Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of DNA methylation machinery by epi-miRNAs in human cancer: emerging new targets in cancer therapy

Abstract

Disruption in DNA methylation processes can lead to alteration in gene expression and function that would ultimately result in malignant transformation. In this way, studies have shown that, in cancers, methylation-associated silencing inactivates tumor suppressor genes, as effectively as mutations. DNA methylation machinery is composed of several genes, including those with DNA methyltransferases activity, proteins that bind to methylated cytosine in the promoter region, and enzymes with demethylase activity. Based on a prominent body of evidence, DNA methylation machinery could be regulated by microRNAs (miRNAs) called epi-miRNAs. Numerous studies demonstrated that dysregulation in DNA methylation regulators like upstream epi-miRNAs is indispensable for carcinogenesis; consequently, the malignant capacity of these cells could be reversed by restoring of this regulatory system in cancer. Conceivably, recognition of these epi-miRNAs in cancer cells could not only reveal novel molecular entities in carcinogenesis, but also render promising targets for cancer therapy. In this review, at first, we have an overview of the methylation alteration in cancers, and the effect of this phenomenon in miRNAs expression and after that, we conduct an in-depth discussion about the regulation of DNA methylation regulators by epi-miRNAs in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Restoration of epi-miRNAs expression might lead to the upregulation of tumor suppressor genes and finally inhibit the malignant capacity of tumor cells, including suppression of cell proliferation, invasion, and migration, and also induction of cell apoptosis and sensitivity to chemotherapy.

Similar content being viewed by others

References

  1. Shen L, Shi Q, Wang W. Double agents: genes with both oncogenic and tumor-suppressor functions. Oncogenesis. 2018;7:25.

  2. Choi JD, Lee J-S. Interplay between epigenetics and genetics in cancer. Genomics Inform. 2013;11:164.

    PubMed  PubMed Central  Google Scholar 

  3. Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol. 2007;1:26–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81:303–11.

    CAS  PubMed  Google Scholar 

  5. Ando M, Saito Y, Xu G, Bui NQ, Medetgul-Ernar K, Pu M, et al. Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nat Commun. 2019;10:1–15.

    Google Scholar 

  6. Garinis GA, Patrinos GP, Spanakis NE, Menounos PG. DNA hypermethylation: when tumour suppressor genes go silent. Hum Genet. 2002;111:115–27.

    CAS  PubMed  Google Scholar 

  7. Lopez J, Percharde M, Coley H, Webb A, Crook T. The context and potential of epigenetics in oncology. Br J Cancer. 2009;100:571–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pfeifer GP. Defining driver DNA methylation changes in human cancer. Int J Mol Sci. 2018;19:1166.

    PubMed Central  Google Scholar 

  9. Li J, Huang Q, Zeng F, Li W, He Z, Chen W, et al. The prognostic value of global DNA hypomethylation in cancer: a meta-analysis. PloS ONE. 2014;9:e106290.

  10. Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, et al. DNA methylation, its mediators and genome integrity. Int J Biol Sci. 2015;11:604.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6:a019133.

    PubMed  PubMed Central  Google Scholar 

  12. Robert M-F, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet. 2003;33:61–5.

    CAS  PubMed  Google Scholar 

  13. Ma H-S, Wang EL, Xu W-F, Yamada S, Yoshimoto K, Qian ZR, et al. Overexpression of DNA (Cytosine-5)-methyltransferase 1 (DNMT1) and DNA (Cytosine-5)-methyltransferase 3A (DNMT3A) is associated with aggressive behavior and hypermethylation of tumor suppressor genes in human pituitary adenomas. Med Sci Monit: Int Med J Exp Clin Res. 2018;24:4841.

    CAS  Google Scholar 

  14. Beaulieu N, Morin S, Chute IC, Robert M-F, Nguyen H, MacLeod AR. An essential role for DNA methyltransferase DNMT3B in cancer cell survival. J Biol Chem. 2002;277:28176–81.

    CAS  PubMed  Google Scholar 

  15. Gao Q, Steine EJ, Barrasa MI, Hockemeyer D, Pawlak M, Fu D, et al. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci USA. 2011;108:18061–6.

    CAS  PubMed  Google Scholar 

  16. Vogt M, Munding J, Grüner M, Liffers S-T, Verdoodt B, Hauk J, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 2011;458:313–22.

    PubMed  Google Scholar 

  17. Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta. 2010;1799:694–701.

    CAS  PubMed  Google Scholar 

  18. Mosallaei M, Simonian M. MicroRNAs as novel potential biomarker in gastric cancer: diagnostic and prognostic biomarkers. Acta Medica Iranica. 2019;57:5–7.

  19. Karimzadeh MR, Zarin M, Ehtesham N, Khosravi S, Soosanabadi M, Mosallaei M, et al. MicroRNA binding site polymorphism in inflammatory genes associated with colorectal cancer: literature review and bioinformatics analysis. Cancer Gene Therapy. 2020;106:1–15.

  20. Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA. 2008;105:13556–61.

    CAS  PubMed  Google Scholar 

  21. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67:1424–9.

    CAS  PubMed  Google Scholar 

  22. Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8:45.

    PubMed  PubMed Central  Google Scholar 

  23. Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76:3666–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramassone A, Pagotto S, Veronese A, Visone R. Epigenetics and microRNAs in cancer. Int J Mol Sci. 2018;19:459.

    PubMed Central  Google Scholar 

  25. Osella M, Bosia C, Corá D, Caselle M. The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol. 2011;7:e1001101.

  26. Jang HS, Shin WJ, Lee JE, Do JT. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes 2017;8:148.

    PubMed Central  Google Scholar 

  27. Greenberg MV, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20:1–18.

  28. McMahon KW, Karunasena E, Ahuja N. The roles of DNA methylation in the stages of cancer. Cancer J (Sudbury, Mass). 2017;23:257.

