Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TMB: a promising immune-response biomarker, and potential spearhead in advancing targeted therapy trials

Abstract

Immune checkpoint inhibition (ICI) has revolutionized cancer treatment, and produced durable responses in many cancer types. However, there remains a subset of patients that do not respond despite their tumors exhibiting PD-L1 expression, which highlights the need for additional biomarkers relevant to response. Here, we review checkpoint inhibitor signal pathways, resistance and sensitivity mechanisms, as well as response rates. We also investigate the correlation and response to ICI with BRCA1/2 mutation status and homologous recombination deficient tumors. Collectively we show that the use of tumor mutational burden may be effective as an emerging biomarker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ, Nelson BH, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014;24(Suppl 5):743–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(Suppl 6280):1463–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(Suppl 6230):69–74.

    CAS  PubMed  Google Scholar 

  4. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(Suppl 1):34.

    PubMed  PubMed Central  Google Scholar 

  5. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science. 2018;362(Suppl 6411):eaar3593.

    PubMed  PubMed Central  Google Scholar 

  6. Johnson DB, Frampton GM, Rioth MJ, Yusko E, Xu Y, Guo X, et al. Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res. 2016;4(Suppl 11):959–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(Suppl 2):202–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl J Med. 2014;371(Suppl 23):2189–99.

    PubMed  PubMed Central  Google Scholar 

  9. Panda A, Betigeri A, Subramanian K, Ross JS, Pavlick DC, Ali S, et al. Identifying a clinically applicable mutational burden threshold as a potential biomarker of response to immune checkpoint therapy in solid tumors. JCO Precis Oncol. 2017;1:1–13.

    Google Scholar 

  10. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458(Suppl 7239):719.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chabanon RM, Pedrero M, Lefebvre C, Marabelle A, Soria J-C, Postel-Vinay S. Mutational landscape and sensitivity to immune checkpoint blockers. Clin Cancer Res. 2016;22(Suppl 17):4309–21.

    CAS  PubMed  Google Scholar 

  12. Chen Y-P, Zhang Y, Lv J-W, Li Y-Q, Wang Y-Q, He Q-M, et al. Genomic analysis of tumor microenvironment immune types across 14 solid cancer types: immunotherapeutic implications. Theranostics. 2017;7(Suppl 14):3585.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liontos M, Anastasiou I, Bamias A, Dimopoulos M-A. DNA damage, tumor mutational load and their impact on immune responses against cancer. Ann. Transl. Med. 2016;4(Suppl 14):264.

  14. Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R, et al. Comprehensive analysis of hypermutation in human cancer. Cell. 2017;171(Suppl 5):1042–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(Suppl 6):703.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(Suppl 7381):306.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(Suppl 7463):415.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(Suppl 11):1023.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh RR, Patel KP, Routbort MJ, Reddy NG, Barkoh BA, Handal B, et al. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J Mol diagnostics. 2013;15(Suppl 5):607–22.

    CAS  Google Scholar 

  20. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(Suppl 7261):272.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Warr A, Robert C, Hume D, Archibald A, Deeb N, Watson M. Exome sequencing: current and future perspectives. G3: Genes, Genomes, Genet. 2015;5(Suppl 8):1543–50.

    Google Scholar 

  22. Baras AS, Stricker T. Characterization of total mutational burden in the GENIE cohort: Small and large panels can provide TMB information but to varying degrees. Cancer Res. 2017;77(Suppl 13):LB-105.

  23. Gong J, Pan K, Fakih M, Pal S, Salgia R. Value-based genomics. Oncotarget. 2018;9(Suppl 21):15792.

    PubMed  PubMed Central  Google Scholar 

  24. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.

