. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biotherapy Radiopharmaceuticals. 2011;26:767–73.

    CAS  PubMed  Google Scholar 

  128. Levy O, Brennen WN, Han E, Rosen DM, Musabeyezu J, Safaee H, et al. A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials. 2016;91:140–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Li GC, Ye QH, Xue YH, Sun HJ, Zhou HJ, Ren N, et al. Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97‐H cell line. Cancer Sci 2010;101:2546–53.

    CAS  PubMed  Google Scholar 

  130. Amano S, Li S, Gu C, Gao Y, Koizumi S, Yamamoto S, et al. Use of genetically engineered bone marrow-derived mesenchymal stem cells for glioma gene therapy. Int J Oncol. 2009;35:1265–70.

    CAS  PubMed  Google Scholar 

  131. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res. 2002;62:3603–8.

    CAS  PubMed  Google Scholar 

  132. Kim N, Nam Y-S, Im K-I, Lim J-Y, Lee E-S, Jeon Y-W, et al. IL-21-expressing mesenchymal stem cells prevent lethal B-cell lymphoma through efficient delivery of IL-21, which redirects the immune system to target the tumor. Stem Cells Dev. 2015;24:2808–21.

    CAS  PubMed  Google Scholar 

  133. Fatima F, Nawaz M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin J Cancer. 2015;34:46.

    PubMed Central  Google Scholar 

  134. Ferguson SW, Wang J, Lee CJ, Liu M, Neelamegham S, Canty JM, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep. 2018;8:1419.

    PubMed  PubMed Central  Google Scholar 

  135. Schwarzenbach H, Gahan PB. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Non-coding RNA. 2019;5:28.

    CAS  PubMed Central  Google Scholar 

  136. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15:4142–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee J-K, Park S-R, Jung B-K, Jeon Y-K, Lee Y-S, Kim M-K, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE. 2013;8:e84256.

    PubMed  PubMed Central  Google Scholar 

  138. Shimbo K, Miyaki S, Ishitobi H, Kato Y, Kubo T, Shimose S, et al. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochemical Biophysical Res Commun. 2014;445:381–7.

    CAS  Google Scholar 

  139. Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 2009;69:4134–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 2004;11:1155.

    CAS  PubMed  Google Scholar 

  141. Xin H, Kanehira M, Mizuguchi H, Hayakawa T, Kikuchi T, Nukiwa T, et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells. 2007;25:1618–26.

    CAS  PubMed  Google Scholar 

  142. Rodríguez R, García-Castro J, Trigueros C, Arranz MG, Menéndez P. Multipotent mesenchymal stromal cells: clinical applications and cancer modeling. Stem Cell Transplant. 2012;187–205.

  143. Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002;13:155–68.

    CAS  PubMed  Google Scholar 

  144. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004;4:11.

    CAS  PubMed  Google Scholar 

  145. Mirzaei H, Salehi H, Oskuee RK, Mohammadpour A, Mirzaei HR, Sharifi MR, et al. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett. 2018;419:30–9.

    CAS  PubMed  Google Scholar 

  146. Andreeff M, Studeny M, Dembinski J, Konopleva M, Wang R-Y, Yang H-Y. et al. Mesenchymal stem cells as delivery systems for cancer and leukemia gene therapy. J Clin Oncol. 2004;22(14 suppl):3194

    Google Scholar 

  147. Gao P, Ding Q, Wu Z, Jiang H, Fang Z. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett. 2010;290:157–66.

    CAS  PubMed  Google Scholar 

  148. Ryu CH, Park S-H, Park SA, Kim SM, Lim JY, Jeong CH, et al. Gene therapy of intracranial glioma using interleukin 12–secreting human umbilical cord blood–derived mesenchymal stem cells. Hum Gene Ther. 2011;22:733–43.

    CAS  PubMed  Google Scholar 

  149. Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz JD, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther. 2008;15:1446.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Duan X, Guan H, Cao Y, Kleinerman ES. Murine bone marrow–derived mesenchymal stem cells as vehicles for interleukin‐12 gene delivery into Ewing sarcoma tumors. Cancer. 2009;115:13–22.

    CAS  PubMed  Google Scholar 

  151. Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S. Therapeutic potential of mesenchymal stem cells producing interferon‐α in a mouse melanoma lung metastasis model. Stem Cells. 2008;26:2332–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang G, Zhan Y, Hu H, Wang Y, Fu B. Mesenchymal stem cells modified to express interferon-β inhibit the growth of prostate cancer in a mouse model. J Int Med Res. 2012;40:317–27.