    CAS  Google Scholar 

  29. Zhang W, Xu J. DNA methyltransferases and their roles in tumorigenesis. Biomark Res. 2017;5:1.

    PubMed  PubMed Central  Google Scholar 

  30. Bagheri H, Mosallaei M, Bagherpour B, Khosravi S, Salehi AR, Salehi R. TFPI2 and NDRG4 gene promoter methylation analysis in peripheral blood mononuclear cells are novel epigenetic noninvasive biomarkers for colorectal cancer diagnosis. J Gene Med. 2020.

  31. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983;301:89–92.

    CAS  PubMed  Google Scholar 

  32. Sheaffer KL, Elliott EN, Kaestner KH. DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev Res. 2016;9:534–46.

    CAS  Google Scholar 

  33. Ade C, Roy-Engel AM, Deininger PL. Alu elements: an intrinsic source of human genome instability. Curr Opin Virol. 2013;3:639–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Anwar SL, Wulaningsih W, Lehmann U. Transposable elements in human cancer: causes and consequences of deregulation. Int J Mol Sci. 2017;18:974.

    PubMed Central  Google Scholar 

  35. Sun H, Jiang C, Cong L, Wu N, Wang X, Hao M, et al. CYP24A1 Inhibition facilitates the antiproliferative effect of 1, 25 (OH) 2D3 through downregulation of the WNT/β-Catenin pathway and methylation-mediated regulation of CYP24A1 in colorectal cancer cells. DNA Cell Biol. 2018;37:742–9.

    CAS  PubMed  Google Scholar 

  36. Wainfan E, Poirier LA. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res. 1992;52:2071s–7s.

    CAS  PubMed  Google Scholar 

  37. Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 1993;82:1820–8.

  38. Rush LJ, Raval A, Funchain P, Johnson AJ, Smith L, Lucas DM, et al. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res. 2004;64:2424–33.

    CAS  PubMed  Google Scholar 

  39. Watt PM, Kumar R, Kees UR. Promoter demethylation accompanies reactivation of the HOX11 proto‐oncogene in leukemia. Genes Chromosomes Cancer. 2000;29:371–7.

    CAS  PubMed  Google Scholar 

  40. Kong LM, Liao CG, Chen L, Yang HS, Zhang SH, Zhang Z, et al. Promoter hypomethylation up‐regulates CD147 expression through increasing Sp1 binding and associates with poor prognosis in human hepatocellular carcinoma. J Cell Mol Med. 2011;15:1415–28.

    CAS  PubMed  Google Scholar 

  41. Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron P-F. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics. 2018;10:17.

    PubMed  PubMed Central  Google Scholar 

  42. Norvil AB, Saha D, Dar MS, Gowher H. Effect of disease-associated germline mutations on structure function relationship of DNA methyltransferases. Genes. 2019;10:369.

    CAS  PubMed Central  Google Scholar 

  43. Otte C, Scholz R, Werner M, Weber B, Delling G, Kabisch H. Methylation status of the retinoblastoma gene (RB1) in osteosarcoma: no evidence for hypermethylation. Pediatr Hematol Oncol. 2004;21:57–65.

    CAS  PubMed  Google Scholar 

  44. Esteller M, Risques R-A, Toyota M, Capella G, Moreno V, Peinado MA, et al. Promoter hypermethylation of the DNA repair gene O6-methylguanine-DNA methyltransferase is associated with the presence of G: C to A: T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res. 2001;61:4689–92.

    CAS  PubMed  Google Scholar 

  45. Wajed SA, Laird PW, DeMeester TR. DNA methylation: an alternative pathway to cancer. Ann Surg. 2001;234:10.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Soejima H, Zhao W, Mukai T. Epigenetic silencing of the MGMT gene in cancer. Biochem Cell Biol. 2005;83:429–37.

    CAS  PubMed  Google Scholar 

  47. Cheung HH, Lee TL, Rennert OM, Chan WY. DNA methylation of cancer genome. Birth Defects Res Part C: Embryo Today: Rev. 2009;87:335–50.

    CAS  Google Scholar 

  48. Huang Y, Li G-M. DNA mismatch repair in the context of chromatin. Cell Biosci. 2020;10:10.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ibragimova I, Cairns P. Assays for hypermethylation of the BRCA1 gene promoter in tumor cells to predict sensitivity to PARP-inhibitor therapy. Poly (ADP-ribose) Polymerase. Springer; 2011. p. 277–91.

  50. Caldeira JRF, Prando ÉC, Quevedo FC, Neto FAM, Rainho CA, Rogatto SR. CDH1promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer. 2006;6:48.

    PubMed  PubMed Central  Google Scholar 

  51. Guan Z, Zhang J, Song S, Dai D. Promoter methylation and expression of TIMP3 gene in gastric cancer. Diagnostic Pathol. 2013;8:110.

    CAS  Google Scholar 

  52. Poudineh SN, Tehrani GA. Analysis of promoter hypermethylation of DAPK and BAX apoptotic genes in Iranian gastric cancer patients undergoing chemotherapy. Middle East J Cancer. 2020;11:140–9.

    CAS  Google Scholar 

  53. Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. Cancer Res. 2016;76:3446–50.

    CAS  PubMed  Google Scholar 

  54. Bullrich F, Croce CM. Molecular biology of chronic lymphocytic leukemia. Basic Clin Oncol. 2001;26:9–32.

    CAS  Google Scholar 

  55. Suzuki H, Maruyama R, Yamamoto E, Kai M. Epigenetic alteration and microRNA dysregulation in cancer. Front Genet. 2013;4:258.

    PubMed  PubMed Central  Google Scholar 

  56. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006;9:435–43.

    CAS  PubMed  Google Scholar 

  57. Goyal R, Reinhardt R, Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res. 2006;34:1182–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan F, Shen N, Pang J, Zhao N, Deng B, Li B, et al. A regulatory circuit composed of DNA methyltransferases and receptor tyrosine kinases controls lung cancer cell aggressiveness. Oncogene. 2017;36:6919–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rajendran G, Shanmuganandam K, Bendre A, Mujumdar D, Goel A, Shiras A. Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. J Neurooncol. 2011;104:483–94.

