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Abstract
Ovarian cancer is the leading cause of death among women with gynecological cancer, with an overall 5-year survival rate
below 50% due to a lack of specific symptoms, late stage at time of diagnosis and a high rate of recurrence after standard
therapy. A better understanding of heterogeneity, genetic mutations, biological behavior and immunosuppression in the
tumor microenvironment have allowed the development of more effective therapies based on anti-angiogenic treatments,
PARP and immune checkpoint inhibitors, adoptive cell therapies and oncolytic vectors. Oncolytic adenoviruses are
commonly used platforms in cancer gene therapy that selectively replicate in tumor cells and at the same time are able to
stimulate the immune system. In addition, they can be genetically modified to enhance their potency and overcome physical
and immunological barriers. In this review we highlight the challenges of adenovirus-based oncolytic therapies targeting
ovarian cancer and outline recent advances to improve their potential in combination with immunotherapies.

Ovarian cancer

Ovarian cancer is the seventh most common cancer and the
second cause of death among women with gynecological
cancer (after that of the cervix uteri) [1]. Although incidence
rates have declined since the mid-80s and mortality is
falling an average of 2.3% each year [2], an estimated
21,750 new cases of ovarian cancer will be diagnosed in the
US and 13,940 women will die from the disease in 2020.
The overall 5-year survival rate is only 47%, with more than
75% of patients diagnosed with advanced distant-stage
disease (FIGO stage III/IV disease, 5-year survival rate of
29%). For the 15% of patients diagnosed with early loca-
lized disease (FIGO stage I), 5-year survival is 92% [3, 4].
Several factors add to the high morbidity and mortality

rates: late stage at time of diagnosis, a high rate of recur-
rence and hurdles to effective therapy for patients with
advanced-stage disease and for those who relapse. Although
the prognosis in cases detected at an early stage is quite
favorable, organ-confined stage ovarian cancer has no
obvious symptoms, and current methods for ovarian cancer
screening, i.e., transvaginal ultrasonography and detection
of serum cancer antigen (CA125), have demonstrated poor
sensitivity at this stage. Together with the fact that the use
of these screening methods did not show a significant
mortality reduction, there is thus no available screening
routine for the general population at the present time. Novel
approaches based on the detection of specific circulating
tumor DNA and miRNAs are under investigation, but those
methods are not yet capable of detecting asymptomatic
disease [5–7]. Even though chemotherapy is successful at
the time of presentation, around 70% of patients have
recurrence in the first 3 year, and 15% relapse with che-
moresistant disease, that is not curable [8]. Most patients die
from malignant bowel obstruction, which usually affects
multiple sites and cannot be subjected to surgery [9, 10].

Ovarian cancer is not a single disease, but rather a gen-
eral term for a heterogeneous group of neoplasms but with
loco-regional dissemination to the ovary and pelvic organs.
More than 90% of malignant ovarian tumors are epithelial
in origin. Epithelial ovarian cancer (EOC) is further clas-
sified into five subtypes with different cellular origin,
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pathogenesis, molecular alterations, gene expression, and
prognosis [3, 11]. In particular, high-grade serous ovarian
carcinoma (HGSOC) is the most aggressive and most
common type of EOC, accounting for 75% of all deaths
[12]. It originates in both ovarian surface epithelium and
fallopian tube epithelium and typically presents as a large
ovarian mass accompanied by widespread peritoneal
metastasis and presence of ascites [13, 14].

In contrast to most carcinomas, dissemination of ovarian
carcinoma through the vasculature is rare, which explains
its confinement within the abdominal cavity. Ovarian cancer
cells spread by direct extension to adjacent organs, and
exfoliated tumor cells, either as single cells or as spheroids,
freely disseminate throughout the peritoneal cavity by the
peritoneal fluid and preferentially colonize the omentum,
the diaphragm and the mesentery [15, 16]. Metastatic
tumors also seed in other organs of the peritoneum, but only
invade the superficial layers of tissue [17, 18]. In fact, the
exfoliation capability from small masses difficults HGSOC
screening [7]. Two key features of disease progression are
the characteristic anoikis resistance of EOC cells and their
ability to attach to the mesothelial cells covering the peri-
toneal organs [17, 19], a process where matrix metallo-
proteinases (MMP-2) and integrins (α5β1 and αVβ3) are
largely involved [20–22].