    CAS  PubMed  Google Scholar 

  153. Bitsika V, Roubelakis MG, Zagoura D, Trohatou O, Makridakis M, Pappa KI, et al. Human amniotic fluid-derived mesenchymal stem cells as therapeutic vehicles: a novel approach for the treatment of bladder cancer. Stem Cells Dev. 2011;21:1097–111.

    PubMed  Google Scholar 

  154. Marigo I, Dazzi F, editors. The immunomodulatory properties of mesenchymal stem cells. Seminars in immunopathology; 2011: Springer.

  155. Sartoris S, Mazzocco M, Tinelli M, Martini M, Mosna F, Lisi V, et al. Efficacy assessment of interferon-alpha–engineered mesenchymal stromal cells in a mouse plasmacytoma model. Stem cells Dev. 2010;20:709–19.

    PubMed  Google Scholar 

  156. Elzaouk L, Moelling K, Pavlovic J. Anti‐tumor activity of mesenchymal stem cells producing IL‐12 in a mouse melanoma model. Exp Dermatol. 2006;15:865–74.

    CAS  PubMed  Google Scholar 

  157. Chulpanova DS, Kitaeva KV, Tazetdinova LG, James V, Rizvanov AA, Solovyeva VV. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front Pharmacol. 2018;9:259.

    PubMed  PubMed Central  Google Scholar 

  158. Zhao W, Cheng J, Shi P, Huang J. Human umbilical cord mesenchymal stem cells with adenovirus-mediated interleukin 12 gene transduction inhibits the growth of ovarian carcinoma cells both in vitro and in vivo. Nan fang yi ke da xue xue bao= J South Med Univ. 2011;31:903–7.

    CAS  Google Scholar 

  159. Eliopoulos N, Francois M, Boivin M-N, Martineau D, Galipeau J. Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res. 2008;68:4810–8.

    CAS  PubMed  Google Scholar 

  160. Quaranta P, Focosi D, Freer G, Pistello M. Tweaking mesenchymal stem/progenitor cell immunomodulatory properties with viral vectors delivering cytokines. Stem Cells Dev. 2016;25:1321–41.

    CAS  PubMed  Google Scholar 

  161. Jing W, Chen Y, Lu L, Hu X, Shao C, Zhang Y, et al. Human umbilical cord blood–derived mesenchymal stem cells producing IL15 eradicate established pancreatic tumor in syngeneic mice. Mol Cancer Therapeutics. 2014;13:2127–37.

    CAS  Google Scholar 

  162. Hu W, Wang J, Dou J, He X, Zhao F, Jiang C, et al. Augmenting therapy of ovarian cancer efficacy by secreting IL-21 human umbilical cord blood stem cells in nude mice. Cell Transplant. 2011;20:669–80.

    PubMed  Google Scholar 

  163. Xu X, Yang G, Zhang H, Prestwich GD. Evaluating dual activity LPA receptor pan-antagonist/autotaxin inhibitors as anti-cancer agents in vivo using engineered human tumors. Prostaglandins Other Lipid Mediators. 2009;89:140–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Xu G, Guo Y, Seng Z, Cui G, Qu J. Bone marrow-derived mesenchymal stem cells co‑expressing interleukin-18 and interferon-β exhibit potent antitumor effect against intracranial glioma in rats. Oncol Rep. 2015;34:1915–22.

    CAS  PubMed  Google Scholar 

  165. Liu X, Hu J, Sun S, Li F, Cao W, Wang Y, et al. Mesenchymal stem cells expressing interleukin-18 suppress breast cancer cells in vitro. Exp Therapeutic Med. 2015;9:1192–200.

    CAS  Google Scholar 

  166. Sun S, Liu X, Jiang D, Lü Z, Li F. Effect of interleukin-18 gene modified human umbilical cord mesenchymal stem cells on proliferation of breast cancer cell. Zhonghua yi xue za zhi. 2014;94:2013–7.

    CAS  PubMed  Google Scholar 

  167. Suzuki T, Kawamura K, Li Q, Okamoto S, Tada Y, Tatsumi K, et al. Mesenchymal stem cells are efficiently transduced with adenoviruses bearing type 35-derived fibers and the transduced cells with the IL-28A gene produces cytotoxicity to lung carcinoma cells co-cultured. BMC Cancer. 2014;14:713.