    CAS  PubMed  Google Scholar 

  60. Xing J, Stewart D, Gu J, Lu C, Spitz M, Wu X. Expression of methylation-related genes is associated with overall survival in patients with non-small cell lung cancer. Br J Cancer. 2008;98:1716–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Foran E, Garrity-Park MM, Mureau C, Newell J, Smyrk TC, Limburg PJ, et al. Upregulation of DNA methyltransferase–mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Mol Cancer Res. 2010;8:471–81.

    CAS  PubMed  Google Scholar 

  62. Piyathilake CJ, Badiga S, Borak SG, Weragoda J, Bae S, Matthews R, et al. A higher degree of expression of DNA methyl transferase 1 in cervical cancer is associated with poor survival outcome. Int J Women’s Health. 2017;9:413.

    CAS  Google Scholar 

  63. Zhang Y, Chen F-Q, Sun Y-H, Zhou S-Y, Li T-Y, Chen R. Effects of DNMT1 silencing on malignant phenotype and methylated gene expression in cervical cancer cells. J Exp Clin Cancer Res. 2011;30:98.

    PubMed  PubMed Central  Google Scholar 

  64. Lee E, Wang J, Yumoto K, Jung Y, Cackowski FC, Decker AM, et al. DNMT1 regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis. Neoplasia. 2016;18:553–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bai J, Zhang X, Hu K, Liu B, Wang H, Li A, et al. Silencing DNA methyltransferase 1 (DNMT1) inhibits proliferation, metastasis and invasion in ESCC by suppressing methylation of RASSF1A and DAPK. Oncotarget. 2016;7:44129.

    PubMed  PubMed Central  Google Scholar 

  66. Xiang Y, Ma N, Wang D, Zhang Y, Zhou J, Wu G, et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene. 2014;33:378–86.

    CAS  PubMed  Google Scholar 

  67. Li Z, Li Y, Li Y, Ren K, Li X, Han X, et al. Long non‐coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR‐152. J Biochem Mol Toxicol. 2017;31:e21933.

    Google Scholar 

  68. Zhang H, Qi D, Li J, Peng T, Yang L, Yuan J, et al. A novel regulatory circuit of miR‑152 and DNMT1 in human bladder cancer. Oncol Rep. 2018;40:1803–12.

    CAS  PubMed  Google Scholar 

  69. Lu Z-W, Du M-Y, Qian L-X, Zhang N, Gu J-J, Ding K, et al. MiR-152 functioning as a tumor suppressor that interacts with DNMT1 in nasopharyngeal carcinoma. OncoTargets Ther. 2018;11:1733.

    Google Scholar 

  70. Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L, et al. Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2. J Exp Clin Cancer Res. 2017;36:100.

    PubMed  PubMed Central  Google Scholar 

  71. Wang Q-M, Lian G-Y, Song Y, Peng Z-D, Xu S-H, Gong Y. Downregulation of miR-152 contributes to DNMT1-mediated silencing of SOCS3/SHP-1 in non-Hodgkin lymphoma. Cancer Gene Ther. 2019;26:195–207.

    CAS  PubMed  Google Scholar 

  72. Wu T, Qu L, He G, Tian L, Li L, Zhou H, et al. Regulation of laryngeal squamous cell cancer progression by the lncRNA H19/miR-148a-3p/DNMT1 axis. Oncotarget. 2016;7:11553.

    PubMed  PubMed Central  Google Scholar 

  73. Han X, Zhen S, Ye Z, Lu J, Wang L, Li P, et al. A feedback loop between miR-30a/c-5p and DNMT1 mediates cisplatin resistance in ovarian cancer cells. Cell Physiol Biochem. 2017;41:973–86.

    CAS  PubMed  Google Scholar 

  74. Qadir XV, Han C, Lu D, Zhang J, Wu T. miR-185 inhibits hepatocellular carcinoma growth by targeting the DNMT1/PTEN/Akt pathway. Am J Pathol. 2014;184:2355–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yoon JH, Choi YJ, Choi WS, Ashktorab H, Smoot DT, Nam SW, et al. GKN1–miR-185–DNMT1 axis suppresses gastric carcinogenesis through regulation of epigenetic alteration and cell cycle. Clin Cancer Res. 2013;19:4599–610.

    CAS  PubMed  Google Scholar 

  76. Zhan Q, Fang Y, Deng X, Chen H, Jin J, Lu X, et al. The interplay between miR-148a and DNMT1 might be exploited for pancreatic cancer therapy. Cancer Investig. 2015;33:267–75.

    Google Scholar 

  77. Azizi M, Fard-Esfahani P, Mahmoodzadeh H, Fazeli MS, Azadmanesh K, Zeinali S, et al. MiR-377 reverses cancerous phenotypes of pancreatic cells via suppressing DNMT1 and demethylating tumor suppressor genes. Epigenomics. 2017;9:1059–75.

    CAS  PubMed  Google Scholar 

  78. Starlard-Davenport A, Kutanzi K, Tryndyak V, Word B, Lyn-Cook B. Restoration of the methylation status of hypermethylated gene promoters by microRNA-29b in human breast cancer: a novel epigenetic therapeutic approach. J Carcinogen. 2013;12:15.

  79. Chiang C-L, Goswami S, Frissora FW, Xie Z, Yan PS. Bundschuh R, et al. ROR1-targeted delivery of miR-29b induces cell cycle arrest and therapeutic benefit in vivo in a CLL mouse model. Blood, J Am Soc Hematol. 2019;134:432–44.

    CAS  Google Scholar 

  80. Shi H, Chen X, Jiang H, Wang X, Yu H, Sun P, et al. miR-148a suppresses cell invasion and migration in gastric cancer by targeting DNA methyltransferase 1. Oncol Lett. 2018;15:4944–50.