Treatment guidelines for EOC have largely been driven
by HGSOC, which is characterized by homologous
recombination deficiency and harbor TP53 mutations, with
lower prevalence but recurrent somatic mutations in
BRCA1, BRCA2, NF1, RB1 and CDK12 [23, 24], even
though it has been demonstrated that response to treatment
varies by gene expression profiles [25, 26].

An overview of the treatment strategies developed for
EOC over the past 30 years [27, 28], from standard che-
motherapy to anti-angiogenic therapy, and the latest incor-
poration of poly (ADP Ribose) polymerase (PARP)
inhibitors and immune checkpoint inhibitors, reveals that,
although at a slower rate compared to other malignancies,
increasing knowledge about genetic mutations and asso-
ciated biological behavior are leading to the incorporation
of the standard of care into the era of targeted therapy
[8, 29]. In this context, gene therapy, and in particular
virotherapy [30], have explored different treatment oppor-
tunities and demonstrated encouraging preclinical results.

Adenovirus-based oncolytic virotherapy

Adenoviruses (Ad), in particular serotypes 2 and 5, are the
most well-described and frequently used platforms for vir-
otherapy applications. Their large packaging capacity,
ability to infect both dividing and non-dividing cells, lack of
integration into the host genome and the mild nature of
illness after infection, are some of the many features that

make them attractive for gene therapy [31–34]. In the
context of cancer gene therapy, first clinical trials employ-
ing replication-incompetent adenoviruses demonstrated
their potential to deliver and express the p53 tumor sup-
pressor gene in ovarian cancer and other malignancies
[35–41]. To overcome the limited efficacy and duration of
transgene expression and at the same time diminish poten-
tial side effects, earlier efforts investigated the use of
oncolytic Ads, which specifically replicate within tumor
cells, ultimately killing them and spreading through the
tumor and, potentially triggering the host’s immune system
[42, 43]. Tumor selectivity is not a natural feature of ade-
noviruses, but advances in the knowledge of Ad biology
and recombinant tools to manipulate their viral genomes
facilitated engineering advanced conditionally replicative
adenoviruses (CRAd) based on two general strategies [44].
One involves the insertion of tumor-specific promoters
(TSP) into the viral genome to drive the expression of E1A
gene, which initiates Ad replication. The other involves
deleting parts of the E1A or E1B genes to prevent repli-
cation in normal cells, but enable replication in tumor cells
with malfunctioning cellular transcriptional machinery.
Relevant modifications involve the deletion of the E1B-55k
gene (dl1520/ Onyx-015) that prevents p53-mediated
apoptosis and the deletion of the Rb protein binding site
on E1A (dl922-947 and AdΔ24) [45, 46], with E1A-
deletion mutants having improved oncolytic efficacy com-
pared to E1B mutants both in vitro and in vivo [47, 48]. In
addition, by taking advance of cell cycle dysregulation,
early generation oncolytic Ads show encouraging results in
combination with standard chemotherapy in advanced and
recurrent resistant disease [49–51].

Preclinical in vivo models that both accurately recapi-
tulate human HGSOC and allow testing of oncolytic Ad
vectors and their immunobiological effects are absent
[52–54]. A focus of the last decade has been the search for
immunocompetent animal models and humanized models
accurately representative of EOC that contribute to decipher
virus/host interactions, as studies to date mostly use human
xenografts in immunodeficient mice. Although ID8 is the
most studied murine syngeneic EOC model and improved
derivatives have been developed [55–57], full replication of
human Ad is limited to certain murine cell lines [58–61].
Syrian hamsters have been reported to support Ad5 repli-
cation [62], but no EOC models are available. Patient-
derived ex vivo tumor cultures of EOC have been used as
an alternative to study Ad immune-modulation [63].