    CAS  PubMed  Google Scholar 

  25. D.I.S.C.O F. FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. In: U.S. Food and Drug Administration. 2017.

  26. Company B-MS. Prescribing information ipilimumab (Yervoy®). Princeton; 2018.

  27. MERCK & CO. I. Prescribing Information Pembrolizumab (Keytruda®). Whitehouse Station; 2019.

  28. Squibb B-M. Prescribing Information Nivolumab (Opdivo®). Princeton; 2019.

  29. Regeneron Pharmaceuticals I. Prescribing information cemiplimab (Libtayo®). In: LCC S-AUS. NJ; 2019.

  30. Genetech I. Prescribing information Atezolizumab (Tecentriq®). South San Francisco; 2019.

  31. EMD Serono I. Prescribing information avelumab (Bavencio®). Rockland; 2019.

  32. Pharmaceuticals A. Prescribing information durvalumab (Imfinzi®). Wilmington; 2018.

  33. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8:86.

    PubMed  PubMed Central  Google Scholar 

  34. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25(Supl 21):9543–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin H-T, Ahmed R, Okazaki T. Role of PD-1 in regulating T-cell immunity. In: Negative Co-Receptors and Ligands. Springer;2010. p. 17–37.

  36. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J cancer. 2018;118(Suppl 1):9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA. 2008;105(Suppl 52):20852–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13(Suppl 1):84.

    CAS  PubMed  Google Scholar 

  39. Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 2015;5(Suppl 9):915–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(Suppl 4):252.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. O’Donnell JS, Long GV, Scolyer RA, Teng MWL, Smyth MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 2017;52:71–81.

    PubMed  Google Scholar 

  42. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(Suppl 4):707–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, et al. PD-1 blockade expands intratumoral memory T cells. Cancer Immunol Res. 2016;4(Suppl 3):194–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol. 2014;14(Suppl 1):24.

    CAS  PubMed  Google Scholar 

  45. Harty JT, Badovinac VP. Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol. 2008;8(Suppl 2):107.

    CAS  PubMed  Google Scholar 

  46. Fares CM, Van Allen EM, Drake CG, Allison JP, Hu-Lieskovan S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am Soc Clin Oncol Educ Book. 2019;39:147–64.

    PubMed  Google Scholar 

  47. Kreiter S, Vormehr M, Van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(Suppl 7549):692.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348(Suppl 6230):124–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(Suppl 6257):207–11.

    PubMed  PubMed Central  Google Scholar 

  50. Martin AM, Nirschl TR, Nirschl CJ, Francica BJ, Kochel CM, van Bokhoven A, et al. Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance. Prostate cancer prostatic Dis. 2015;18(Suppl 4):325.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl J Med. 2012;366(Suppl 26):2443–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Korkolopoulou P, Kaklamanis L, Pezzella F, Harris A, Gatter K. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br J cancer. 1996;73(Suppl 2):148.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao F, Sucker A, Horn S, Heeke C, Bielefeld N, Schrörs B, et al. Melanoma lesions independently acquire T-cell resistance during metastatic latency. Cancer Res. 2016;76(Suppl 15):4347–58.

    CAS  PubMed  Google Scholar 

  54. Keenan TE, Burke KP, Van Allen EM. Genomic correlates of response to immune checkpoint blockade. Nat Med. 2019;25:389–4021.

  55. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov. 2016;6(Suppl 2):202–16.

    CAS  PubMed  Google Scholar 

  56. George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity. 2017;46(Suppl 2):197–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(Suppl 7559):231.

    CAS  PubMed  Google Scholar 

  58. Koyama S, Akbay EA, Li YY, Aref AR, Skoulidis F, Herter-Sprie GS, et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res. 2016;76(Suppl 5):999–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science. 2015;350(Suppl 6264):1084–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(Suppl 6264):1079–84.

    PubMed  PubMed Central  Google Scholar 

  61. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev cancer. 2008;8(Suppl 8):579.

    CAS  PubMed  Google Scholar 

  62. Young MRI, Wright MA, Coogan M, Young ME, Bagash J. Tumor-derived cytokines induce bone marrow suppressor cells that mediate immunosuppression through transforming growth factor β. Cancer Immunol, Immunother. 1992;35(Suppl 1):14–8.

    CAS  Google Scholar 

  63. Commeren DL, Van Soest PL, Karimi K, Löwenberg B, Cornelissen JJ, Braakman E. Paradoxical effects of interleukin‐10 on the maturation of murine myeloid dendritic cells. Immunology. 2003;110(Suppl 2):188–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and-extrinsic factors. Immunity. 2016;44(Suppl 6):1255–69.