    PubMed  PubMed Central  Google Scholar 

  81. Chen Y, Zhang Z, Shou L, Di J. Regulation of DNA methylation and tumor suppression gene expression by miR-29b in leukemia patients and related mechanisms. Eur Rev Med Pharmacol Sci. 2018;22:158–65.

    PubMed  Google Scholar 

  82. Xu Y, Chao L, Wang J, Sun Y. miRNA‑148a regulates the expression of the estrogen receptor through DNMT1‑mediated DNA methylation in breast cancer cells. Oncol Lett. 2017;14:4736–40.

    PubMed  PubMed Central  Google Scholar 

  83. Sengupta D, Deb M, Patra SK. Antagonistic activities of miR-148a and DNMT1: Ectopic expression of miR-148a impairs DNMT1 mRNA and dwindle cell proliferation and survival. Gene. 2018;660:68–79.

    CAS  PubMed  Google Scholar 

  84. Takata A, Otsuka M, Yoshikawa T, Kishikawa T, Hikiba Y, Obi S, et al. MicroRNA‐140 acts as a liver tumor suppressor by controlling NF‐κB activity by directly targeting DNA methyltransferase 1 (Dnmt1) expression. Hepatology. 2013;57:162–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429:900–3.

    CAS  PubMed  Google Scholar 

  86. Chen B-F, Gu S, Suen Y-K, Li L, Chan W-Y. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer. Epigenetics. 2014;9:119–28.

    CAS  PubMed  Google Scholar 

  87. Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4:1–39.

    Google Scholar 

  88. Cui H, Wang L, Gong P, Zhao C, Zhang S, Zhang K, et al. Deregulation between miR-29b/c and DNMT3A is associated with epigenetic silencing of the CDH1 gene, affecting cell migration and invasion in gastric cancer. PloS ONE. 2015;10:e0123926.

  89. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3 A and 3B. Proc Natl Acad Sci USA. 2007;104:15805–10.

    CAS  PubMed  Google Scholar 

  90. Teng Y, Zuo X, Hou M, Zhang Y, Li C, Luo W, et al. A Double-negative feedback interaction between MicroRNA-29b and DNMT3A/3B contributes to ovarian cancer progression. Cell Physiol Biochem. 2016;39:2341–52.

    CAS  PubMed  Google Scholar 

  91. Tan M, Wu J, Cai Y. Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer. Biochem Biophys Res Commun. 2013;438:673–9.

    CAS  PubMed  Google Scholar 

  92. Xu H, Sun J, Shi C, Sun C, Yu L, Wen Y, et al. miR-29s inhibit the malignant behavior of U87MG glioblastoma cell line by targeting DNMT3A and 3B. Neurosci Lett. 2015;590:40–6.

    CAS  PubMed  Google Scholar 

  93. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood J Am Soc Hematol. 2009;113:6411–8.

    CAS  Google Scholar 

  94. Li Y, Nie Y, Tu S, Wang H, Zhou Y, Du Y, et al. Epigenetically deregulated miR-200c is involved in a negative feedback loop with DNMT3a in gastric cancer cells. Oncol Rep. 2016;36:2108–16.

    PubMed  Google Scholar 

  95. Tang H, Deng M, Tang Y, Xie X, Guo J, Kong Y, et al. miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression. Clin Cancer Res. 2013;19:5602–12.

    CAS  PubMed  Google Scholar 

  96. Liu J, Zhang X, Huang Y, Zhang Q, Zhou J, Zhang X, et al. miR‑200b and miR‑200c co‑contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases. Oncol Lett. 2019;17:1453–60.

    CAS  PubMed  Google Scholar 

  97. Liu T, Wu X, Chen T, Luo Z, Hu X. Downregulation of DNMT3A by miR-708-5p inhibits lung cancer stem cell–like phenotypes through repressing Wnt/β-catenin signaling. Clin Cancer Res. 2018;24:1748–60.

    CAS  PubMed  Google Scholar 

  98. Ng EK, Li R, Shin VY, Siu JM, Ma ES, Kwong A. MicroRNA-143 is downregulated in breast cancer and regulates DNA methyltransferases 3A in breast cancer cells. Tumor Biol. 2014;35:2591–8.

    CAS  Google Scholar 

  99. Wang L, Yao J, Sun H, He K, Tong D, Song T, et al. MicroRNA‑101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A. Oncol Lett. 2017;13:329–38.

    CAS  PubMed  Google Scholar 

  100. Wei D, Yu G, Zhao Y. MicroRNA-30a-3p inhibits the progression of lung cancer via the PI3K/AKT by targeting DNA methyltransferase 3a. OncoTargets Ther. 2019;12:7015.

    CAS  Google Scholar 

  101. Lin J, Shi Z, Yu Z, He Z. LncRNA HIF1A-AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR-129-5p and DNMT3A. Biomed Pharmacother. 2018;98:433–9.

    CAS  PubMed  Google Scholar 

  102. Jeltsch A, Broche J, Bashtrykov P. Molecular processes connecting DNA methylation patterns with DNA methyltransferases and histone modifications in mammalian genomes. Genes. 2018;9:566.

    PubMed Central  Google Scholar 

  103. Walton EL, Francastel C, Velasco G. Dnmt3b prefers germ line genes and centromeric regions: lessons from the ICF syndrome and cancer and implications for diseases. Biology. 2014;3:578–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen W-C, Chen M-F, Lin P-Y. Significance of DNMT3b in oral cancer. PloS ONE. 2014;9:e89956.

  105. Gong HL, Tao Y, Mao XZ, Song DY, You D, Ni JD. MicroRNA-29a suppresses the invasion and migration of osteosarcoma cells by regulating the SOCS1/NF-κB signalling pathway through negatively targeting DNMT3B. Int J Mol Med. 2019;44:1219–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Li W, Yi J, Zheng X, Liu S, Fu W, Ren L, et al. miR-29c plays a suppressive role in breast cancer by targeting the TIMP3/STAT1/FOXO1 pathway. Clin Epigenetics. 2018;10:64.