Restricting adenoviral infection through
transductional targeting

The first clinical trials testing Ad virotherapy established
insufficient targeting as one of the main reasons for failure.
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The entry of Ad5 into cells requires binding of the knob
domain of the fiber protein with the high-affinity cox-
sackievirus and adenovirus receptor (CAR) and sub-
sequent interaction between the arginine‐glycine‐aspartic
acid (RGD) sequence of the penton and αvβ3 and αvβ5
integrins [64, 65]. Evidence demonstrated that CAR and
integrins are expressed at low levels in many epithelial
ovarian cancers and those levels are inversely related to
tumor grade [66–68]. To circumvent CAR-dependent cell
entry and improve tumor selectivity, Ad5 fiber has been
modified by inserting peptide ligands selective for tumor-
associated receptors in EOC cells [69]. It was demon-
strated that the addition of an RGD motif or a polylysine
(pk7) motif into the knob increases Ad5 binding to
integrins or heparan sulfate proteoglycans (HSPGs),
respectively, achieving improved level of gene transfer
into EOC cell lines and primary tumors that were resistant
to Ad5 infection, without affecting fiber function [70–72].
Combining an RGD motif in both the fiber and the capsid
protein IX showed greater oncolytic activity in vitro, but
no benefit in vivo [73]. Of particular relevance is Ad5-
Δ24RGD, which yielded positive results in vitro, complete
eradication of intraperitoneal disease in a xenograft mouse
model and promise in a phase I clinical trial of recurrent
HGSOC [74–76]. Uusi-Kerttula et al showed moderate to
up to 950-fold higher efficiency in the presence of neu-
tralizing ovarian ascites when incorporating targeting
peptides into the HI loop to either αvβ6 integrin (A20)
[77] or epidermal growth factor (EGFR) (GE11) [78], both
overexpressed in 30% EOC and suggested a correlation
with disease progression.

Another strategy to improve adenoviral tropism via a
CAR-independent pathway consists on replacing the
knob of Ad5 (subgroup C) with alternative serotypes,
mainly from species B and species D [79]. Chimeric Ad5/
3 vector, which uses predominantly desmoglein-2
(DSG2) receptor but also CD46 receptor [80, 81], was
confirmed to achieved higher infectivity in EOC cells and
subcutaneous tumor xenograft after intratumoral injection
than Ad5 and also the RGD variant, with a similar bio-
distribution profile [82, 83]. Moreover, Ad5/3-Δ24
demonstrated greater oncolytic effect compared to Ad5-
Δ24RGD in cell lines, clinical tumor samples and in a
intraperitoneal xenograft murine model [84, 85], showing
a good safety profile and potential in a phase I clinical
trial [86]. In order to achieve higher transduction effi-
ciency by using CD46, Hulin-Curtis et al pseudotyped
Ad5 with the fiber of Ad35 [87, 88] and was able to
achieve higher transduction efficiency in EOC cells.
Similar to Ad5-A20, a chimeric Ad5/48-A20 vector based
on the low seroprevalent Ad48 was able to target primary
ex vivo cultures in the presence of neutralizing ovarian
ascites [77].

Restricting adenoviral replication

In order to limit Ad replication to the target tissue, tran-
scription of adenoviral genes, generally E1, can be con-
trolled by TSPs. Early modifications include the
cyclooxygenase-2 (cox-2) promoter, the secretory leuko-
cyte protease inhibitor (SLPI) promoter and the vascular
endothelial growth factor (VEGF) promoter. While
Ad5RGD-Cox-2-Δ24 caused less toxicity to nonmalignant
cells, VEGF tumor‐specific promoter showed greater
replication and no significant differences in vivo compared
to Ad5-Δ24RGD [89–91]. Similarly, Ad5/3-SLPI showed
efficient viral replication and oncolysis and significantly
decreased liver toxicity compared to Ad5/3Cox-2 or Ad5/
3wt, although no increased survival [92]. An Ad5 vector
bearing the human telomerase reverse transcriptase
(hTERT) promoter together with an Ad5/3 vector bearing
the multidrug resistance gene 1 (MDR1) promoter were
found to significantly enhance survival in combination with
chemotherapy in cisplatin-resistant xenograft models with
peritoneal dissemination [93, 94]. Several groups have
validated the utility of the chemokine CXCR4 receptor as
well as the Survivin promoter and the Mesothelin promoter
to increase selectivity, improve oncolysis and decrease liver
uptake in murine xenograft EOC models when included into
Ad5/3 and Ad5-RGD vectors [95–98]. Increasing evidence
indicates the important role of various types of stromal cells
in TME in supporting tumor progression and highlight them
as attractive targets [99, 100]. In this context, Lopez et al
described a stroma-targeted CRAd pseudotyped with chi-
meric fiber 5/3 including a SPARC promoter fragment that
was effective in the remission of disseminated HGSOC in
nude mice and was able to replicate in fresh tumor explants
[101]. In the same way, Long et al developed an adenovirus
system based on Cre/LoxP and a CD133 promoter to target
CD133+ ovarian cancer stem cells, which contribute to
recurrence and chemoresistance, to increase apoptosis and
suppress tumor growth [102].

