Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR-Cas deployment in non-small cell lung cancer for target screening, validations, and discoveries

Abstract

Continued advancements in CRISPR-Cas systems have accelerated genome research. Use of CRISPR-Cas in cancer research has been of great interest that is resulting in development of orthogonal methods for drug target validations and discovery of new therapeutic targets through genome-wide screens of cancer cells. CRISPR-based screens have also revealed several new cancer drivers through alterations in tumor suppressor genes (TSGs) and oncogenes inducing resistance to targeted therapies via activation of alternate signaling pathways. Given such dynamic status of cancer, we review the application of CRISPR-Cas in non-small cell lung cancer (NSCLC) for development of mutant models, drug screening, target validation, novel target discoveries, and other emerging potential applications. In addition, CRISPR-based approach for development of novel anticancer combination therapies is also discussed in this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CRISPR-Cas editing can be used during the initial phase of development wherein cell lines with desired mutations can be rapidly designed and checked for drugs under development or cell lines can be screened using varieties of guide RNA (sgRNA) to discover new targets.
Fig. 2: Influence of KEAP1/Nrf2 pathways on acquired resistance mechanisms.
Fig. 3: Multiple emerging applications of CRISPR-Cas systems for use in NSCLC.

Similar content being viewed by others

References

  1. Lee W, Lee JH, Jun S, Lee JH, Bang D. Selective targeting of KRAS oncogenic alleles by CRISPR/Cas9 inhibits proliferation of cancer cells. Sci Rep. 2018;8:11879. https://doi.org/10.1038/s41598-018-30205-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tong Y, Whitford CM, Robertsen HL, Blin K, Jorgensen TS, Klitgaard AK, et al. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc Natl Acad Sci USA. 2019;116:20366–75. https://doi.org/10.1073/pnas.1913493116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim W, Lee S, Kim HS, Song M, Cha YH, Kim YH et al. Targeting mutant KRAS with CRISPR-Cas9 controls tumor growth. Genome Res. 2018. https://doi.org/10.1101/gr.223891.117

  4. Sachdeva M, Sachdeva N, Pal M, Gupta N, Khan IA, Majumdar M, et al. CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer. Cancer Gene Ther. 2015;22:509–17. https://doi.org/10.1038/cgt.2015.54

    Article  CAS  PubMed  Google Scholar 

  5. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71. https://doi.org/10.1038/nature24644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharma, S, Petsalaki, E. Application of CRISPR-Cas9 based genome-wide screening approaches to study cellular signalling mechanisms. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19040933

  7. Yin H, Xue W, Anderson DG. CRISPR-Cas: a tool for cancer research and therapeutics. Nat Rev Clin Oncol. 2019;16:281–95. https://doi.org/10.1038/s41571-019-0166-8

    Article  CAS  PubMed  Google Scholar 

  8. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55. https://doi.org/10.1038/nbt.2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33:538–42. https://doi.org/10.1038/nbt.3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33:543–8. https://doi.org/10.1038/nbt.3198

    Article  CAS  PubMed  Google Scholar 

  11. Bae T, Kim H, Kim JH, Kim YJ, Lee SH, Ham BJ et al. Specificity assessment of CRISPR genome editing of oncogenic EGFR point mutation with single-base differences. Molecules. 2019;25. https://doi.org/10.3390/molecules25010052

  12. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54. https://doi.org/10.1038/nature25183

    Article  CAS  PubMed  Google Scholar 

  13. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  14. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl J Med. 2002;346:92–8. https://doi.org/10.1056/NEJMoa011954

    Article  CAS  PubMed  Google Scholar 

  15. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26. https://doi.org/10.1126/scitranslmed.3002003

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang JC, Wu YL, Schuler M, Sebastian M, Popat S, Yamamoto N, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16:141–51. https://doi.org/10.1016/S1470-2045(14)71173-8

    Article  CAS  PubMed  Google Scholar 

  17. Nair J, Nair A, Veerappan S, Sen D. Translatable gene therapy for lung cancer using Crispr CAS9-an exploratory review. Cancer Gene Ther. 2020;27:116–24. https://doi.org/10.1038/s41417-019-0116-8

    Article  CAS  PubMed  Google Scholar 

  18. Ng SR, Rideout WM 3rd, Akama-Garren EH, Bhutkar A, Mercer KL, Schenkel JM, et al. CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer. Proc Natl Acad Sci USA. 2020;117:513–21. https://doi.org/10.1073/pnas.1821893117