    PubMed  PubMed Central  Google Scholar 

  107. Wu H, Zhang W, Wu Z, Liu Y, Shi Y, Gong J, et al. miR-29c-3p regulates DNMT3B and LATS1 methylation to inhibit tumor progression in hepatocellular carcinoma. Cell Death Dis. 2019;10:1–18.

    Google Scholar 

  108. Jia L-F, Zheng Y-F, Lyu M-Y, Huang Y-P, Gan Y-H. miR-29b upregulates miR-195 by targeting DNMT3B in tongue squamous cell carcinoma. Sci Bull. 2016;61:212–9.

    CAS  Google Scholar 

  109. Yan M-D, Yao C-J, Chow J-M, Chang C-L, Hwang P-A, Chuang S-E, et al. Fucoidan elevates microRNA-29b to regulate DNMT3B-MTSS1 axis and inhibit EMT in human hepatocellular carcinoma cells. Mar Drugs. 2015;13:6099–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Robaina MC, Mazzoccoli L, Arruda VO, de Souza Reis FR, Apa AG, de Rezende LMM, et al. Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp Mol Pathol. 2015;98:200–7.

    CAS  PubMed  Google Scholar 

  111. Amodio N, Leotta M, Bellizzi D, Di Martino MT, D’Aquila P, Lionetti M, et al. DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma. Oncotarget. 2012;3:1246.

    PubMed  PubMed Central  Google Scholar 

  112. Shiah S-G, Hsiao J-R, Chang H-J, Hsu Y-M, Wu G-H, Peng H-Y, et al. MiR-30a and miR-379 modulate retinoic acid pathway by targeting DNA methyltransferase 3B in oral cancer. J Biomed Sci. 2020;27:1–13.

    Google Scholar 

  113. Chen Z, Liu S, Tian L, Wu M, Ai F, Tang W, et al. miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget. 2015;6:38139.

    PubMed  PubMed Central  Google Scholar 

  114. Afgar A, Fard-Esfahani P, Mehrtash A, Azadmanesh K, Khodarahmi F, Ghadir M, et al. MiR-339 and especially miR-766 reactivate the expression of tumor suppressor genes in colorectal cancer cell lines through DNA methyltransferase 3B gene inhibition. Cancer Biol Ther. 2016;17:1126–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Li Y, Ren M, Zhao Y, Lu X, Wang M, Hu J, et al. MicroRNA-26a inhibits proliferation and metastasis of human hepatocellular carcinoma by regulating DNMT3B-MEG3 axis. Oncol Rep. 2017;37:3527–3535.

    CAS  PubMed  Google Scholar 

  116. Roscigno G, Quintavalle C, Donnarumma E, Puoti I, Diaz-Lagares A, Iaboni M, et al. MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget. 2016;7:580.

    PubMed  Google Scholar 

  117. Wu S, Xie J, Shi H, Wang Z-w. miR-492 promotes chemoresistance to CDDP and metastasis by targeting inhibiting DNMT3B and induces stemness in gastric cancer. Biosci Rep. 2020;40:3–27.

  118. Hudson NO, Buck-Koehntop BA. Zinc finger readers of methylated DNA. Molecules. 2018;23:2555.

    PubMed Central  Google Scholar 

  119. Parry L, Clarke AR. The roles of the methyl-CpG binding proteins in cancer. Genes Cancer. 2011;2:618–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mahmood N, Rabbani SA. DNA methylation readers and cancer: mechanistic and therapeutic applications. Front Oncol. 2019;9:489.

  121. Zhao L, Tong D, Xue M, Ma H, Liu S, Yang J, et al. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2–ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis. 2017;6:e368-e.

  122. Wada R, Akiyama Y, Hashimoto Y, Fukamachi H, Yuasa Y. miR‐212 is downregulated and suppresses methyl‐CpG‐binding protein MeCP2 in human gastric cancer. Int J Cancer. 2010;127:1106–14.

    CAS  PubMed  Google Scholar 

  123. Zhu F, Wu Q, Ni Z, Lei C, Li T, Shi Y. miR-19a/b and MeCP2 repress reciprocally to regulate multidrug resistance in gastric cancer cells. Int J Mol Med. 2018;42:228–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang N, Wei Z-L, Yin J, Zhang L, Wang J, Jin Z-L. MiR-106a* inhibits oral squamous cell carcinoma progression by directly targeting MeCP2 and suppressing the Wnt/β-Catenin signaling pathway. Am J Transl Res. 2018;10:3542.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. He S, Lai R, Chen D, Yan W, Zhang Z, Liu Z, et al. Downregulation of miR-221 inhibits cell migration and invasion through targeting methyl-CpG binding domain protein 2 in human oral squamous cell carcinoma cells. BioMed Res Int. 2015;24:75.

  126. Chen Y-J, Luo J, Yang G-Y, Yang K, Wen S-Q, Zou S-Q. Mutual regulation between microRNA-373 and methyl-CpG-binding domain protein 2 in hilar cholangiocarcinoma. World J Gastroenterol. 2012;18:3849–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen Y, Luo J, Tian R, Sun H, Zou S. miR-373 negatively regulates methyl-CpG-binding domain protein 2 (MBD2) in hilar cholangiocarcinoma. Digestive Dis Sci. 2011;56:1693–701.

    CAS  Google Scholar 

  128. Cui S, Liu L, Wan T, Jiang L, Shi Y, Luo L. MiR-520b inhibits the development of glioma by directly targeting MBD2. Am J Cancer Res. 2017;7:1528.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Pan Z, Zhang X, Chen S, Li C. Upregulated exosomal miR-221/222 promotes cervical cancer via repressing methyl-CpG-binding domain protein 2. Eur Rev Med Pharm Sci. 2019;23:3645–53.