Increasing potency of CRAds

Because CRAds are often unable to eliminate entire tumors
by viral replication alone, they have been armed with sui-
cide genes, transgenes that target the TME and immuno-
modulatory molecules to potentiate anti-tumor efficacy
[103, 104]. It must be taken into consideration that the Ad
genome has limited space and can accommodate up to
105% of the wildtype genome length without compromising
viral assembly. In addition, the insert gene should be placed
in a location that yields ideal expression and allows normal
replication. The most extensively used transgenes for
boosting cell killing are “suicide genes” that encode
prodrug-converting enzymes and promote a “bystander
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effect”, by which the cytotoxic metabolites generated dif-
fusing into neighboring cells are also killed. In EOC, results
reported when using the herpes simplex virus thymidine
kinase/gancyclovir (HSV-TK/GCV) suggest that, although
Ad5 and Ad5/3 vectors with E1A or E1B deletions con-
taining the TK transgene were able to suppress tumor
growth in subcutaneous and intraperitoneal xenograft tumor
models, the addition of ganciclovir was effective only when
the oncolytic potential of the CRAds was low [105–107].
The cytosine deaminase/5-fluorocytosine (CD/5FC) system
included into an Ad vector reported promising results
against EOC cells [108, 109]. Other groups included a
manganese superoxide dismutase (MnSO) transgene or a
reverse activator of transcription-3 (STAT3) cDNA to
enhance drug sensitivity in cisplatin-resistant HGSOC cells
[110, 111].

The TME also consists of non-cellular components such
as the extracellular matrix (ECM), ECM remodeling
enzymes and growth factors, whose complex structure can
act as a physical barrier that limits CRAds efficacy
[112, 113]. In order to facilitate viral spread, Yang et al
incorporated the tissue inhibitor of metalloproteinase 2
(TIMP2) gene into Ad5/3-CXCR4 to target angiogenesis
and tumor invasion and demonstrated more efficient and
specific replication and oncolysis in a HGSOC ex vivo
model compared to unarmed CRAds [114].

To enhance the activity of the immune system against the
tumor, cytokines or chemokines can be locally expressed by
oncolytic Ads, maximizing the anti-tumor effect against the
primary tumor and potentially the metastasis and minimiz-
ing systemic toxicity. Construction of Ad5/3Δ24 containing
either IL-24 or ING4 revealed interference in CRAd pro-
pagation from ING4 expression but significantly enhanced
oncolytic potency of CRAd-IL4 in vitro as compared to
non-armed CRAd and CRAd-ING4 [115], although no
improvements were seen in a subcutaneous xenograft
murine model [61]. Different studies have sought to
increase oncolytic activity and reduce acute immune sti-
mulation during CRAd therapy by blocking the expression
of TNF-α, β3 integrin or IL-8 [116–118], but this poten-
tially limits the adaptive anti-tumor immune response
[43, 119, 120]. Because T cells are not only generated
against tumor cells but are also able to initiate a strong anti-
viral response, CRAd design and route of injection will
influence the balance towards an anti-viral or anti-tumor
response. While no differences in anti-tumor efficacy were
seen between Ad5/3-E2F-Δ24 and Ad5/3-E2F-Δ24-
hTNFα-IRES-hIL2 in an immunocompromised model, the
expression of the cytokines enhanced T cell recruitment and
activation in an ex vivo EOC model and an immuno-
competent model, demonstrating resistance to tumor
recurrence [63, 121, 122]. Two oncolytic Ads based on
Ad5Δ24 and Ad5/3Δ24 armed with granulocyte-

macrophage colony stimulating factor (GMCSF) were
capable of inducing both tumor- and virus-specific immu-
nity, were well tolerated and demonstrated clinical benefits
in some patients with refractory advanced solid tumors. In
particular, administration of ONCOS-102 (Ad5/3Δ24-
GMCSF) showed induction of strong tumor-specific CD8+
T cells in tumors and systemically [123–126].

