Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SON inhibits megakaryocytic differentiation via repressing RUNX1 and the megakaryocytic gene expression program in acute megakaryoblastic leukemia

Abstract

A high incidence of acute megakaryoblastic leukemia (AMKL) in Down syndrome patients implies that chromosome 21 genes have a pivotal role in AMKL development, but the functional contribution of individual genes remains elusive. Here, we report that SON, a chromosome 21-encoded DNA- and RNA-binding protein, inhibits megakaryocytic differentiation by suppressing RUNX1 and the megakaryocytic gene expression program. As megakaryocytic progenitors differentiate, SON expression is drastically reduced, with mature megakaryocytes having the lowest levels. In contrast, AMKL cells express an aberrantly high level of SON, and knockdown of SON induced the onset of megakaryocytic differentiation in AMKL cell lines. Genome-wide transcriptome analyses revealed that SON knockdown turns on the expression of pro-megakaryocytic genes while reducing erythroid gene expression. Mechanistically, SON represses RUNX1 expression by directly binding to the proximal promoter and two enhancer regions, the known +23 kb enhancer and the novel +139 kb enhancer, at the RUNX1 locus to suppress H3K4 methylation. In addition, SON represses the expression of the AP-1 complex subunits JUN, JUNB, and FOSB which are required for late megakaryocytic gene expression. Our findings define SON as a negative regulator of RUNX1 and megakaryocytic differentiation, implicating SON overexpression in impaired differentiation during AMKL development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SON is minimally expressed in differentiated megakaryocytes but is aberrantly upregulated in AMKL.
Fig. 2: SON expression is decreased during PMA-induced megakaryocytic differentiation and SON knockdown leads to the onset of megakaryocytic differentiation in AMKL cells.
Fig. 3: SON knockdown in AMKL cells reveals the genome-wide transcriptome changes and the affected cellular pathways.
Fig. 4: SON knockdown leads to upregulation of pro-megakaryocytic genes.
Fig. 5: SON depletion leads to upregulation of RUNX1, resulting in activation of RUNX1-regulated megakaryocytic transcription programs.
Fig. 6: SON directly binds to the RUNX1 promoter and two enhancer regions and represses RUNX1 transcription.
Fig. 7: SON represses transcription of JUN, JUNB, and FOSB through direct promoter binding.
Fig. 8: Models of the SON function in regulating megakaryocytic differentiation and its proposed contribution to AMKL development.

Similar content being viewed by others

References

  1. Pagano L, Pulsoni A, Vignetti M, Mele L, Fianchi L, Petti MC, et al. Acute megakaryoblastic leukemia: experience of GIMEMA trials. Leukemia. 2002;16:1622–6.

    Article  CAS  PubMed  Google Scholar 

  2. Lange B. The management of neoplastic disorders of haematopoiesis in children with Down’s syndrome. Br J Haematol. 2000;110:512–24.

    Article  CAS  PubMed  Google Scholar 

  3. Athale UH, Razzouk BI, Raimondi SC, Tong X, Behm FG, Head DR, et al. Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution’s experience. Blood. 2001;97:3727–32.

    Article  CAS  PubMed  Google Scholar 

  4. Barnard DR, Alonzo TA, Gerbing RB, Lange B, Woods WG. Children’s Oncology G. Comparison of childhood myelodysplastic syndrome, AML FAB M6 or M7, CCG 2891: report from the Children’s Oncology Group. Pediatr Blood Cancer. 2007;49:17–22.

    Article  PubMed  Google Scholar 

  5. Hitzler JK, Zipursky A. Origins of leukaemia in children with Down syndrome. Nat Rev Cancer. 2005;5:11–20.

    Article  CAS  PubMed  Google Scholar 

  6. Gruber TA, Downing JR. The biology of pediatric acute megakaryoblastic leukemia. Blood. 2015;126:943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roberts I, Izraeli S. Haematopoietic development and leukaemia in Down syndrome. Br J Haematol. 2014;167:587–99.