    Google Scholar 

  130. Zhou L, Zhao X, Han Y, Lu Y, Shang Y, Liu C, et al. Regulation of UHRF1 by miR-146a/b modulates gastric cancer invasion and metastasis. FASEB J. 2013;27:4929–39.

    CAS  PubMed  Google Scholar 

  131. Matsushita R, Yoshino H, Enokida H, Goto Y, Miyamoto K, Yonemori M, et al. Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): Inhibition of bladder cancer cell aggressiveness. Oncotarget. 2016;7:28460.

    PubMed  PubMed Central  Google Scholar 

  132. Goto Y, Kurozumi A, Nohata N, Kojima S, Matsushita R, Yoshino H, et al. The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma. Oncotarget. 2016;7:59070.

    PubMed  PubMed Central  Google Scholar 

  133. Zhu M, Xu Y, Ge M, Gui Z, Yan F. Regulation of UHRF 1 by micro RNA‐9 modulates colorectal cancer cell proliferation and apoptosis. Cancer Sci. 2015;106:833–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang X, Wu Q, Xu B, Wang P, Fan W, Cai Y, et al. miR‐124 exerts tumor suppressive functions on the cell proliferation, motility and angiogenesis of bladder cancer by fine‐tuning UHRF 1. FEBS J. 2015;282:4376–88.

    CAS  PubMed  Google Scholar 

  135. Zhang Z-Y, Zhu B, Zhao X-W, Zhan Y-B, Bao J-J, Zhou J-Q, et al. Regulation of UHRF1 by microRNA-378 modulates medulloblastoma cell proliferation and apoptosis. Oncol Rep. 2017;38:3078–84.

    CAS  PubMed  Google Scholar 

  136. Lin Y, Chen Z, Lin S, Zheng Y, Liu Y, Gao J, et al. MiR-202 inhibits the proliferation and invasion of colorectal cancer by targeting UHRF1. Acta Biochim Biophys Sin. 2019;51:598–606.

    CAS  PubMed  Google Scholar 

  137. Lin Y, Chen Z, Zheng Y, Liu Y, Gao J, Lin S, et al. MiR-506 targets UHRF1 to inhibit colorectal cancer proliferation and invasion via the KISS1/PI3K/NF-κB signaling axis. Front Cell Dev Biol. 2019;7:266.

  138. Zhu M, Wei C, Lin J, Dong S, Gao D, Chen J, et al. UHRF1 is regulated by miR‐124‐3p and promotes cell proliferation in intrahepatic cholangiocarcinoma. J Cell Physiol. 2019;234:19875–1985.

    CAS  PubMed  Google Scholar 

  139. Feng J. Upregulation of microRNA-4262 targets Kaiso (ZBTB33) to inhibit the proliferation and EMT of cervical cancer cells. Oncol Res. 2018;26:1215–25.

    PubMed  PubMed Central  Google Scholar 

  140. Wang L, Ma J, Wang X, Peng F, Chen X, Zheng B, et al. Kaiso (ZBTB33) downregulation by mirna-181a inhibits cell proliferation, invasion, and the epithelial–mesenchymal transition in glioma cells. Cell Physiol Biochem. 2018;48:947–58.

    CAS  PubMed  Google Scholar 

  141. Abisoye-Ogunniyan A, Lin H, Ghebremedhin A, Salam AB, Karanam B, Theodore S, et al. Transcriptional repressor Kaiso promotes epithelial to mesenchymal transition and metastasis in prostate cancer through direct regulation of miR-200c. Cancer Lett. 2018;431:1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kim K, Chadalapaka G, Lee S, Yamada D, Sastre-Garau X, Defossez P-A, et al. Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene. 2012;31:1034–44.

    CAS  PubMed  Google Scholar 

  143. Kim K, Chadalapaka G, Pathi SS, Jin U-H, Lee J-S, Park Y-Y, et al. Induction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters. Mol Cancer Ther. 2012;11:1852–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang WS, Chadalapaka G, Cho S-G, Lee S-o, Jin U-H, Jutooru I, et al. The transcriptional repressor ZBTB4 regulates EZH2 through a MicroRNA-ZBTB4-specificity protein signaling axis. Neoplasia. 2014;16:1059–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bu W, Wang Y, Min X. MicroRNA‑106b promotes the proliferation, migration and invasion of retinoblastoma cells by inhibiting the expression of ZBTB4 protein. Exp Ther Med. 2018;16:4537–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Fan H, Jin X, Liao C, Qiao L, Zhao W. MicroRNA-301b-3p accelerates the growth of gastric cancer cells by targeting zinc finger and BTB domain containing 4. Pathol Res Pract. 2019;215:152667.

    CAS  PubMed  Google Scholar 

  147. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502:472.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. An J, Rao A, Ko M. TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med. 2017;49:e323-e.

  150. Scourzic L, Mouly E, Bernard OA. TET proteins and the control of cytosine demethylation in cancer. Genome Med. 2015;7:1–16.

    Google Scholar 

  151. Lin LL, Wang W, Hu Z, Wang LW, Chang J, Qian H. Negative feedback of miR-29 family TET1 involves in hepatocellular cancer. Med Oncol. 2014;31:291.

    PubMed  Google Scholar 

  152. Zhang W, Lu Z, Gao Y, Ye L, Song T, Zhang X. MiR-520b suppresses proliferation of hepatoma cells through targeting ten-eleven translocation 1 (TET1) mRNA. Biochem Bophys Res Commun. 2015;460:793–8.

    CAS  Google Scholar 

  153. Huang H, Jiang X, Wang J, Li Y, Song C-X, Chen P, et al. Identification of MLL-fusion/MYC miR-26 TET1 signaling circuit in MLL-rearranged leukemia. Cancer Lett. 2016;372:157–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Li J, Shen N, Bai G, Huang X. MiR-365a-3p suppresses proliferation and invasion of Hep-2 cells through targeting ten-eleven translocation 1 (TET1). Neoplasma. 2018;65:730–5.