Overcoming physical barriers to dissemination of
oncolytic adenoviruses

While the intraperitoneal confinement of HGSOC allows for
localized delivery of CRAds and potentially bypass many
restrictions associated with intravenous delivery and reduce
toxicity [127, 128], this route can suffer from rapid Ad
clearance and poor distribution if the cavity becomes
loculated (Fig. 1). Ascites, a complex heterogeneous mix-
ture consisting mainly of tumor cells, mesothelial cells,
fibroblasts, immune cells, cytokines and growth factors,
accumulate due to increased permeability of afferent vessels
of the peritoneal lining and reduced lymphatic flow. In
addition, high-volume ascites are likely to result in tumors
with poor vascular delivery [129–131]. More importantly,
neutralizing antibodies against Ad5 have been found in
serum from healthy patients and in the ascites of HGSOC
patients [132–134]. Additionally, host Ad sensing
mechanisms activate proinflammatory signaling and pro-
mote long-term local inflammation and adhesion formation
after intraperitoneal delivery [135].

The interactions impacting Ad biodistribution upon
intravascular delivery have been widely described. Reasons
for the low efficacy of Ad5-derived vectors include clear-
ance after opsonization by natural antibodies and comple-
ment, as well as sequestration in the liver and spleen
mediated by binding with human coagulation factor 10 (FX)
and other coagulation factors to HSPG abundant on hepa-
tocytes or scavenger receptors on Kupffer cells [136–138].
Since a small portion of the Ad particles injected ip are able
to enter the circulation, Ad vectors administered through
this route are susceptible to clearance after interacting with
blood components and residential macrophages in tissue
and in the peritoneal cavity [83, 139]. It was first shown that
modifications of the fiber partially ablate neutralization of
the virus [77, 78, 84, 140], and later, that additional pseu-
dotyping of the hexon or the ablation of FX binding sites in
the hexon decreases liver sequestration, toxicity and vector-
immune system interactions in both ip and iv approaches
[88, 141, 142]. Recently, Uusi-Kerttula et al combined tri-
ple detargeting through mutations on the fiber that block
binding to CAR, the penton to block binding to αvβ3/5
integrins, and the hexon for FX binding, with insertion of
the A20 peptide into the HI loop [143]. Ad5NULL-A20
CRAd demonstrated high tumor selectivity, significant
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reduction in off-target uptake and tumor-free survival in an
EOC xenograft model compared to either Ad5Δ24 or
Ad5Δ24.A20. In the context of Ad serotypes, Thoma et al
observed that, while Ad5 induces long-term damage by
promoting acute liver pathology, enlargement of the spleen
and formation of severe adhesions, intraperitoneal injection
of Ad11 only caused short-term mild inflammation due to
macrophages controlling disproportionate inflammatory
responses [135]. Based on the results obtained with Ena-
denotucirev (ColoAd1, chimeric Ad3/Ad11p) in colon
cancer, two potent chimeric ColoAd1/Ad3 recombinant
CRAds were isolated by directed evolution against
platinum-resistant HGSOC that demonstrated potent and
tumor selective activity in vitro and in vivo and absence of
peritoneal adhesions [144]. Moreover, Enadenotucirev is
currently being evaluated in a phase 1/2 trial either alone or
with paclitaxel.

Another approach shields the Ad from the immune sys-
tem by chemically and physically modifying the capsid with
polymers and liposomes [145–147]. Since the modifications
are not carried into the Ad progeny, coating the vector
might be more interesting when several administrations are
required. Administration of a PEGylated liposome-
encapsulated Ad expressing human endostatin or com-
plexed with multiple layers of polyethylenimine (PEI) and
hyaluronic acid (HA) increased survival and demonstrated
better protective activity from host immune clearance
[148, 149]. In addition to ablating Ad tropism, coating the
vector can increase tumor retention by passive targeting and
retargeting to alternative receptors. Lanciotti et al showed
five-fold increase in the tumor and 10 times reduction in the
liver and spleen of an Ad coated with PEG (poly-
ethyleneglycol) functionalized with Fibroblast Growth
Factor 2 (FGF2), along with less antibody neutralization