    Article  CAS  PubMed  Google Scholar 

  19. Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Disco. 2017;16:89–100. https://doi.org/10.1038/nrd.2016.238

    Article  CAS  Google Scholar 

  20. Smurnyy Y, Cai M, Wu H, McWhinnie E, Tallarico JA, Yang Y, et al. DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells. Nat Chem Biol. 2014;10:623–5. https://doi.org/10.1038/nchembio.1550

    Article  CAS  PubMed  Google Scholar 

  21. Kasap C, Elemento O, Kapoor TM. DrugTargetSeqR: a genomics- and CRISPR-Cas9-based method to analyze drug targets. Nat Chem Biol. 2014;10:626–8. https://doi.org/10.1038/nchembio.1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aregger M, Chandrashekhar M, Tong AHY, Chan K, Moffat J. Pooled lentiviral CRISPR-Cas9 screens for functional genomics in mammalian cells. Methods Mol Biol. 2019;1869:169–88.https://doi.org/10.1007/978-1-4939-8805-1_15

    Article  CAS  PubMed  Google Scholar 

  23. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343:80–4. https://doi.org/10.1126/science.1246981

    Article  CAS  PubMed  Google Scholar 

  24. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014;32:267–73. https://doi.org/10.1038/nbt.2800

    Article  CAS  PubMed  Google Scholar 

  25. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 2014;509:487–91. https://doi.org/10.1038/nature13166

    Article  CAS  PubMed  Google Scholar 

  26. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547:413–8. https://doi.org/10.1038/nature23270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 2015;33:661–7. https://doi.org/10.1038/nbt.3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pikor LA, Ramnarine VR, Lam S, Lam WL. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer. 2013;82:179–89. https://doi.org/10.1016/j.lungcan.2013.07.025

    Article  PubMed  Google Scholar 

  29. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703. https://doi.org/10.1056/NEJMoa1006448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010;10:760–74. https://doi.org/10.1038/nrc2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burgess AW. EGFR family: structure physiology signalling and therapeutic targets. Growth Factors. 2008;26:263–74. https://doi.org/10.1080/08977190802312844

    Article  CAS  PubMed  Google Scholar 

  32. Ferguson KM. Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys. 2008;37:353–73. https://doi.org/10.1146/annurev.biophys.37.032807.125829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1:2005 0010. https://doi.org/10.1038/msb4100014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28:S24–31. https://doi.org/10.1038/onc.2009.198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA. 2008;105:2070–5. https://doi.org/10.1073/pnas.0709662105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eck MJ, Yun CH. Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung cancer. Biochim Biophys Acta. 2010;1804:559–66. https://doi.org/10.1016/j.bbapap.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  37. Suda K, Onozato R, Yatabe Y, Mitsudomi T. EGFR T790M mutation: a double role in lung cancer cell survival? J Thorac Oncol. 2009;4:1–4. https://doi.org/10.1097/JTO.0b013e3181913c9f

    Article  PubMed  Google Scholar 

  38. Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009;462:1070–4. https://doi.org/10.1038/nature08622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res. 2006;12:6494–501. https://doi.org/10.1158/1078-0432.CCR-06-1570

    Article  CAS  PubMed  Google Scholar 

  40. Chu J, Galicia-Vazquez G, Cencic R, Mills JR, Katigbak A, Porco JA Jr., et al. CRISPR-mediated drug-target validation reveals selective pharmacological inhibition of the RNA helicase, eIF4A. Cell Rep. 2016;15:2340–7. https://doi.org/10.1016/j.celrep.2016.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wanzel M, Vischedyk JB, Gittler MP, Gremke N, Seiz JR, Hefter M, et al. CRISPR-Cas9-based target validation for p53-reactivating model compounds. Nat Chem Biol. 2016;12:22–8. https://doi.org/10.1038/nchembio.1965

    Article  CAS  PubMed  Google Scholar 

  42. Kurata M, Yamamoto K, Moriarity BS, Kitagawa M, Largaespada DA. CRISPR/Cas9 library screening for drug target discovery. J Hum Genet. 2018;63:179–86. https://doi.org/10.1038/s10038-017-0376-9