    CAS  PubMed  Google Scholar 

  155. Lynch SM, O’Neill KM, McKenna MM, Walsh CP, McKenna DJ. Regulation of miR‐200c and miR‐141 by methylation in prostate cancer. Prostate. 2016;76:1146–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang H, An X, Yu H, Zhang S, Tang B, Zhang X, et al. MiR-29b/TET1/ZEB2 signaling axis regulates metastatic properties and epithelial-mesenchymal transition in breast cancer cells. Oncotarget. 2017;8:102119.

    PubMed  PubMed Central  Google Scholar 

  157. Cheng Y-W, Chou C-J, Yang P-M. Ten-eleven translocation 1 (TET1) gene is a potential target of miR-21-5p in human colorectal cancer. Surgical Oncol. 2018;27:76–81.

    Google Scholar 

  158. Li H, Zhou ZQ, Yang ZR, Tong DN, Guan J, Shi BJ, et al. MicroRNA‐191 acts as a tumor promoter by modulating the TET1–p53 pathway in intrahepatic cholangiocarcinoma. Hepatology. 2017;66:136–51.

    CAS  PubMed  Google Scholar 

  159. Xiang Z, Xu C, Wu G, Liu B, Wu D. CircRNA-UCK2 increased TET1 inhibits proliferation and invasion of prostate cancer cells via sponge miRNA-767-5p. Open Med. 2019;14:833–42.

    CAS  Google Scholar 

  160. Chuang KH, Whitney‐Miller CL, Chu CY, Zhou Z, Dokus MK, Schmit S, et al. MicroRNA‐494 is a master epigenetic regulator of multiple invasion‐suppressor microRNAs by targeting ten eleven translocation 1 in invasive human hepatocellular carcinoma tumors. Hepatology. 2015;62:466–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Pei Y-f, Lei Y, Liu X-Q. MiR-29a promotes cell proliferation and EMT in breast cancer by targeting ten eleven translocation 1. Biochim Biophys Acta. 2016;1862:2177–85.

    CAS  PubMed  Google Scholar 

  162. Li Y, Shen Z, Jiang H, Lai Z, Wang Z, Jiang K, et al. MicroRNA‑4284 promotes gastric cancer tumorigenicity by targeting ten-eleven translocation 1. Mol Med Rep. 2018;17:6569–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu J, Li M, Liu X, Liu F, Zhu J. miR-27a-3p promotes the malignant phenotypes of osteosarcoma by targeting ten-eleven translocation 1. Int J Oncol. 2018;52:1295–304.

    CAS  PubMed  Google Scholar 

  164. Yao H, Sun P, Duan M, Lin L, Pan Y, Wu C, et al. microRNA-22 can regulate expression of the long non-coding RNA MEG3 in acute myeloid leukemia. Oncotarget. 2017;8:65211.

    PubMed  PubMed Central  Google Scholar 

  165. Ren S, Xu Y. AC016405. 3, a novel long noncoding RNA, acts as a tumor suppressor through modulation of TET2 by microRNA‐19a‐5p sponging in glioblastoma. Cancer Sci. 2019;110:1621.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Salati S, Salvestrini V, Carretta C, Genovese E, Rontauroli S. Zini R, et al. Deregulated expression of miR-29a-3p, miR-494-3p and miR-660-5p affects sensitivity to tyrosine kinase inhibitors in CML leukemic stem cells. Oncotarget. 2017;8:49451.

    PubMed  PubMed Central  Google Scholar 

  167. Wu M, Zhang Y, Tang A, Tian L. miR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer. Iran J basic Med Sci. 2016;19:316.

    PubMed  PubMed Central  Google Scholar 

  168. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013;154:311–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 2007;67:1419–23.

    CAS  PubMed  Google Scholar 

  170. Simonini PDSR, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor α in breast cancer cells. Cancer Res. 2010;70:9175–84.

    CAS  Google Scholar 

  171. Li A, Omura N, Hong S-M, Vincent A, Walter K, Griffith M, et al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res. 2010;70:5226–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Tsai KW, Hu LY, Wu CW, Li SC, Lai CH, Kao HW, et al. Epigenetic regulation of miR‐196b expression in gastric cancer. Genes Chromosomes Cancer. 2010;49:969–80.

    CAS  PubMed  Google Scholar 

  173. Yuan R, Wang G, Xu Z, Zhao H, Chen H, Han Y, et al. Up-regulated circulating miR-106a by DNA methylation promised a potential diagnostic and prognostic marker for gastric cancer. Anticancer Agents Med Chem. 2016;16:1093–100.

    CAS  PubMed  Google Scholar 

  174. Hou YY, You JJ, Yang CM, Pan HW, Chen HC, Lee JH, et al. Aberrant DNA hypomethylation of miR-196b contributes to migration and invasion of oral cancer. Oncol Lett. 2016;11:4013–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. He Y, Cui Y, Wang W, Gu J, Guo S, Ma K, et al. Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia. 2011;13:841.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. He X-X, Kuang S-Z, Liao J-Z, Xu C-R, Chang Y, Wu Y-L, et al. The regulation of microRNA expression by DNA methylation in hepatocellular carcinoma. Mol Biosyst. 2015;11:532–9.

    CAS  PubMed  Google Scholar 

  177. Yuan R, Zhi Q, Zhao H, Han Y, Gao L, Wang B, et al. Upregulated expression of miR-106a by DNA hypomethylation plays an oncogenic role in hepatocellular carcinoma. Tumor Biol. 2015;36:3093–100.

    CAS  Google Scholar 

  178. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67:8699–707.

    CAS  PubMed  Google Scholar 

  179. Zhang B, Yang Y, Shi X, Liao W, Chen M, Cheng AS-L, et al. Proton pump inhibitor pantoprazole abrogates adriamycin-resistant gastric cancer cell invasiveness via suppression of Akt/GSK-β/β-catenin signaling and epithelial–mesenchymal transition. Cancer Lett. 2015;356:704–12.