and T cell responses [150]. Morrison et al were able to
protect the vector from neutralizing antibodies and
demonstrated significantly lower tumor load and absence of
inflammatory toxicities by coating Ad5 with poly (hydro-
xypropyl methacrylamide (pHPMA) and retargeting to
EGFR with EGF or cetuximab [151, 152]. Thanks to their
natural tumor tropism and immunomodulatory properties,
mesenchymal stem cells (MSCs) of different origins have
been used as carriers of oncolytic Ads [153–155], increas-
ing targeted delivery and reducing the hepatic uptake and
systemic toxicity seen in clinical trials of vectors such as
Ad5-Δ24RGD [156]. Menstrual blood MSCs (MenSCs)
were successfully used to deliver an Ad5/3Δ24 CRAd with
microenvironment-responsive elements and the SPARC
promoter without being blocked by antibodies present in the
ascites, which also contain soluble factors that can serve as
transcriptional enhancers [157]. Mooney et al showed that
neural stem cells (NSC) carrying an oncolytic Ad bearing
the survivin promoter and polylysine peptide into the fiber
(CRAd-S-pk7) were able to selectively penetrate HGSOC
tumor metastases, allowing replication of the virus, and
synergistically reduce tumor growth in combination with
cisplatin [158].

Overcoming immunosuppression

Despite the success of immunotherapy in other malig-
nancies, such as melanoma or lung cancer, and the pro-
mising results seen in preclinical models, results obtained
with immune checkpoint inhibitors, cancer vaccines or
adoptive cell transfer (ACT) in EOC have not been that
positive [9, 28, 159]. It has been demonstrated that the
mutational profile defines immunogenicity, meaning that
HGSOC tumors with disrupt DNA repair mechanisms result

Fig. 1 Barriers to Ad vector
delivery. Intraperitoneal
administration of Ads into the
complex biological environment
of the peritoneal cavity can limit
tumor transduction, favor
heterogeneous distribution, rapid
Ad aggregation and clearance
and cytotoxicity. Genetic,
chemical and physical
modifications can be
implemented to overcome these
barriers, decrease detargeting
and increase specific infection of
EOC cells. L: liver, O:
omentum, M: mesentery, T:
tumor, ip: intraperitoneal, DC:
dendritic cells, NK: natural
killers.
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in higher mutational burden and neoantigen presence, which
in turn increases CD3+ and CD8+ TILs, PD-1/PD-L1
expression, susceptibility to immune checkpoint therapy
and survival. However, only a small percentage of muta-
tions are recognized by autologous tumor-associated
T cells, and tumor heterogeneity can limit expression of
neoantigens to a small proportion of tumor cells. Although
EOC express known, non-mutated tumor-associated anti-
gens (TAAs), poor immunogenicity prevents appropriate
TAA-mediated tumor rejection [160, 161]. In addition, the
TME in EOC is particularly immunosuppressive, not only
in primary tumors but also in the ascites and in the omen-
tum. While the omentum is a complex immunologic organ
that actively and passively entraps EOC cells in its highly
vascularized immunologic units known as milky spots,
tumor-associated macrophages (TAMs), regulatory T cells
(Treg) and myeloid derived suppressor cells (MDSCs),
together with other components such as EOC-derived exo-
somes, cancer-associated fibroblasts (CAFs) and adipo-
cytes, are involved in impairing both the presence and the
activity of effector T cells, neutrophils and natural killer
(NK) cells, and disease progression [162–165].

In order to generate a significant anti-tumor immune
response, different combination strategies are under inves-
tigation based on priming T cell responses, inducing
immunogenic cell death and targeting checkpoint inhibitors
(PD1/PD-L1 and CTLA-4/CD80/CD86 pathways) respon-
sible for T cell anergy and/or exhaustion [166, 167],

depending on EOC immune status. In this context, oncolytic
Ads represent a powerful tool to generate immunologically
hot tumors, since by replicating and killing tumor cells,
pathogen and danger associated molecular patterns (PAMPs
and DAMPs), TAAs and tumor neoantigens are released,
stimulating the immunomodulation of the TME, TIL
recruitment, priming dendritic cells and tumor-specific
T-cell responses and potentially generating memory
responses [42, 168]. Different regimens of administration
are being tested combining oncolytic Ads and CAR T
therapy, adoptive TIL transfer and immune-checkpoint
inhibitors to boost the anti-tumor activity [169] (Fig. 2).