    Article  CAS  PubMed  Google Scholar 

  43. Ma P, Fu Y, Chen M, Jing Y, Wu J, Li K, et al. Adaptive and acquired resistance to EGFR inhibitors converge on the mapk pathway. Theranostics. 2016;6:1232–43. https://doi.org/10.7150/thno.14409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheung AH, Chow C, Zhang J, Zhou Y, Huang T, Ng KC, et al. Specific targeting of point mutations in EGFR L858R-positive lung cancer by CRISPR/Cas9. Lab Invest. 2018;98:968–76. https://doi.org/10.1038/s41374-018-0056-1

    Article  CAS  PubMed  Google Scholar 

  45. Park MY, Jung MH, Eo EY, Kim S, Lee SH, Lee YJ, et al. Generation of lung cancer cell lines harboring EGFR T790M mutation by CRISPR/Cas9-mediated genome editing. Oncotarget. 2017;8:36331–8. https://doi.org/10.18632/oncotarget.16752

    Article  PubMed  PubMed Central  Google Scholar 

  46. Floc’h N, Martin MJ, Riess JW, Orme JP, Staniszewska AD, Menard L, et al. Antitumor activity of osimertinib, an irreversible mutant-selective EGFR tyrosine kinase inhibitor, in NSCLC harboring EGFR exon 20 insertions. Mol Cancer Ther. 2018;17:885–96. https://doi.org/10.1158/1535-7163.MCT-17-0758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12:220–9. https://doi.org/10.1158/1535-7163.MCT-12-0620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yasuda H, Park E, Yun CH, Sng NJ, Lucena-Araujo AR, Yeo WL, et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013;5:216ra177. https://doi.org/10.1126/scitranslmed.3007205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vyse S, Huang PH. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. https://doi.org/10.1038/s41392-019-0038-9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 2012;13:e23–31. https://doi.org/10.1016/S1470-2045(11)70129-2

    Article  CAS  PubMed  Google Scholar 

  51. Fang W, Huang Y, Hong S, Zhang Z, Wang M, Gan J, et al. EGFR exon 20 insertion mutations and response to osimertinib in non-small-cell lung cancer. BMC Cancer. 2019;19:595. https://doi.org/10.1186/s12885-019-5820-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sisdelli L, Cordioli M, Vaisman F, Moraes L, Colozza-Gama GA, Alves PAG Jr., et al. AGK-BRAF is associated with distant metastasis and younger age in pediatric papillary thyroid carcinoma. Pediatr Blood Cancer. 2019;66:e27707 https://doi.org/10.1002/pbc.27707

    Article  CAS  PubMed  Google Scholar 

  53. Ross JS, Wang K, Chmielecki J, Gay L, Johnson A, Chudnovsky J, et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer. 2016;138:881–90. https://doi.org/10.1002/ijc.29825

    Article  CAS  PubMed  Google Scholar 

  54. Farago AF, Azzoli CG. Beyond ALK and ROS1: RET, NTRK, EGFR and BRAF gene rearrangements in non-small cell lung cancer. Transl Lung Cancer Res. 2017;6:550–9. https://doi.org/10.21037/tlcr.2017.08.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vad-Nielsen J, Gammelgaard KR, Daugaard TF, Nielsen AL. Cause-and-Effect relationship between FGFR1 expression and epithelial-mesenchymal transition in EGFR-mutated non-small cell lung cancer cells. Lung Cancer. 2019;132:132–40. https://doi.org/10.1016/j.lungcan.2019.04.023

    Article  PubMed  Google Scholar 

  56. Gammelgaard KR, Vad-Nielsen J, Clement MS, Weiss S, Daugaard TF, Dagnaes-Hansen F, et al. Up-regulated FGFR1 expression as a mediator of intrinsic tki resistance in EGFR-mutated NSCLC. Transl Oncol. 2019;12:432–40. https://doi.org/10.1016/j.tranon.2018.11.017

    Article  PubMed  Google Scholar 

  57. Schrock AB, Zhu VW, Hsieh WS, Madison R, Creelan B, Silberberg J, et al. Receptor tyrosine kinase fusions and BRAF kinase fusions are rare but actionable resistance mechanisms to EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2018;13:1312–23. https://doi.org/10.1016/j.jtho.2018.05.027