    Article  CAS  PubMed  Google Scholar 

  8. Chou ST, Opalinska JB, Yao Y, Fernandes MA, Kalota A, Brooks JS, et al. Trisomy 21 enhances human fetal erythro-megakaryocytic development. Blood. 2008;112:4503–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tunstall-Pedoe O, Roy A, Karadimitris A, de la Fuente J, Fisk NM, Bennett P, et al. Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations. Blood. 2008;112:4507–11.

    Article  CAS  PubMed  Google Scholar 

  10. Chou ST, Byrska-Bishop M, Tober JM, Yao Y, Vandorn D, Opalinska JB, et al. Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109:17573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roy A, Cowan G, Mead AJ, Filippi S, Bohn G, Chaidos A, et al. Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proc Natl Acad Sci USA. 2012;109:17579–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA. 2009;106:12031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Vita S, Canzonetta C, Mulligan C, Delom F, Groet J, Baldo C, et al. Trisomic dose of several chromosome 21 genes perturbs haematopoietic stem and progenitor cell differentiation in Down’s syndrome. Oncogene. 2010;29:6102–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Salek-Ardakani S, Smooha G, de Boer J, Sebire NJ, Morrow M, Rainis L, et al. ERG is a megakaryocytic oncogene. Cancer Res. 2009;69:4665–73.

    Article  CAS  PubMed  Google Scholar 

  15. Stankiewicz MJ, Crispino JD. ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells. Blood. 2009;113:3337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ng AP, Hyland CD, Metcalf D, Carmichael CL, Loughran SJ, Di Rago L, et al. Trisomy of Erg is required for myeloproliferation in a mouse model of Down syndrome. Blood. 2010;115:3966–9.

    Article  CAS  PubMed  Google Scholar 

  17. Malinge S, Bliss-Moreau M, Kirsammer G, Diebold L, Chlon T, Gurbuxani S, et al. Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. J Clin Investig. 2012;122:948–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klusmann JH, Li Z, Bohmer K, Maroz A, Koch ML, Emmrich S, et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev. 2010;24:478–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bourquin JP, Subramanian A, Langebrake C, Reinhardt D, Bernard O, Ballerini P, et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc Natl Acad Sci USA. 2006;103:3339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hickey CJ, Kim JH, Ahn EY. New discoveries of old SON: a link between RNA splicing and cancer. J Cell Biochem. 2014;115:224–31.

    Article  CAS  PubMed  Google Scholar 

  21. Ahn EY, DeKelver RC, Lo MC, Nguyen TA, Matsuura S, Boyapati A, et al. SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell. 2011;42:185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun CT, Lo WY, Wang IH, Lo YH, Shiou SR, Lai CK, et al. Transcription repression of human hepatitis B virus genes by negative regulatory element-binding protein/SON. J Biol Chem. 2001;276:24059–67.

    Article  CAS  PubMed  Google Scholar 

  23. Ahn EE, Higashi T, Yan M, Matsuura S, Hickey CJ, Lo MC, et al. SON protein regulates GATA-2 through transcriptional control of the microRNA 23a~27a~24-2 cluster. J Biol Chem. 2013;288:5381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu X, Goke J, Sachs F, Jacques PE, Liang H, Feng B, et al. SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nat Cell Biol. 2013;15:1141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma A, Markey M, Torres-Munoz K, Varia S, Kadakia M, Bubulya A, et al. Son maintains accurate splicing for a subset of human pre-mRNAs. J Cell Sci. 2011;124:4286–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim JH, Shinde DN, Reijnders MRF, Hauser NS, Belmonte RL, Wilson GR, et al. De novo mutations in SON disrupt RNA splicing of genes essential for brain development and metabolism, causing an intellectual-disability syndrome. Am J Hum Genet. 2016;99:711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mattioni T, Hume CR, Konigorski S, Hayes P, Osterweil Z, Lee JS. A cDNA clone for a novel nuclear protein with DNA binding activity. Chromosoma. 1992;101:618–24.