    CAS  PubMed  Google Scholar 

  65. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    CAS  PubMed  Google Scholar 

  66. Rudensky AY. Regulatory T cells and Foxp3. Immunological Rev. 2011;241(Suppl 1):260–8.

    CAS  Google Scholar 

  67. Chaudhary B, Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines. 2016;4(Suppl 3):28.

    PubMed Central  Google Scholar 

  68. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6(Suppl 3):1670–90.

    PubMed  PubMed Central  Google Scholar 

  69. Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med. 2014;6(Suppl 237):237ra67–237ra67.

    PubMed  PubMed Central  Google Scholar 

  70. Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AR, Opyrchal M, et al. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol. 2014;193(Suppl 10):5327–37.

    CAS  PubMed  Google Scholar 

  71. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl J Med. 2015;373(Suppl 1):23–34.

    PubMed  PubMed Central  Google Scholar 

  72. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl J Med. 2016;375(Suppl 19):1856–67.

    PubMed  PubMed Central  Google Scholar 

  73. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N. Engl J Med. 2015;373(Suppl 17):1627–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N. Engl J Med. 2015;373(Suppl 2):123–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N. Engl J Med. 2016;374(Suppl 26):2542–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non–small-cell lung cancer. N. Engl J Med. 2015;372(Suppl 21):2018–28.

    PubMed  Google Scholar 

  77. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl J Med. 2016;375(Suppl 19):1823–33.

    CAS  PubMed  Google Scholar 

  78. Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(Suppl 10027):1540–50.

    CAS  PubMed  Google Scholar 

  79. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl J Med. 2015;372(Suppl 26):2509–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, Von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(Suppl 10066):255–65.

    PubMed  Google Scholar 

  81. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(Suppl 10064):67–76.

    CAS  PubMed  Google Scholar 

  82. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl J Med. 2015;372(Suppl 26):2521–32.

    CAS  PubMed  Google Scholar 

  83. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl J Med. 2011;364(Suppl 26):2517–26.

    CAS  PubMed  Google Scholar 

  84. Antonia SJ, López-Martin JA, Bendell J, Ott PA, Taylor M, Eder JP, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(Suppl 7):883–95.

    CAS  PubMed  Google Scholar 

  85. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(Suppl 5):275.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ilie M, Hofman V, Dietel M, Soria J-C, Hofman P. Assessment of the PD-L1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients. Virchows Arch. 2016;468(Suppl 5):511–25.

    CAS  PubMed  Google Scholar 

  87. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl J Med. 2015;373(Suppl 19):1803–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Horn L, Spigel DR, Vokes EE, Holgado E, Ready N, Steins M, et al. Nivolumab versus docetaxel in previously treated patients with advanced non–small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J Clin Oncol. 2017;35(Suppl 35):3924.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bhaijee F, Anders RA. PD-L1 expression as a predictive biomarker: Is absence of proof the same as proof of absence? JAMA Oncol. 2016;2(Suppl 1):54–5.

    PubMed  Google Scholar 

  90. Soria J-C, Marabelle A, Brahmer JR, Gettinger S. Immune checkpoint modulation for non–small cell lung cancer. AACR;2015.

  91. Barve M, Adams N, Plato L, Dupler R, Anand R, Jones J, et al. Case Report: immune checkpoint inhibitor elicited complete response in a heavily pretreated patient with metastatic endometrial carcinoma with a high tumor mutation burden (TMB). Mol Med: Curr Asp. 2017;1(Suppl 1):005.

    Google Scholar 

  92. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol cancer therapeutics. 2017;16(Suppl 11):2598–608.

    CAS  Google Scholar 

  93. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl J Med. 2017;377(Suppl 25):2500.