    Article  PubMed  Google Scholar 

  58. Wegert J, Vokuhl C, Collord G, Del Castillo Velasco-Herrera M, Farndon SJ, Guzzo C, et al. Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants. Nat Commun. 2018;9:2378. https://doi.org/10.1038/s41467-018-04650-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vojnic M, Kubota D, Kurzatkowski C, Offin M, Suzawa K, Benayed R, et al. Acquired BRAF rearrangements induce secondary resistance to EGFR therapy in EGFR-mutated lung cancers. J Thorac Oncol. 2019;14:802–15. https://doi.org/10.1016/j.jtho.2018.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ware KE, Hinz TK, Kleczko E, Singleton KR, Marek LA, Helfrich BA, et al. A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis. 2013;2:e39. https://doi.org/10.1038/oncsis.2013.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu X, Chen L, Liu L, Niu X. EMT-mediated acquired EGFR-TKI resistance in NSCLC: mechanisms and strategies. Front Oncol. 2019;9:1044. https://doi.org/10.3389/fonc.2019.01044

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kubo T, Yamamoto H, Lockwood WW, Valencia I, Soh J, Peyton M, et al. MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int J Cancer. 2009;124:1778–84. https://doi.org/10.1002/ijc.24150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43. https://doi.org/10.1126/science.1141478

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Z, Yang S, Wang Q. Impact of MET alterations on targeted therapy with EGFR-tyrosine kinase inhibitors for EGFR-mutant lung cancer. Biomark Res. 2019;7:27 https://doi.org/10.1186/s40364-019-0179-6

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hussmann D, Madsen AT, Jakobsen KR, Luo Y, Sorensen BS, Nielsen AL. IGF1R depletion facilitates MET-amplification as mechanism of acquired resistance to erlotinib in HCC827 NSCLC cells. Oncotarget. 2017;8:33300–15. https://doi.org/10.18632/oncotarget.16350

    Article  PubMed  PubMed Central  Google Scholar 

  66. Togashi Y, Mizuuchi H, Tomida S, Terashima M, Hayashi H, Nishio K, et al. MET gene exon 14 deletion created using the CRISPR/Cas9 system enhances cellular growth and sensitivity to a MET inhibitor. Lung Cancer. 2015;90:590–7. https://doi.org/10.1016/j.lungcan.2015.10.020

    Article  PubMed  Google Scholar 

  67. Al-Saad S, Richardsen E, Kilvaer TK, Donnem T, Andersen S, Khanehkenari M, et al. The impact of MET, IGF-1, IGF1R expression and EGFR mutations on survival of patients with non-small-cell lung cancer. PLoS ONE. 2017;12:e0181527 https://doi.org/10.1371/journal.pone.0181527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li B, Ren S, Li X, Wang Y, Garfield D, Zhou S, et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer. 2014;83:146–53. https://doi.org/10.1016/j.lungcan.2013.11.003

    Article  PubMed  Google Scholar 

  69. Wang YS, Wang YH, Xia HP, Zhou SW, Schmid-Bindert G, Zhou CC. MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev. 2012;13:255–60. https://doi.org/10.7314/apjcp.2012.13.1.255

    Article  PubMed  Google Scholar 

  70. Liu WB, Jiang X, Han F, Li YH, Chen HQ, Liu Y, et al. LHX6 acts as a novel potential tumour suppressor with epigenetic inactivation in lung cancer. Cell Death Dis. 2013;4:e882. https://doi.org/10.1038/cddis.2013.366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liao J, Lin J, Lin D, Zou C, Kurata J, Lin R, et al. Down-regulation of miR-214 reverses erlotinib resistance in non-small-cell lung cancer through up-regulating LHX6 expression. Sci Rep. 2017;7:781. https://doi.org/10.1038/s41598-017-00901-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  73. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kiessling MK, Schuierer S, Stertz S, Beibel M, Bergling S, Knehr J, et al. Identification of oncogenic driver mutations by genome-wide CRISPR-Cas9 dropout screening. BMC Genomics. 2016;17:723. https://doi.org/10.1186/s12864-016-3042-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12. https://doi.org/10.1038/nature08460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ou YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, et al. TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell. 2011;41:458–70. https://doi.org/10.1016/j.molcel.2011.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Muvaffak A, Pan Q, Yan H, Fernandez R, Lim J, Dolinski B, et al. Evaluating TBK1 as a therapeutic target in cancers with activated IRF3. Mol Cancer Res. 2014;12:1055–66. https://doi.org/10.1158/1541-7786.MCR-13-0642