    PubMed  PubMed Central  Google Scholar 

  168. Zhang X, Zhang L, Xu W, Qian H, Ye S, Zhu W, et al. Experimental therapy for lung cancer: umbilical cord-derived mesenchymal stem cell-mediated interleukin-24 delivery. Curr Cancer Drug Targets. 2013;13:92–102.

    CAS  PubMed  Google Scholar 

  169. Hombach AA, Geumann U, Günther C, Hermann FG, Abken H. IL7-IL12 Engineered mesenchymal stem cells (MSCs) improve a CAR T cell attack against colorectal cancer cells. Cells. 2020;9:873.

    PubMed Central  Google Scholar 

  170. Shahrokhi S, Daneshmandi S, Menaa F. Tumor necrosis factor-α/CD40 ligand-engineered mesenchymal stem cells greatly enhanced the antitumor immune response and lifespan in mice. Hum Gene Ther. 2013;25:240–53.

    PubMed Central  Google Scholar 

  171. Sato H, Kuwashima N, Sakaida T, Hatano M, Dusak JE, Fellows-Mayle WK, et al. Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther. 2005;12:757–68.

    CAS  PubMed  Google Scholar 

  172. Hamada H, Kobune M, Nakamura K, Kawano Y, Kato K, Honmou O, et al. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci. 2005;96:149–56.

    CAS  PubMed  Google Scholar 

  173. Xu G, Jiang XD, Xu Y, Zhang J, Huang FH, Chen ZZ, et al. Adenoviral‐mediated interleukin‐18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol Int. 2009;33:466–74.

    CAS  PubMed  Google Scholar 

  174. Li X, Lu Y, Huang W, Xu H, Chen X, Geng Q, et al. In vitro effect of adenovirus‐mediated human Gamma Interferon gene transfer into human mesenchymal stem cells for chronic myelogenous leukemia. Hematological Oncol. 2006;24:151–8.

    CAS  Google Scholar 

  175. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, et al. Human bone marrow–derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005;65:3307–18.

    CAS  PubMed  Google Scholar 

  176. Rachakatla RS, Marini F, Weiss ML, Tamura M, Troyer D. Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Ther. 2007;14:828–35.

    CAS  PubMed  Google Scholar 

  177. Matsuzuka T, Rachakatla RS, Doi C, Maurya DK, Ohta N, Kawabata A, et al. Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer. 2010;70:28–36.

    PubMed  Google Scholar 

  178. Gunnarsson S, Bexell D, Svensson A, Siesjö P, Darabi A, Bengzon J. Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNγ-transduced tumor cell immunotherapy of experimental glioma. J Neuroimmunol. 2010;218:140–4.

    CAS  PubMed  Google Scholar 

  179. Dembinski JL, Wilson SM, Spaeth EL, Studeny M, Zompetta C, Samudio I, et al. Tumor stroma engraftment of gene-modified mesenchymal stem cells as anti-tumor therapy against ovarian cancer. Cytotherapy. 2013;15:20–32. e2.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Hong X, Miller C, Savant-Bhonsale S, Kalkanis SN. Antitumor treatment using interleukin‐12‐secreting marrow stromal cells in an invasive glioma model. Neurosurgery. 2009;64:1139–47.

    PubMed  Google Scholar 

  181. Xie C, Xie D, Lin B, Zhang G, Wang P, Peng L, et al. Interferon-β gene-modified human bone marrow mesenchymal stem cells attenuate hepatocellular carcinoma through inhibiting AKT/FOXO3a pathway. Br J Cancer. 2013;109:1198–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Han J, Zhao J, Xu J, Wen Y. Mesenchymal stem cells genetically modified by lentivirus‑mediated interleukin‑12 inhibit malignant ascites in mice. Exp therapeutic Med. 2014;8:1330–4.

    CAS  Google Scholar 

  183. Chen X-c, Wang R, Zhao X, Wei Y-q, Hu M, Wang Y-s, et al. Prophylaxis against carcinogenesis in three kinds of unestablished tumor models via IL12-gene-engineered MSCs. Carcinogenesis. 2006;27:2434–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Babak Negahdari or Rasoul Salehi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosallaei, M., Simonian, M., Ehtesham, N. et al. Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther 27, 854–868 (2020). https://doi.org/10.1038/s41417-020-0179-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-0179-6

This article is cited by

Search

Quick links