In order to combine direct Ad-mediated cytotoxicity,
stimulation of a proinflammatory TME and activation of
endogenous T cells to kill EOC cells or CAFs, Enadeno-
tucirev has been modified to express a bispecific T‐cell
engager (BiTE) against epithelial cell adhesion molecule
(EpCAM) [170] or fibroblast activation protein (FAP)
[171], respectively, successfully reversing TME-mediated
immunosuppression in ex vivo malignant ascites. Santos
et al demonstrated that an Ad5/3-Δ24 expressing TNFα and
IL2 under the control of the E2F promoter was able to
reduce the suppressive cytokines and increase activation of
CD4+ and CD8+ TILs in ex vivo tumor cultures inde-
pendently of PD-L1 tumor expression, although at a lower
level compared to other malignancies, highlighting the
immunosuppressive TME in EOC [63, 172]. Huang et al
confirmed that an oncolytic Ad5/35 armed with a SIRPα-Fc

Fig. 2 Oncolytic Ads help overcoming immunosuppression and
boosting anti-tumor immunity in EOC. Oncolytic Ads are geneti-
cally modified with tissue-specific promoters (TSP) and mutations on
E1A to specifically replicate in and kill tumor cells. At the end of the
lytic cycle, viral progeny spreads throughout the tumor, infecting and
lysing surrounding cancer cells, facilitating the release of pathogen and
danger associated molecular patterns (PAMPs and DAMPs) and tumor
antigens (neoantigens and tumor associated antigens), together with
the amplification of the expression of therapeutic transgenes in the

tumor microenvironment. Oncolytic Ads promote strong antiviral
innate responses and prime adaptive immune responses, facilitating the
recruitment of effector cells, overcoming immunosuppression, and
oncolytic Ads can be used in combination with immunotherapy
approaches to prevent T cell exhaustion, successfully generating anti-
tumor immunity. ECM: extracellular matrix, DC: dendritic cells,
TAM: tumor-associated macrophages, Treg: regulatory T cells,
MDSC: myeloid derived suppressor cells, NK: natural killers, ICI:
immune checkpoint inhibitors, ACT: adoptive cell therapies.
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(signal regulatory protein α) fusion gene expressed on
macrophages demonstrated anti-tumor effect on a CD47-
positive SKOV3 xenograft model in the presence of
immune population, indicating that CD47 blockade (‘don’t-
eat-me’ signal for immune evasion) [173] successfully
increased NK cells infiltration and macrophage mediated
phagocytosis [174]. Instead of using antigen-dependent
approaches, adoptive immunotherapy can be based on
antigen-independent strategies, such as NK cells. Because
NK cells in the TME are less cytotoxic and have an
exhausted phenotype, different methods are being explored
to potentiate their killing capacity [175]. Leung et al
recently demonstrated that dl922-947- and Enadenotucirev-
infected EOC cells were able to activate human NK cells
and augment their cytotoxicity in vitro in a contact-
dependent manner through different pathways [176]. Fur-
thermore, the combination with TIGIT blockade, an inhi-
bitory NK receptor associated with T cell exhaustion
phenotypes [177], increased NK cytotoxicity. Considering
that current prevention methods are limited for high-risk
women with germline mutations, Li et al developed a
method to genetically modify hematopoietic stem/pro-
genitor cells (HSPC) in vivo based on an integrating Ad5/35
+ + vector expressing α-PD-L1-γ1 under the control of a
miRNA regulation system that is activated only when
HSPCs are recruited to and differentiated by the tumor into
tumor-supporting cells [178]. They stablished a feasible
in situ transduction strategy and demonstrated that intratu-
moral expression of α-PD-L1-γ1 early during tumor
development successfully reduced primary tumor growth
and prevention of recurrence.

Summary and future directions

In recent years, knowledge gained in terms of biology of both
oncolytic Ads and EOC has enabled the development of
more selective and potent CRAds (Table 1) able to overcome
obstacles encountered in clinical trials (Table 2). While
oncolytic Ads are promising tools, as they are able to kill
tumor cells and stimulate an adaptive anti-tumor immune
response, EOC is highly complex and its immunosuppressive
microenvironment and heterogeneity among primary and
metastatic tumors and ascites impairs Ad efficiency as single
approach therapy. In order to create a more favorable TME,
oncolytic Ads are the perfect match for combination with
other emerging targeted strategies, such as immune check-
point inhibitors or CAR-T cells. New advances should focus
on finding the perfect balance between Ad replication and
stimulation of the immune responses and improving regi-
mens of administration, identification of novel unique ligands
that can be efficiently targeted by incorporating single-
domain antibodies (sdAbs) and fully understanding host-
virus interactions in complex preclinical models.
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