    Article  CAS  PubMed  Google Scholar 

  78. Raoof S, Mulford IJ, Frisco-Cabanos H, Nangia V, Timonina D, Labrot E, et al. Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene. 2019;38:6399–413. https://doi.org/10.1038/s41388-019-0887-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liao S, Davoli T, Leng Y, Li MZ, Xu Q, Elledge SJ. A genetic interaction analysis identifies cancer drivers that modify EGFR dependency. Genes Dev. 2017;31:184–96. https://doi.org/10.1101/gad.291948.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Krall EB, Wang B, Munoz DM, Ilic N, Raghavan S, Niederst MJ et al. KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. Elife 2017;6. https://doi.org/10.7554/eLife.18970

  81. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–49. https://doi.org/10.1016/j.redox.2012.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22:66–79. https://doi.org/10.1016/j.ccr.2012.05.016

    Article  CAS  PubMed  Google Scholar 

  83. Baker NM, Der CJ. Cancer: drug for an ‘undruggable’ protein. Nature. 2013;497:577–8. https://doi.org/10.1038/nature12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Srikar R, Suresh D, Zambre A, Taylor K, Chapman S, Leevy M, et al. Targeted nanoconjugate co-delivering siRNA and tyrosine kinase inhibitor to KRAS mutant NSCLC dissociates GAB1-SHP2 post oncogene knockdown. Sci Rep. 2016;6:30245. https://doi.org/10.1038/srep30245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hallin J, Engstrom LD, Hargis L, Calinisan A, Aranda R, Briere DM, et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 2020;10:54–71. https://doi.org/10.1158/2159-8290.CD-19-1167

    Article  CAS  PubMed  Google Scholar 

  86. Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217–23. https://doi.org/10.1038/s41586-019-1694-1

    Article  CAS  PubMed  Google Scholar 

  87. Chan RJ, Feng GS. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood. 2007;109:862–7. https://doi.org/10.1182/blood-2006-07-028829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mainardi S, Mulero-Sanchez A, Prahallad A, Germano G, Bosma A, Krimpenfort P, et al. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat Med. 2018;24:961–7. https://doi.org/10.1038/s41591-018-0023-9

    Article  CAS  PubMed  Google Scholar 

  89. Gavine PR, Wang M, Yu D, Hu E, Huang C, Xia J, et al. Identification and validation of dysregulated MAPK7 (ERK5) as a novel oncogenic target in squamous cell lung and esophageal carcinoma. BMC Cancer. 2015;15:454. https://doi.org/10.1186/s12885-015-1455-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hayashi M, Kim SW, Imanaka-Yoshida K, Yoshida T, Abel ED, Eliceiri B, et al. Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest. 2004;113:1138–48. https://doi.org/10.1172/JCI19890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rovida E, Spinelli E, Sdelci S, Barbetti V, Morandi A, Giuntoli S, et al. ERK5/BMK1 is indispensable for optimal colony-stimulating factor 1 (CSF-1)-induced proliferation in macrophages in a Src-dependent fashion. J Immunol. 2008;180:4166–72. https://doi.org/10.4049/jimmunol.180.6.4166

    Article  CAS  PubMed  Google Scholar 

  92. Dompe N, Klijn C, Watson SA, Leng K, Port J, Cuellar T, et al. A CRISPR screen identifies MAPK7 as a target for combination with MEK inhibition in KRAS mutant NSCLC. PLoS ONE. 2018;13:e0199264. https://doi.org/10.1371/journal.pone.0199264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lanman BA, Allen JR, Allen JG, Amegadzie AK, Ashton KS, Booker SK, et al. Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors. J Med Chem. 2020;63:52–65. https://doi.org/10.1021/acs.jmedchem.9b01180

    Article  CAS  PubMed  Google Scholar 

  94. Hong DS, Kuo J, Sacher AG, Barlesi F, Besse B, Kuboki Y, et al. CodeBreak 100: Phase I study of AMG 510, a novel KRASG12C inhibitor, in patients (pts) with advanced solid tumors other than non-small cell lung cancer (NSCLC) and colorectal cancer (CRC). J Clin Oncol. 2020;38:3511–3511. https://doi.org/10.1200/JCO.2020.38.15_suppl.3511

    Article  Google Scholar 

  95. Wang Y, Li N, Jiang W, Deng W, Ye R, Xu C, et al. Mutant LKB1 confers enhanced radiosensitization in combination with trametinib in KRAS-mutant non-small cell lung cancer. Clin Cancer Res. 2018;24:5744–56. https://doi.org/10.1158/1078-0432.CCR-18-1489