    PubMed  PubMed Central  Google Scholar 

  94. Hellmann MD, Ciuleanu T-E, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl J Med. 2018;378(Suppl 22):2093–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer cell. 2018;33(Suppl 5):853–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non–small-cell lung cancer. N. Engl J Med. 2017;376(Suppl 25):2415–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl J Med. 2018;378(Suppl 21):1976–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang F, Wei X, Wang F, Xu N, Shen L, Dai G et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD1 antibody in phase Ib/II clinical trial NCT02915432. Ann Oncol. 2019;30:1479–1486.

  99. Zhu J, Zhang T, Li J, Lin J, Liang W, Huang W, et al. Association between Tumor Mutation Burden (TMB) and outcomes of cancer patients treated with PD-1/PD-L1 inhibitions: a meta-analysis. Front Pharmacol. 2019;10:673.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ikeda S, Goodman AM, Cohen PR, Jensen TJ, Ellison CK, Frampton G, et al. Metastatic basal cell carcinoma with amplification of PD-L1: exceptional response to anti-PD1 therapy. NPJ Genom Med. 2016;1:16037.

    PubMed  PubMed Central  Google Scholar 

  101. Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K, et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Investig. 2016;126(Suppl 6):2334–40.

    PubMed  PubMed Central  Google Scholar 

  102. Johansson PA, Stark A, Palmer JM, Bigby K, Brooks K, Rolfe O, et al. Prolonged stable disease in a uveal melanoma patient with germline MBD4 nonsense mutation treated with pembrolizumab and ipilimumab. Immunogenetics. 2019;71(Suppl 5–6):433–6.

    CAS  PubMed  Google Scholar 

  103. Saller J, Walko CM, Millis SZ, Henderson-Jackson E, Makanji R, Brohl AS. Response to checkpoint inhibitor therapy in advanced classic Kaposi sarcoma: a case report and immunogenomic study. J Natl Compr Cancer Netw. 2018;16(Suppl 7):797–800.

    Google Scholar 

  104. Mou H, Yu L, Liao Q, Hou X, Wu Y, Cui Q, et al. Successful response to the combination of immunotherapy and chemotherapy in cholangiocarcinoma with high tumour mutational burden and PD-L1 expression: a case report. BMC cancer. 2018;18(Suppl 1):1105.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang VE, Urisman A, Albacker L, Ali S, Miller V, Aggarwal R, et al. Checkpoint inhibitor is active against large cell neuroendocrine carcinoma with high tumor mutation burden. J Immunother cancer. 2017;5(Suppl 1):75.

    PubMed  PubMed Central  Google Scholar 

  106. Sharabi A, Kim SS, Kato S, Sanders PD, Patel SP, Sanghvi P, et al. Exceptional response to nivolumab and stereotactic body radiation therapy (SBRT) in neuroendocrine cervical carcinoma with high tumor mutational burden: management considerations from the center for personalized cancer therapy at UC San Diego Moores Cancer Center. Oncologist. 2017;22(Suppl 6):631–7.

    PubMed  PubMed Central  Google Scholar 

  107. Solinas C, Gombos A, Latifyan S, Piccart-Gebhart M, Kok M, Buisseret L. Targeting immune checkpoints in breast cancer: an update of early results. ESMO Open. 2017;2(Suppl 5):e000255.

    PubMed  PubMed Central  Google Scholar 

  108. Lakhani SR, Jacquemier J, Sloane JP, Gusterson BA, Anderson TJ, van de Vijver MJ, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. JNCI: J Natl Cancer Inst. 1998;90(Suppl 15):1138–45.

    CAS  PubMed  Google Scholar 

  109. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immuneevasion and with reduced response to immunotherapy. Science. 2017;355(Suppl 6322):eaaf8399.

  110. Kraya AA, Maxwell KN, Wubbenhorst B, Wenz BM, Pluta J, Rech AJ.et al. Genomic signatures predict the immunogenicity of BRCA-deficient breast cancer. Clin Cancer Res. 2019;0468:2018

    Google Scholar 

  111. Wen WX, Leong C-O. Association of BRCA1- and BRCA2-deficiency with mutation burden, expression of PD-L1/PD-1, immune infiltrates, and T cell-inflamed signature in breast cancer. PLoS ONE. 2019;14(Suppl 4):e0215381.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(Suppl 8):2930–40.

