Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Targeting histone deacetylases for combination therapies in neuroendocrine tumors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current molecules employed in the medical treatment of NETs.

References

  1. Kaltsas GA, Besser GM, Grossman AB. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev. 2004;25:458–511.

    Article  CAS  Google Scholar 

  2. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, et al. Trends in the incidence, prevalence and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3:1335–42.

    Article  Google Scholar 

  3. Taal BG, Visser O. Epidemiology of neuroendocrine tumours. Neuroendocrinology. 2004;80:3–7.

    Article  CAS  Google Scholar 

  4. Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing but NET: a review of neuroendocrine tumors and carcinomas. Neoplasia. 2017;19:991–1002.

    Article  CAS  Google Scholar 

  5. Yao JC, Lagunes DR, Kulke MH. Targeted therapies in neuroendocrine tumors (NET): clinical trial challenges and lessons learned. Oncologist. 2013;18:525–32.

    Article  CAS  Google Scholar 

  6. Herrera-Martínez AD, Gahete MD, Pedraza-Arevalo S, Sánchez-Sánchez R, Ortega-Salas R, Serrano-Blanch R, et al. Clinical and functional implication of the components of somatostatin system in gastroenteropancreatic neuroendocrine tumors. Endocrine. 2018;59:426–37.

    Article  Google Scholar 

  7. Lamberti G, Brighi N, Maggio I, Manuzzi L, Peterle C, Ambrosini V, et al. The role of mTOR in neuroendocrine tumors: future cornerstone of a winning strategy? Int J Mol Sci. 2018;19:747.

    Article  Google Scholar 

  8. Pavel ME, Hainsworth JD, Baudin E, Peeters M, Horsch D, Winkler RE, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT 2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378:2005–12.

    Article  CAS  Google Scholar 

  9. Fazio N. Neuroendocrine tumors resistant to mammalian target of rapamycin inhibitors: a difficult conversion from biology to the clinic. World J Clin Oncol. 2015;6:194–7.

    Article  Google Scholar 

  10. Zitzmann K, Rüden JV, Brand S, Göke B, Licht J, Spöttl G, et al. Compensatory activation of Akt in response to mTOR and Raf inhibitors—a rationale for dual-targeted therapy approaches in neuroendocrine tumor disease. Cancer Lett. 2010;295:100–9.

    Article  CAS  Google Scholar 

  11. Gagliano T, Bellio M, Gentilin E, Molè D, Tagliati F, Schiavon M, et al. mTOR, p70S6K, AKT, and ERK1/2 levels predict sensitivity to mTOR and PI3K/mTOR inhibitors in human bronchial carcinoids. Endocr Relat Cancer. 2013;20:463–75.

    Article  CAS  Google Scholar 

  12. Gelsomino F, Casadei-Gardini A, Caputo F, Rossi G, Bertolini F, Petrachi T, et al. mTOR pathway expression as potential predictive biomarker in patients with advanced neuroendocrine tumors treated with everolimus. Cancers. 2020;12:1201.

    Article  CAS  Google Scholar 

  13. Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:501–13.

    Article  CAS  Google Scholar 

  14. Pozas J, San Román M, Alonso-Gordoa T, Pozas M, Caracuel M, Carrato A, et al. Targeting angiogenesis in pancreatic neuroendocrine tumors: resistance mechanisms. Int J Mol Sci. 2019;20:4949.

    Article  CAS  Google Scholar 

  15. Bresciani G, Hofland LJ, Dogan F, Giamas G, Gagliano T, Zatelli MC. Evaluation of spheroid 3D culture methods to study a pancreatic neuroendocrine neoplasm cell line. Front Endocrinol. 2019;10:682.

    Article  Google Scholar 

  16. Bresciani G, Ditsiou A, Cilibrasi C, Vella V, Rea F, Schiavon M, et al. EGF and IGF1 affect sunitinib activity in BP-NEN: new putative targets beyond VEGFR? Endocr Connect. 2019;8:680–90.

    Article  CAS  Google Scholar 

  17. Mapelli P, Aboagye EO, Stebbing J, Sharma R. Epigenetic changes in gastroenteropancreatic neuroendocrine tumours. Oncogene. 2015;34:4439–47.

    Article  CAS  Google Scholar 

  18. Scott AT, Weitz M, Breheny PJ, Hien Ear P, Darbro B, Brown BJ, et al. Gene expression signatures identify novel therapeutics for metastatic pancreatic neuroendocrine tumors. Clin Cancer Res. 2020;26:2011–21.

    Article  CAS  Google Scholar 

  19. Alvarez MJ, Subramaniam PS, Tang LH, Grunn A, Aburi M, Rieckhof G, et al. A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nat Genet. 2018;50:979–89.

    Article  CAS  Google Scholar 

  20. Arvidsson Y, Johanson V, Pfragner R, Wängberg B, Nilsson O. Cytotoxic effects of valproic acid on neuroendocrine tumour cells. Neuroendocrinology. 2016;103:578–91.

    Article  CAS  Google Scholar 

  21. Wanek J, Gaisberger M, Beyreis M, Beyreis M, Mayr C, Helm K, et al. Pharmacological inhibition of class IIA HDACs by LMK-235 in pancreatic neuroendocrine tumor cells. Int J Mol Sci. 2018;19:3128.

    Article  Google Scholar 

  22. Jang S, Janssen A, Aburjania Z, Robers MB, Harrison A, Dammalapati A, et al. Histone deacetylase inhibitor thailandepsin-A activates Notch signaling and suppresses neuroendocrine cancer cell growth in vivo. Oncotarget. 2017;8:70828–40.

    Article  Google Scholar 

  23. Guenter RE, Aweda T, Carmona Matos DM, et al. Pulmonary carcinoid surface receptor modulation using histone deacetylase inhibitors. Cancers. 2019;11:767.

    Article  CAS  Google Scholar 

  24. Jin N, Lubner SJ, Mulkerin DL, Whitt J, Chang AW, Cheng EY, et al. A phase II trial of a histone deacetylase inhibitor panobinostat in patients with low-grade neuroendocrine tumors. Oncologist. 2016;21:785–6.

    Article  CAS  Google Scholar 

  25. Jin XF, Auernhammer CJ, Ilhan H, Lindner S, Nölting S, Maurer J, et al. Combination of 5-Fluorouracil with epigenetic modifiers induces radiosensitization, somatostatin receptor 2 expression, and radioligand binding in neuroendocrine tumor cells in vitro. J Nucl Med. 2019;60:1240–6.

    Article  CAS  Google Scholar 

  26. Malone CF, Emerson C, Ingraham R, Barbosa W, Guerra S, Yoon H, et al. mTOR and HDAC inhibitors converge on the TXNIP/thioredoxin pathway to cause catastrophic oxidative stress and regression of RAS-driven tumors. Cancer Discov. 2017;7:1450–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Gagliano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagliano, T., Brancolini, C. Targeting histone deacetylases for combination therapies in neuroendocrine tumors. Cancer Gene Ther 28, 547–550 (2021). https://doi.org/10.1038/s41417-020-00260-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00260-x

This article is cited by

Search

Quick links