Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long non-coding RNA FOXD3-AS1 silencing exerts tumor suppressive effects in nasopharyngeal carcinoma by downregulating FOXD3 expression via microRNA-185-3p upregulation

Subjects

Abstract

Emerging evidence indicates that the incidence of nasopharyngeal carcinoma (NPC) remains high in endemic regions despite changing environmental factors, suggesting that genetic traits contribute to its development. Recently, long non-coding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) axis has been reported to be implicated in the pathophysiological processes of malignancies. Moreover, initial bioinformatic analysis revealed a highly expressed lncRNA Forkhead box D3 antisense RNA1 (FOXD3-AS1) for mechanistic network underlying NPC in this present study. Therefore, this study aims to delineate the ability of lncRNA FOXD3-AS1 to influence the NPC progression. The relationship among lncRNA FOXD3-AS1, miR-185-3p, and FOXD3 was identified with bioinformatics prediction, dual-luciferase reporter gene assays, RNA-binding protein immunoprecipitation, and RNA pull-down assays. Furthermore, effects of lncRNA FOXD3-AS1 on malignant phenotypes in vitro, alongside tumor formation in vivo, of transfected NPC stem-like cells were examined with gain- and loss-of-function experiments. Our findings revealed that lncRNA FOXD3-AS1 and FOXD3 exhibited increased expression levels, while miR-185-3p exhibited diminished levels in NPC. The levels of lncRNA FOXD3-AS1 and FOXD3 were further correlated with tumor node metastasis stage and pathological type of patients with NPC. LncRNA FOXD3-AS1 was also confirmed to negatively regulate the miR-185-3p expression, which further targeted the downstream gene FOXD3. In addition, lncRNA FOXD3-AS1 knockdown repressed cell stemness, colony formation, viability, invasion, migration, and in vivo tumor growth, and accelerated cell apoptosis. Moreover, FOXD3 silencing or miR-185-3p overexpression reversed the effects of lncRNA FOXD3-AS1. Our findings provide evidence indicating that lncRNA FOXD3-AS1 could bind to miR-185-3p to upregulate the FOXD3 expression, thereby promoting the development of NPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LncRNA FOXD3-AS1, miR-185-3p, and FOXD3 are predicted to affect NPC.
Fig. 2: LncRNA FOXD3-AS1 expression, FOXD3 mRNA expression, and miR-185-3p expression in NPC tissues and are correlated with TNM stage and pathological type.
Fig. 3: LncRNA FOXD3-AS1 knockdown or upregulation of miR-185-3p inhibits the expression of FOXD3.
Fig. 4: Overexpression of lncRNA FOXD3-AS1 upregulated protein expression of FOXD3 and stemness-related factors (SOX2, ALDH1, OCT4, CD133, and Nanog).
Fig. 5: LncRNA FOXD3-AS1 can bind to miR-185-3p to upregulate FOXD3.
Fig. 6: LncRNA FOXD3-AS1 knockdown and miR-185-3p upregulation suppress colony formation of NPC cells.
Fig. 7: LncRNA FOXD3-AS1 knockdown and miR-185-3p upregulation accelerate NPC cell apoptosis.
Fig. 8: LncRNA FOXD3-AS1 knockdown and miR-185-3p upregulation repress NPC cell invasion and migration.
Fig. 9: FOXD3 silencing reverses the effect of lncRNA FOXD3-AS1 in NPC cells.
Fig. 10: LncRNA FOXD3-AS1 knockdown and miR-185-3p upregulation repress the growth of xenograft tumors of C666-1 cells in nude mice.
Fig. 11: The mechanism graph of the regulatory network and function of lncRNA FOXD3-AS1 in NPC.

Similar content being viewed by others

References

  1. Gong Z, Yang Q, Zeng Z, Zhang W, Li X, Zu X, et al. An integrative transcriptomic analysis reveals p53 regulated miRNA, mRNA, and lncRNA networks in nasopharyngeal carcinoma. Tumour Biol. 2016;37:3683–95.

    Article  CAS  Google Scholar 

  2. Razak AR, Siu LL, Liu FF, Ito E, O’Sullivan B, Chan K. Nasopharyngeal carcinoma: the next challenges. Eur J Cancer. 2010;46:1967–78.

    Article  Google Scholar 

  3. Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet. 2010;42:599–603.

    Article  CAS  Google Scholar 

  4. Su J, Xu XH, Huang Q, Lu MQ, Li DJ, Xue F, et al. Identification of cancer stem-like CD44+ cells in human nasopharyngeal carcinoma cell line. Arch Med Res. 2011;42:15–21.

    Article  CAS  Google Scholar 

  5. Guo Y, Chen JX, Yang S, Fu XP, Zhang Z, Chen KH, et al. Selection of reliable reference genes for gene expression study in nasopharyngeal carcinoma. Acta Pharmacol Sin. 2010;31:1487–94.

    Article  CAS  Google Scholar 

  6. Nie Y, Liu X, Qu S, Song E, Zou H, Gong C. Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci. 2013;104:458–64.

    Article  CAS  Google Scholar 

  7. Feng XP, Yi H, Li MY, Li XH, Yi B, Zhang PF, et al. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. Cancer Res. 2010;70:3450–62.

    Article  CAS  Google Scholar 

  8. Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. J Med Genet. 2015;52:710–8.

    Article  Google Scholar 

  9. Yang X, Song JH, Cheng Y, Wu W, Bhagat T, Yu Y, et al. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut. 2014;63:881–90.