    Article  CAS  PubMed  Google Scholar 

  28. Kim JH, Baddoo MC, Park EY, Stone JK, Park H, Butler TW, et al. SON and its alternatively spliced isoforms control MLL complex-mediated H3K4me3 and transcription of leukemia-associated genes. Mol Cell. 2016;61:859–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.

    Article  CAS  PubMed  Google Scholar 

  30. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14:687–90.

    Article  CAS  PubMed  Google Scholar 

  31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bagger FO, Sasivarevic D, Sohi SH, Laursen LG, Pundhir S, Sonderby CK, et al. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic Acids Res. 2016;44:D917–924.

    Article  CAS  PubMed  Google Scholar 

  34. Chen L, Kostadima M, Martens JHA, Canu G, Garcia SP, Turro E, et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014;345:1251033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang E, Lu SX, Pastore A, Chen X, Imig J, Chun-Wei Lee S, et al. Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell. 2019;35:369–84. e367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Klusmann JH, Godinho FJ, Heitmann K, Maroz A, Koch ML, Reinhardt D, et al. Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes Dev. 2010;24:1659–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cardin S, Bilodeau M, Roussy M, Aubert L, Milan T, Jouan L, et al. Human models of NUP98-KDM5A megakaryocytic leukemia in mice contribute to uncovering new biomarkers and therapeutic vulnerabilities. Blood Adv. 2019;3:3307–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Long MW, Heffner CH, Williams JL, Peters C, Prochownik EV. Regulation of megakaryocyte phenotype in human erythroleukemia cells. J Clin Investig. 1990;85:1072–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hocevar BA, Morrow DM, Tykocinski ML, Fields AP. Protein kinase C isotypes in human erythroleukemia cell proliferation and differentiation. J Cell Sci. 1992;101:671–9.

    Article  CAS  PubMed  Google Scholar 

  40. Shelly C, Petruzzelli L, Herrera R. K562 cells resistant to phorbol 12-myristate 13-acetate-induced growth arrest: dissociation of mitogen-activated protein kinase activation and Egr-1 expression from megakaryocyte differentiation. Cell Growth Differ. 2000;11:501–6.

    CAS  PubMed  Google Scholar 

  41. Racke FK, Lewandowska K, Goueli S, Goldfarb AN. Sustained activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells. J Biol Chem. 1997;272:23366–70.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang H, Promchan K, Lin BR, Lockett S, Chen D, Marshall H, et al. LZTFL1 upregulated by all-trans retinoic acid during CD4+ T cell activation enhances IL-5 production. J Immunol. 2016;196:1081–90.

    Article  CAS  PubMed  Google Scholar 

  43. Kato H, Igarashi K. To be red or white: lineage commitment and maintenance of the hematopoietic system by the “inner myeloid”. Haematologica. 2019;104:1919–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Itoh-Nakadai A, Matsumoto M, Kato H, Sasaki J, Uehara Y, Sato Y, et al. A Bach2-Cebp gene regulatory network for the commitment of multipotent hematopoietic progenitors. Cell Rep. 2017;18:2401–14.

    Article  CAS  PubMed  Google Scholar 

  45. Hamada T, Murasawa S, Yokoyama A, Hayashi S, Kobayashi Y, Asahara T. Changing modified regions in the genome in hematopoietic stem cell differentiation. Biochem Biophys Res Commun. 2009;381:135–8.

    Article  CAS  PubMed  Google Scholar 

  46. Fan J, Wang Y, Shen Y, Liu Q, Gao R, Qiu Y, et al. A novel role of CKIP-1 in promoting megakaryocytic differentiation. Oncotarget. 2017;8:30138–50.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu XL, Yuan JY, Zhang JW, Zhang XH, Wang RX. Differential gene expression in human hematopoietic stem cells specified toward erythroid, megakaryocytic, and granulocytic lineage. J Leukoc Biol. 2007;82:986–1002.