    Article  CAS  PubMed  Google Scholar 

  96. Zhou X, Padanad MS, Evers BM, Smith B, Novaresi N, Suresh S, et al. Modulation of mutant Kras(G12D)-driven lung tumorigenesis in vivo by gain or loss of PCDH7 function. Mol Cancer Res. 2019;17:594–603. https://doi.org/10.1158/1541-7786.MCR-18-0739

    Article  CAS  PubMed  Google Scholar 

  97. Li F, Huang Q, Luster TA, Hu H, Zhang H, Ng WL, et al. In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma. Cancer Disco. 2020;10:270–87. https://doi.org/10.1158/2159-8290.CD-19-0780

    Article  Google Scholar 

  98. Liu B, Song S, Setroikromo R, Chen S, Hu W, Chen D, et al. CX chemokine receptor 7 contributes to survival of KRAS-mutant non-small cell lung cancer upon loss of epidermal growth factor receptor. Cancers (Basel) 2019;11. https://doi.org/10.3390/cancers11040455

  99. Caiola E, Falcetta F, Giordano S, Marabese M, Garassino MC, Broggini M, et al. Co-occurring KRAS mutation/LKB1 loss in non-small cell lung cancer cells results in enhanced metabolic activity susceptible to caloric restriction: an in vitro integrated multilevel approach. J Exp Clin Cancer Res. 2018;37:302. https://doi.org/10.1186/s13046-018-0954-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, et al. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res. 2019;79:3251–67. https://doi.org/10.1158/0008-5472.CAN-18-3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med. 2017;23:1362–8. https://doi.org/10.1038/nm.4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bialk P, Wang Y, Banas K, Kmiec EB. Functional gene knockout of NRF2 increases chemosensitivity of human lung cancer A549 cells in vitro and in a xenograft mouse model. Mol Ther Oncolytics. 2018;11:75–89. https://doi.org/10.1016/j.omto.2018.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tang KJ, Constanzo JD, Venkateswaran N, Melegari M, Ilcheva M, Morales JC, et al. Focal adhesion kinase regulates the DNA damage response and its inhibition radiosensitizes mutant KRAS lung cancer. Clin Cancer Res. 2016;22:5851–63. https://doi.org/10.1158/1078-0432.CCR-15-2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Anderson GR, Winter PS, Lin KH, Nussbaum DP, Cakir M, Stein EM, et al. A landscape of therapeutic cooperativity in KRAS mutant cancers reveals principles for controlling tumor evolution. Cell Rep. 2017;20:999–1015. https://doi.org/10.1016/j.celrep.2017.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mou H, Moore J, Malonia SK, Li Y, Ozata DM, Hough S, et al. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis. Proc Natl Acad Sci USA. 2017;114:3648–53. https://doi.org/10.1073/pnas.1620861114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Timmer T, de Vries EG, de Jong S. Fas receptor-mediated apoptosis: a clinical application. J Pathol. 2002;196:125–34. https://doi.org/10.1002/path.1028

    Article  CAS  PubMed  Google Scholar 

  107. Gulbins E, Coggeshall KM, Brenner B, Schlottmann K, Linderkamp O, Lang F. Fas-induced apoptosis is mediated by activation of a Ras and Rac protein-regulated signaling pathway. J Biol Chem. 1996;271:26389–94. https://doi.org/10.1074/jbc.271.42.26389

    Article  CAS  PubMed  Google Scholar 

  108. Wu Q, Tian Y, Zhang J, Tong X, Huang H, Li S, et al. In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis. Proc Natl Acad Sci USA. 2018;115:E3978–E3986. https://doi.org/10.1073/pnas.1716589115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang C, Lin X, Zhao Z. Applications of CRISPR/Cas9 technology in the treatment of lung cancer. Trends Mol Med. 2019;25:1039–49. https://doi.org/10.1016/j.molmed.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  110. Lee AY, Cho MH, Kim S. Recent advances in aerosol gene delivery systems using non-viral vectors for lung cancer therapy. Expert Opin Drug Deliv. 2019;16:757–72. https://doi.org/10.1080/17425247.2019.1641083

    Article  CAS  PubMed  Google Scholar 

  111. Mari-Alexandre J, Diaz-Lagares A, Villalba M, Juan O, Crujeiras AB, Calvo A, et al. Translating cancer epigenomics into the clinic: focus on lung cancer. Transl Res. 2017;189:76–92. https://doi.org/10.1016/j.trsl.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  112. Zuckermann M, Kawauchi D, Gronych J. Applications of the CRISPR/Cas9 system in murine cancer modeling. Brief Funct Genomics. 2017;16:25–33. https://doi.org/10.1093/bfgp/elw021

