Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LINC00671 suppresses cell proliferation and metastasis in pancreatic cancer by inhibiting AKT and ERK signaling pathway

Abstract

Long noncoding RNAs (lncRNAs) represent an emerging field of tumor biology, playing essential roles in cancer cell proliferation, invasion, and metastasis. However, the overall functional and clinical significance of most lncRNAs in pancreatic cancer is not thoroughly understood. Here, we described most of the lncRNAs with aberrant expression patterns in pancreatic cancer as detected by microarray. Quantitative real-time polymerase chain reaction further verified that the expression of LINC00671 was decreased in pancreatic cancer cell lines and patient samples. Furthermore, lower LINC00671 expression was associated with reduced tumor differentiation, aggressiveness, and poor prognosis. Functionally, LINC00671 overexpression inhibited pancreatic cancer cell proliferation, invasion, and migration in vitro, and reduced tumor growth in vivo. LINC00671 is mainly located in the cytoplasm. RNA sequencing and bioinformatics analyses indicated that LINC00671 binds to multiple miRNAs and therefore could be involved in multiple tumor-associated pathways, such as the AMPK signaling pathway and PI3K-Akt signaling pathway. Western blotting and immunohistochemistry further confirmed that LINC00671 overexpression suppressed the AKT, ERK, and epithelial-mesenchymal transition pathways. Overall, these results indicated that LINC00671 acts as a novel tumor suppressor in pancreatic cancer. Our findings may provide a new potential target for the treatment of pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptomic landscape of pancreatic cancer.
Fig. 2: The general overview of LINC00671 in the database.
Fig. 3: LINC00671 was downregulated in pancreatic cancer and associated with poor prognosis.
Fig. 4: Overexpression of LINC00671 inhibited pancreatic cancer cell proliferation, colony formation, migration, and invasion.
Fig. 5: Overexpression of LINC00671 inhibited tumor growth of pancreatic cancer xenografts in vivo.
Fig. 6: The cellular localization, distribution, and ceRNA network of LINC00671.
Fig. 7: Overexpression of LINC00671 suppressed pancreatic cancer development by regulating EMT, AKT, and ERK pathways.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    PubMed  Google Scholar 

  2. Lai E, Puzzoni M, Ziranu P, Pretta A, Impera V, Mariani S, et al. New therapeutic targets in pancreatic cancer. Cancer Treat Rev. 2019;81:101926.

    CAS  PubMed  Google Scholar 

  3. Zhou W, Chen L, Li C, Huang R, Guo M, Ning S, et al. The multifaceted roles of long noncoding RNAs in pancreatic cancer: an update on what we know. Cancer Cell Int. 2020;20:41.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang Y, Cheung BB, Atmadibrata B, Marshall GM, Dinger ME, Liu PY, et al. The regulatory role of long noncoding RNAs in cancer. Cancer Lett. 2017;391:12–19.

    CAS  PubMed  Google Scholar 

  5. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.

    CAS  PubMed  Google Scholar 

  6. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29:452–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77:3965–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. Emerging roles of long non-coding RNA in cancer. Cancer Sci. 2018;109:2093–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun J, Zhang Z, Bao S, Yan C, Hou P, Wu N, et al. Identification of tumor immune infiltration-associated lncRNAs for improving prognosis and immunotherapy response of patients with non-small cell lung cancer. J Immunother Cancer. 2020;8:e000110.

    PubMed  PubMed Central  Google Scholar 

  10. Yang H, Liu P, Zhang J, Peng X, Lu Z, Yu S, et al. Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene. 2016;35:3647–57.

    CAS  PubMed  Google Scholar 

  11. Li H, Wang X, Wen C, Huo Z, Wang W, Zhan Q, et al. Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer. Mol Cancer. 2017;16:169.

    PubMed  PubMed Central  Google Scholar 

  12. Pellecchia S, Sepe R, Decaussin-Petrucci M, Ivan C, Shimizu M, Coppola C, et al. The long non-coding RNA Prader Willi/Angelman region RNA5 (PAR5) is downregulated in anaplastic thyroid carcinomas where it acts as a tumor suppressor by reducing EZH2 activity. Cancers. 2020;12:235.

    CAS  PubMed Central  Google Scholar 

  13. Huang X, Zhi X, Gao Y, Ta N, Jiang H, Zheng J. LncRNAs in pancreatic cancer. Oncotarget. 2016;7:57379–90.

    PubMed  PubMed Central  Google Scholar 

  14. Lv Y, Huang S. Role of non-coding RNA in pancreatic cancer. Oncol Lett. 2019;18:3963–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Han T, Hu H, Zhuo M, Wang L, Cui JJ, Jiao F, et al. Long non-coding RNA: an emerging paradigm of pancreatic cancer. Curr Mol Med. 2016;16:702–9.

    CAS  PubMed  Google Scholar 

  16. Wang G, Sheng W, Shi X, Li X, Zhou J, Dong M. Serine/arginine protein-specific kinase 2 promotes the development and progression of pancreatic cancer by downregulating Numb and p53. FEBS J. 2019;286:1668–82.

    CAS  PubMed  Google Scholar 

  17. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22:851–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClendon J, et al. A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell. 2017;32:460–73 e466.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chan JJ, Tay Y. Noncoding RNA:RNA regulatory networks in cancer. Int J Mol Sci. 2018;19:1310.

    PubMed Central  Google Scholar 

  20. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17:272–83.

    CAS  PubMed  Google Scholar 

  21. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747–57.

    CAS  PubMed  Google Scholar 

  22. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–26.