    Article  CAS  Google Scholar 

  10. Wang A, Meng M, Zhao X, Kong L. Long non-coding RNA ENST00462717 suppresses the proliferation, survival, and migration by inhibiting MDM2/MAPK pathway in glioma. Biochem Biophys Res Commun. 2017;485:513–21.

    Article  CAS  Google Scholar 

  11. Sun J, Chen X, Wang Z, Guo M, Shi H, Wang X, et al. A potential prognostic long non-coding RNA signature to predict metastasis-free survival of breast cancer patients. Sci Rep. 2015;5:16553.

    Article  CAS  Google Scholar 

  12. Xie X, Xiong G, Chen W, Fu H, Li M, Cui X. FOXD3 inhibits cell proliferation, migration and invasion in nasopharyngeal carcinoma through regulation of the PI3K/Akt pathway. Biochem Cell Biol 2020;27:1–8.

  13. Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q, et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res. 2011;71:225–33.

    Article  CAS  Google Scholar 

  14. Liu N, Chen NY, Cui RX, Li WF, Li Y, Wei RR, et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol. 2012;13:633–41.

    Article  CAS  Google Scholar 

  15. Li G, Wang Y, Liu Y, Su Z, Liu C, Ren S, et al. miR-185-3p regulates nasopharyngeal carcinoma radioresistance by targeting WNT2B in vitro. Cancer Sci. 2014;105:1560–8.

    Article  CAS  Google Scholar 

  16. Li J, Jiang Z, Han F, Liu S, Yuan X, Tong J. FOXO4 and FOXD3 are predictive of prognosis in gastric carcinoma patients. Oncotarget. 2016;7:25585–92.

    Article  Google Scholar 

  17. Abel EV, Basile KJ, Kugel CH 3rd, Witkiewicz AK, Le K, Amaravadi RK, et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J Clin Invest. 2013;123:2155–68.

    Article  CAS  Google Scholar 

  18. Liu LL, Lu SX, Li M, Li LZ, Fu J, Hu W, et al. FoxD3-regulated microRNA-137 suppresses tumour growth and metastasis in human hepatocellular carcinoma by targeting AKT2. Oncotarget. 2014;5:5113–24.

    Article  Google Scholar 

  19. Fujita A, Sato JR, Rodrigues Lde O, Ferreira CE, Sogayar MC. Evaluating different methods of microarray data normalization. BMC Bioinform. 2006;7:469.

    Article  Google Scholar 

  20. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.

    Article  Google Scholar 

  21. Luo W, Li S, Peng B, Ye Y, Deng X, Yao K. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS ONE. 2013;8:e56324.

    Article  CAS  Google Scholar 

  22. Wei P, Niu M, Pan S, Zhou Y, Shuai C, Wang J, et al. Cancer stem-like cell: a novel target for nasopharyngeal carcinoma therapy. Stem Cell Res Ther. 2014;5:44.

    Article  Google Scholar 

  23. Pellegrino G, Trubert C, Terrien J, Pifferi F, Leroy D, Loyens A, et al. A comparative study of the neural stem cell niche in the adult hypothalamus of human, mouse, rat and gray mouse lemur (Microcebus murinus). J Comp Neurol. 2018;526:1419–43.

    Article  CAS  Google Scholar 

  24. Luo W, Yao K. Molecular characterization and clinical implications of spindle cells in nasopharyngeal carcinoma: a novel molecule-morphology model of tumor progression proposed. PLoS ONE. 2013;8:e83135.

    Article  Google Scholar 

  25. Jia R, Chai P, Wang S, Sun B, Xu Y, Yang Y, et al. m(6)A modification suppresses ocular melanoma through modulating HINT2 mRNA translation. Mol Cancer. 2019;18:161.

    Article  Google Scholar 

  26. Li B, Chen P, Qu J, Shi L, Zhuang W, Fu J, et al. Activation of LTBP3 gene by a long noncoding RNA (lncRNA) MALAT1 transcript in mesenchymal stem cells from multiple myeloma. J Biol Chem. 2014;289:29365–75.

    Article  CAS  Google Scholar 

  27. Lu Y, Li T, Wei G, Liu L, Chen Q, Xu L, et al. The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumour Biol. 2016;37:11733–41.

    Article  CAS  Google Scholar 

  28. Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer. 2014;13:92.

    Article  CAS  Google Scholar 

  29. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25:666–81.

    Article  CAS  Google Scholar 

  30. Yang H, Liu P, Zhang J, Peng X, Lu Z, Yu S, et al. Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene. 2016;35:3647–57.

    Article  CAS  Google Scholar 

  31. Zhang D, Lee H, Haspel JA, Jin Y. Long noncoding RNA FOXD3-AS1 regulates oxidative stress-induced apoptosis via sponging microRNA-150. FASEB J. 2017;31:4472–81.

    Article  CAS  Google Scholar 

  32. Chen ZH, Hu HK, Zhang CR, Lu CY, Bao Y, Cai Z, et al. Down-regulation of long non-coding RNA FOXD3 antisense RNA 1 (FOXD3-AS1) inhibits cell proliferation, migration, and invasion in malignant glioma cells. Am J Transl Res. 2016;8:4106–19.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the helpful suggestions concerning this study received from their colleagues. This work was supported by Key Projects of Natural Science Foundation of Hubei Province in 2015 (No. 2015CFA076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Pan, J., Luo, Z. et al. Long non-coding RNA FOXD3-AS1 silencing exerts tumor suppressive effects in nasopharyngeal carcinoma by downregulating FOXD3 expression via microRNA-185-3p upregulation. Cancer Gene Ther 28, 602–618 (2021). https://doi.org/10.1038/s41417-020-00242-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00242-z

This article is cited by

Search

Quick links