    Article  CAS  PubMed  Google Scholar 

  113. Papillon-Cavanagh S, Doshi P, Dobrin R, Szustakowski J, Walsh AM. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort. ESMO Open 2020;5. https://doi.org/10.1136/esmoopen-2020-000706

  114. Bhateja P, Chiu M, Wildey G, Lipka MB, Fu P, Yang MCL, et al. Retinoblastoma mutation predicts poor outcomes in advanced non small cell lung cancer. Cancer Med. 2019;8:1459–66. https://doi.org/10.1002/cam4.2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hollstein PE, Eichner LJ, Brun SN, Kamireddy A, Svensson RU, Vera LI, et al. The AMPK-related kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC. Cancer Disco. 2019;9:1606–27. https://doi.org/10.1158/2159-8290.CD-18-1261

    Article  CAS  Google Scholar 

  116. Li F, Ng WL, Luster TA, Hu H, Sviderskiy VO, Dowling CM, et al. Epigenetic CRISPR screens identify npm1 as a therapeutic vulnerability in non-small cell lung cancer. Cancer Res. 2020;80:3556–67. https://doi.org/10.1158/0008-5472.CAN-19-3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665. https://doi.org/10.1038/s41467-019-09295-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yan H, Chen X, Li Y, Fan L, Tai Y, Zhou Y, et al. MiR-1205 functions as a tumor suppressor by disconnecting the synergy between KRAS and MDM4/E2F1 in non-small cell lung cancer. Am J Cancer Res. 2019;9:312.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Foggetti G, Li C, Cai H, Hellyer JA, Lin W-Y, Ayeni D, et al. Genetic determinants of EGFR-driven lung cancer growth and therapeutic response in vivo. bioRxiv, 2020.2004.2013.036921, https://doi.org/10.1101/2020.04.13.036921 (2020).

  120. Sportoletti P, Grisendi S, Majid SM, Cheng K, Clohessy JG, Viale A, et al. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood. 2008;111:3859–62. https://doi.org/10.1182/blood-2007-06-098251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Maiguel DA, Jones L, Chakravarty D, Yang C, Carrier F. Nucleophosmin sets a threshold for p53 response to UV radiation. Mol Cell Biol. 2004;24:3703–11. https://doi.org/10.1128/mcb.24.9.3703-3711.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gaj T, Perez-Pinera P. The continuously evolving CRISPR barcoding toolbox. Genome Biol. 2018;19:143 https://doi.org/10.1186/s13059-018-1541-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kalhor R, Mali P, Church GM. Rapidly evolving homing CRISPR barcodes. Nat Methods. 2017;14:195–200. https://doi.org/10.1038/nmeth.4108

    Article  CAS  PubMed  Google Scholar 

  124. Wong AS, Choi GC, Cui CH, Pregernig G, Milani P, Adam M, et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc Natl Acad Sci USA. 2016;113:2544–9. https://doi.org/10.1073/pnas.1517883113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Guernet A, Mungamuri SK, Cartier D, Sachidanandam R, Jayaprakash A, Adriouch S, et al. CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. Mol Cell. 2016;63:526–38. https://doi.org/10.1016/j.molcel.2016.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49:1779–84. https://doi.org/10.1038/ng.3984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Han HS, Eom DW, Kim JH, Kim KH, Shin HM, An JY, et al. EGFR mutation status in primary lung adenocarcinomas and corresponding metastatic lesions: discordance in pleural metastases. Clin Lung Cancer. 2011;12:380–6. https://doi.org/10.1016/j.cllc.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  128. Chang YL, Wu CT, Shih JY, Lee YC. Comparison of p53 and epidermal growth factor receptor gene status between primary tumors and lymph node metastases in non-small cell lung cancers. Ann Surg Oncol. 2011;18:543–50. https://doi.org/10.1245/s10434-010-1295-6