    Article  CAS  PubMed  Google Scholar 

  48. Geue S, Aurbach K, Manke MC, Manukjan G, Munzer P, Stegner D, et al. Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis. Blood. 2019;134:1847–58.

    Article  PubMed  Google Scholar 

  49. Vakana E, Arslan AD, Szilard A, Altman JK, Platanias LC. Regulatory effects of sestrin 3 (SESN3) in BCR-ABL expressing cells. PLoS ONE. 2013;8:e78780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Senis YA. Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost. 2013;11:1800–13.

    Article  CAS  PubMed  Google Scholar 

  51. Raslova H, Kauffmann A, Sekkai D, Ripoche H, Larbret F, Robert T, et al. Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood. 2007;109:3225–34.

    Article  CAS  PubMed  Google Scholar 

  52. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, et al. A dual thrombin receptor system for platelet activation. Nature. 1998;394:690–4.

    Article  CAS  PubMed  Google Scholar 

  53. Marconi C, Di Buduo CA, LeVine K, Barozzi S, Faleschini M, Bozzi V, et al. Loss-of-function mutations in PTPRJ cause a new form of inherited thrombocytopenia. Blood. 2019;133:1346–57.

    Article  CAS  PubMed  Google Scholar 

  54. Sanders MA, Ampasala D, Basson MD. DOCK5 and DOCK1 regulate Caco-2 intestinal epithelial cell spreading and migration on collagen IV. J Biol Chem. 2009;284:27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Timpl R. Macromolecular organization of basement membranes. Curr Opin Cell Biol. 1996;8:618–24.

    Article  CAS  PubMed  Google Scholar 

  56. Yoshigi M, Hoffman LM, Jensen CC, Yost HJ, Beckerle MC. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J Cell Biol. 2005;171:209–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goldfarb AN. Transcriptional control of megakaryocyte development. Oncogene. 2007;26:6795–802.

    Article  CAS  PubMed  Google Scholar 

  58. Starck J, Cohet N, Gonnet C, Sarrazin S, Doubeikovskaia Z, Doubeikovski A, et al. Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol. 2003;23:1390–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuvardina ON, Herglotz J, Kolodziej S, Kohrs N, Herkt S, Wojcik B, et al. RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood. 2015;125:3570–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ghozi MC, Bernstein Y, Negreanu V, Levanon D, Groner Y. Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions. Proc Natl Acad Sci USA. 1996;93:1935–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Levanon D, Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene. 2004;23:4211–9.

    Article  CAS  PubMed  Google Scholar 

  62. Bee T, Ashley EL, Bickley SR, Jarratt A, Li PS, Sloane-Stanley J, et al. The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters. Blood. 2009;113:5121–4.

    Article  CAS  PubMed  Google Scholar 

  63. Pencovich N, Jaschek R, Tanay A, Groner Y. Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models. Blood. 2011;117:e1–14.

    Article  CAS  PubMed  Google Scholar 

  64. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10:299–304.

    Article  CAS  PubMed  Google Scholar 

  65. Marsman J, Thomas A, Osato M, O’Sullivan JM, Horsfield JAA. DNA contact map for the mouse Runx1 gene identifies novel haematopoietic enhancers. Sci Rep. 2017;7:13347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shai Izraeli (Tel Aviv University) for kindly providing the CMY and CMK cell lines. This work was supported by the NIH grants (R01CA190688 and R01CA236911 to E.E.A. and R01HL136432 to S.T.L.) and institutional support from the University of Alabama at Birmingham School of Medicine, Department of Pathology, and the UAB O’Neal Comprehensive Cancer Center (to E.E.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Young Erin Ahn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vukadin, L., Kim, JH., Park, E.Y. et al. SON inhibits megakaryocytic differentiation via repressing RUNX1 and the megakaryocytic gene expression program in acute megakaryoblastic leukemia. Cancer Gene Ther 28, 1000–1015 (2021). https://doi.org/10.1038/s41417-020-00262-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00262-9

This article is cited by

Search

Quick links