    PubMed  PubMed Central  Google Scholar 

  113. Dai Y, Sun C, Feng Y, Jia Q, Zhu B. Potent immunogenicity in BRCA1-mutated patients with highgradeserous ovarian carcinoma. J Cell Mol Med. 2018;22(Suppl 8):3979–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016;7(Suppl 12):13587–98.

    PubMed  PubMed Central  Google Scholar 

  115. Disis ML, Taylor MH, Kelly K, Beck JT, Gordon M, Moore KM, et al. Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: phase 1b results from the JAVELIN Solid Tumor Trial. JAMA Oncol. 2019;5(Suppl 3):393–401.

    PubMed  PubMed Central  Google Scholar 

  116. Avelumab alone or in combination with pegylated liposomal doxorubicin versus pegylated liposomal doxorubicin alone in platinum-resistant or refractory epithelial ovarian cancer: Primary and biomarker analysis of the phase III JAVELIN Ovarian 200 trial. In Proc. 50th Annual Meeting of the Society of Gynecologic Oncology. Honolulu;2019.

  117. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;14(Suppl 11):655–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(Suppl 7741):600–5.

    CAS  PubMed  Google Scholar 

  119. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(Suppl 6264):1079–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Angelosanto JM, Blackburn SD, Crawford A, Wherry EJ. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J Virol. 2012;86(Suppl 15):8161–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Youngblood B, Oestreich Kenneth J, Ha S-J, Duraiswamy J, Akondy Rama S, West Erin E, et al. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8+ T cells. Immunity. 2011;35(Suppl 3):400–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, et al. De novo epigenetic programs inhibit Pd-1 blockade-mediated T Cell rejuvenation. Cell. 2017;170(Suppl 1):142–57.e19.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Chatterjee A, Rodger EJ, Ahn A, Stockwell PA, Parry M, Motwani J, et al. Marked global DNA hypomethylation is associated with constitutive PD-L1 expression in melanoma. iScience. 2018;4:312–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu M, Zhou J, Chen Z, Cheng ASL. Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. J Pathol. 2016;241:10–24.

    PubMed  Google Scholar 

  125. Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apcmin mice. FASEB J. 2006;20(Suppl 3):506–8.

    CAS  PubMed  Google Scholar 

  126. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(Suppl 7427):108–12.

    CAS  PubMed  Google Scholar 

  127. Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R, et al. The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother. 2018;67(Suppl 3):381–92.

    CAS  PubMed  Google Scholar 

  128. Llopiz D, Ruiz M, Villanueva L, Iglesias T, Silva L, Egea J, et al. Enhanced anti-tumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor Belinostat in a murine hepatocellular carcinoma model. Cancer Immunol, Immunother. 2019;68(Suppl 3):379–93.

    CAS  Google Scholar 

  129. Conway JR, Kofman E, Mo SS, Elmarakeby H, Van Allen E. Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Med. 2018;10(Suppl 1):93.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, et al. T-cell–inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 2019;37(Suppl 4):318–27.

    PubMed  Google Scholar 

  131. Chae YK, Anker JF, Carneiro BA, Chandra S, Kaplan J, Kalyan A, et al. Genomic landscape of DNA repair genes in cancer. Oncotarget. 2016;7(Suppl 17):23312.

    PubMed  PubMed Central  Google Scholar 

  132. Levine DA, Network CGAR. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(Suppl 7447):67.

    PubMed  PubMed Central  Google Scholar 

  133. Hussein YR, Weigelt B, Levine DA, Schoolmeester JK, Dao LN, Balzer BL, et al. Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Mod Pathol. 2015;28(Suppl 4):505.

    CAS  PubMed  Google Scholar 

  134. Redig AJ, Jänne PA. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J Clin Oncol. 2015;33(Suppl 9):975–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nemunaitis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choucair, K., Morand, S., Stanbery, L. et al. TMB: a promising immune-response biomarker, and potential spearhead in advancing targeted therapy trials. Cancer Gene Ther 27, 841–853 (2020). https://doi.org/10.1038/s41417-020-0174-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-0174-y

This article is cited by

Search

Quick links