    CAS  PubMed  Google Scholar 

  23. Saitoh M. Involvement of partial EMT in cancer progression. J Biochem. 2018;164:257–64.

    CAS  PubMed  Google Scholar 

  24. Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell. 2019;49:361–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tyagi N, Bhardwaj A, Singh AP, McClellan S, Carter JE, Singh S. p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-kappaB pathway. Oncotarget. 2014;5:8778–89.

    PubMed  PubMed Central  Google Scholar 

  26. Sun Y, Li S, Yang L, Zhang D, Zhao Z, Gao J, et al. CDC25A facilitates chemo-resistance in ovarian cancer multicellular spheroids by promoting E-cadherin expression and arresting cell cycles. J Cancer. 2019;10:2874–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang X, Qi M, Wu R, Liu A, Chen D, Tang L, et al. Long non-coding RNA CUDR promotes malignant phenotypes in pancreatic ductal adenocarcinoma via activating AKT and ERK signaling pathways. Int J Oncol. 2018;53:2671–82.

    CAS  PubMed  Google Scholar 

  28. Li J, Ji X, Wang H. Targeting long noncoding RNA HMMR-AS1 suppresses and radiosensitizes glioblastoma. Neoplasia. 2018;20:456–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Ding X, Hu H, He Y, Lu Z, Wu P, et al. Long non-coding RNA lnc-PCTST predicts prognosis through inhibiting progression of pancreatic cancer by downregulation of TACC-3. Int J Cancer. 2018;143:3143–54.

    CAS  PubMed  Google Scholar 

  30. Deng SJ, Chen HY, Ye Z, Deng SC, Zhu S, Zeng Z, et al. Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene. 2018;37:5811–28.

    CAS  PubMed  Google Scholar 

  31. Li N, Yang G, Luo L, Ling L, Wang X, Shi L, et al. lncRNA THAP9-AS1 promotes pancreatic ductal adenocarcinoma growth and leads to a poor clinical outcome via sponging miR-484 and interacting with YAP. Clin Cancer Res. 2020;26:1736–48.

    PubMed  Google Scholar 

  32. Zhang B, Li C, Sun Z. Long non-coding RNA LINC00346, LINC00578, LINC00673, LINC00671, LINC00261, and SNHG9 are novel prognostic markers for pancreatic cancer. Am J Transl Res. 2018;10:2648–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohuchida K, Mizumoto K, Lin C, Yamaguchi H, Ohtsuka T, Sato N, et al. MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann Surg Oncol. 2012;19:2394–402.

    PubMed  Google Scholar 

  34. Huang S, Guo H, Cao Y, Xiong J. MiR-708-5p inhibits the progression of pancreatic ductal adenocarcinoma by targeting Sirt3. Pathol Res Pract. 2019;215:794–800.

    CAS  PubMed  Google Scholar 

  35. Sadeghi H, Golalipour M, Yamchi A, Farazmandfar T, Shahbazi M. CDC25A pathway toward tumorigenesis: molecular targets of CDC25A in cell-cycle regulation. J Cell Biochem. 2019;120:2919–28.

    CAS  PubMed  Google Scholar 

  36. Shen T, Huang S. The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anticancer Agents Med Chem. 2012;12:631–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li CY, Wang Q, Wang XM, Li GX, Shen S, Wei XL. Gambogic acid exhibits anti-metastatic activity on malignant melanoma mainly through inhibition of PI3K/Akt and ERK signaling pathways. Eur J Pharmacol. 2019;864:172719.

    CAS  PubMed  Google Scholar 

  38. Xie S, Yu X, Li Y, Ma H, Fan S, Chen W, et al. Upregulation of lncRNA ADAMTS9-AS2 promotes salivary adenoid cystic carcinoma metastasis via PI3K/Akt and MEK/Erk signaling. Mol Ther. 2018;26:2766–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Lv QL, Huang YT, Zhang LH, Zhou HH. Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2 promotes progression of human glioma. J Exp Clin Cancer Res. 2017;36:105.

    PubMed  PubMed Central  Google Scholar 

  40. Lin ZH, Wang L, Zhang JB, Liu Y, Li XQ, Guo L, et al. MST4 promotes hepatocellular carcinoma epithelial-mesenchymal transition and metastasis via activation of the p-ERK pathway. Int J Oncol. 2014;45:629–40.

    CAS  PubMed  Google Scholar 

  41. Yang K, Li Y, Lian G, Lin H, Shang C, Zeng L, et al. KRAS promotes tumor metastasis and chemoresistance by repressing RKIP via the MAPK-ERK pathway in pancreatic cancer. Int J Cancer. 2018;142:2323–34.

    CAS  PubMed  Google Scholar 

  42. Sheng W, Shi X, Lin Y, Tang J, Jia C, Cao R, et al. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. J Exp Clin Cancer Res. 2020;39:16.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sheng W, Chen C, Dong M, Wang G, Zhou J, Song H, et al. Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via Integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis. 2017;8:e3147.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19:1997–2007.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Kun Liu and Huimin Wang (Department of Hepatobiliary Surgery of Xijing Hospital) for collecting the tissue samples and the follow-up information

Funding

This study was funded by the National Natural Science Foundation of China (grant numbers 81672339, 81874051, and 81900571).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengcai Liu or Haimin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, S., Niu, K., Wang, J. et al. LINC00671 suppresses cell proliferation and metastasis in pancreatic cancer by inhibiting AKT and ERK signaling pathway. Cancer Gene Ther 28, 221–233 (2021). https://doi.org/10.1038/s41417-020-00213-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00213-4

This article is cited by

Search

Quick links