    Article  PubMed  Google Scholar 

  129. Marchetti A, Grammastro Del, Felicioni M, Malatesta L, Filice S, Centi G. et al. Assessment of EGFR mutations in circulating tumor cell preparations from NSCLC patients by next generation sequencing: toward a real-time liquid biopsy for treatment. PLoS ONE. 2014;9:e103883. https://doi.org/10.1371/journal.pone.0103883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl J Med. 2008;359:366–77. https://doi.org/10.1056/NEJMoa0800668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. De Luca F, Rotunno G, Salvianti F, Galardi F, Pestrin M, Gabellini S, et al. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. 2016;7:26107–19. https://doi.org/10.18632/oncotarget.8431

    Article  PubMed  PubMed Central  Google Scholar 

  132. Macias M, Alegre E, Diaz-Lagares A, Patino A, Perez-Gracia JL, Sanmamed M, et al. Liquid biopsy: from basic research to clinical practice. Adv Clin Chem. 2018;83:73–119. https://doi.org/10.1016/bs.acc.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  133. Hennigan ST, Trostel SY, Terrigino NT, Voznesensky OS, Schaefer RJ, Whitlock NC, et al. Low abundance of circulating tumor DNA in localized prostate cancer. JCO Precis Oncol. 2019.;3. https://doi.org/10.1200/PO.19.00176

  134. Gu J, Zang W, Liu B, Li L, Huang L, Li S, et al. Evaluation of digital PCR for detecting low-level EGFR mutations in advanced lung adenocarcinoma patients: a cross-platform comparison study. Oncotarget. 2017;8:67810–20. https://doi.org/10.18632/oncotarget.18866

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lee SH, Yu J, Hwang GH, Kim S, Kim HS, Ye S, et al. CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene. 2017;36:6823–9. https://doi.org/10.1038/onc.2017.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tsou JH, Leng Q, Jiang F. A CRISPR test for rapidly and sensitively detecting circulating EGFR mutations. i 2020.;10. https://doi.org/10.3390/diagnostics10020114

  137. Aalipour A, Dudley JC, Park SM, Murty S, Chabon JJ, Boyle EA, et al. Deactivated CRISPR Associated Protein 9 for Minor-Allele Enrichment in Cell-Free DNA. Clin Chem. 2018;64:307–16. https://doi.org/10.1373/clinchem.2017.278911

    Article  CAS  PubMed  Google Scholar 

  138. Kim SM, Shin SC, Kim EE, Kim SH, Park K, Oh SJ, et al. Simple in vivo gene editing via direct self-assembly of Cas9 ribonucleoprotein complexes for cancer treatment. ACS Nano. 2018;12:7750–60. https://doi.org/10.1021/acsnano.8b01670

    Article  CAS  PubMed  Google Scholar 

  139. Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516:423–7. https://doi.org/10.1038/nature13902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55. https://doi.org/10.1016/j.cell.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature. 2014;516:428–31. https://doi.org/10.1038/nature13906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Blasco RB, Karaca E, Ambrogio C, Cheong TC, Karayol E, Minero VG, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 2014;9:1219–27. https://doi.org/10.1016/j.celrep.2014.10.051

    Article  CAS  PubMed  Google Scholar 

  143. Wilbie D, Walther J, Mastrobattista E. Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res. 2019;52:1555–64. https://doi.org/10.1021/acs.accounts.9b00106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mout R, Ray M, Lee YW, Scaletti F, Rotello VM. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem. 2017;28:880–4. https://doi.org/10.1021/acs.bioconjchem.7b00057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. El Achi H, Khoury JD, Loghavi S. Liquid biopsy by next-generation sequencing: a multimodality test for management of cancer. Curr Hematol Malig Rep. 2019;14:358–67. https://doi.org/10.1007/s11899-019-00532-w

    Article  PubMed  Google Scholar 

  146. Nambiar TS, Billon P, Diedenhofen G, Hayward SB, Taglialatela A, Cai K, et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun. 2019;10:3395. https://doi.org/10.1038/s41467-019-11105-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jatin Vimal for his insightful suggestions. We are grateful to Levim Biotech LLP for its support in fostering industry-academia collaborations and furthering fundamental research in the field of genetic engineering.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data, performed extensive literature survey, and provided substantial contribution to the content of this article equally. All authors reviewed and edited the manuscript prior to submission.

Corresponding authors

Correspondence to R. Srikar or Reena Rajkumari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreedurgalakshmi, K., Srikar, R. & Rajkumari, R. CRISPR-Cas deployment in non-small cell lung cancer for target screening, validations, and discoveries. Cancer Gene Ther 28, 566–580 (2021). https://doi.org/10.1038/s41417-020-00256-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00256-7

This article is cited by

Search

Quick links