    CAS  PubMed  Google Scholar 

  180. Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, et al. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 2012;72:3775–85.

    CAS  PubMed  Google Scholar 

  181. Ortiz IMDP, Barros-Filho MC, Dos Reis MB, Beltrami CM, Marchi FA, Kuasne H, et al. Loss of DNA methylation is related to increased expression of miR-21 and miR-146b in papillary thyroid carcinoma. Clin Epigenetics. 2018;10:144.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Varghese VK, Shukla V, Kabekkodu SP, Pandey D, Satyamoorthy K. DNA methylation regulated microRNAs in human cervical cancer. Mol Carcinogen. 2018;57:370–82.

    CAS  Google Scholar 

  183. Loginov V, Burdennyy A, Pronina I, Khokonova V, Kurevljov S, Kazubskaya T, et al. Novel miRNA genes hypermethylated in breast cancer. Mol Biol. 2016;50:705–9.

    CAS  Google Scholar 

  184. Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res. 2011;717:77–84.

    CAS  PubMed  Google Scholar 

  185. Oltra SS, Peña-Chilet M, Vidal-Tomas V, Flower K, Martinez MT, Alonso E, et al. Methylation deregulation of miRNA promoters identifies miR124-2 as a survival biomarker in Breast Cancer in very young women. Sci Rep. 2018;8:1–12.

    CAS  Google Scholar 

  186. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7:2591–600.

    CAS  PubMed  Google Scholar 

  187. Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F, et al. Epigenetic inactivation of microRNA gene hsa‐mir‐9‐1 in human breast cancer. J Pathol. 2008;214:17–24.

    CAS  PubMed  Google Scholar 

  188. Suzuki H, Takatsuka S, Akashi H, Yamamoto E, Nojima M, Maruyama R, et al. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res. 2011;71:5646–58.

    CAS  PubMed  Google Scholar 

  189. Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR, et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res. 2010;70:6609–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009;69:4443–53.

    CAS  PubMed  Google Scholar 

  191. Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M, et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer. 2009;124:2367–74.

    CAS  PubMed  Google Scholar 

  192. Rotkrua P, Akiyama Y, Hashimoto Y, Otsubo T, Yuasa Y. MiR‐9 downregulates CDX2 expression in gastric cancer cells. Int J Cancer. 2011;129:2611–20.

    CAS  PubMed  Google Scholar 

  193. An F, Yamanaka S, Allen S, Roberts LR, Gores GJ, Pawlik TM, et al. Silencing of miR-370 in human cholangiocarcinoma by allelic loss and interleukin-6 induced maternal to paternal epigenotype switch. PloS ONE. 2012;7:e45606.

  194. Lopez-Bertoni H, Lal B, Michelson N, Guerrero-Cazares H, Quinones-Hinojosa A, Li Y, et al. Epigenetic modulation of a miR-296-5p: HMGA1 axis regulates Sox2 expression and glioblastoma stem cells. Oncogene 2016;35:4903–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Lin P-C, Chiu Y-L, Banerjee S, Park K, Mosquera JM, Giannopoulou E, et al. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res. 2013;73:1232–44.

    CAS  PubMed  Google Scholar 

  196. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res. 2008;68:5049–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Kong KL, Kwong DLW, Chan TH-M, Law SY-K, Chen L, Li Y, et al. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut. 2012;61:33–42.

    CAS  PubMed  Google Scholar 

  198. Omura N, Li C-P, Li A, Hong S-M, Walter K, Jimeno A, et al. Genome-wide profiling at methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther. 2008;7:1146–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Hanoun N, Delpu Y, Suriawinata AA, Bournet B, Bureau C, Selves J, et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin Chem. 2010;56:1107–18.

    CAS  PubMed  Google Scholar 

  200. Wiklund ED, Bramsen JB, Hulf T, Dyrskjøt L, Ramanathan R, Hansen TB, et al. Coordinated epigenetic repression of the miR‐200 family and miR‐205 in invasive bladder cancer. Int J Cancer. 2011;128:1327–34.

    CAS  PubMed  Google Scholar 

  201. Kozaki K-i, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68:2094–105.

    CAS  PubMed  Google Scholar 

  202. Wang Z, Chen Z, Gao Y, Li N, Li B, Tan F, et al. DNA hypermethylation of microRNA-34b/c has prognostic value for stage I non-small cell lung cancer. Cancer Biol Ther. 2011;11:490–6.

    CAS  PubMed  Google Scholar 

  203. Langevin SM, Stone RA, Bunker CH, Lyons‐Weiler MA, LaFramboise WA, Kelly L, et al. MicroRNA‐137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer. 2011;117:1454–62.

    CAS  PubMed  Google Scholar 

  204. Tang H, Liu P, Yang L, Xie X, Ye F, Wu M, et al. miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:3185–97.

    CAS  PubMed  Google Scholar 

  205. Wang X, Liang Z, Xu X, Li J, Zhu Y, Meng S, et al. miR-148a-3p represses proliferation and EMT by establishing regulatory circuits between ERBB3/AKT2/c-myc and DNMT1 in bladder cancer. Cell Death Dis. 2016;7:e2503.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Hong L, Sun G, Peng L, Tu Y, Wan Z, Xiong H, et al. The interaction between miR‑148a and DNMT1 suppresses cell migration and invasion by reactivating tumor suppressor genes in pancreatic cancer. Oncol Rep. 2018;40:2916–25.

    CAS  PubMed  Google Scholar 

  207. Wang Y, Hu Y, Guo J, Wang L. miR-148a-3p suppresses the proliferation and invasion of esophageal cancer by targeting DNMT1. Genet Test Mol Biomark. 2019;23:98–104.

    CAS  Google Scholar 

  208. Li Y, Chen F, Chu J, Wu C, Li Y, Li H, et al. MiR-148-3p inhibits growth of glioblastoma targeting DNA methyltransferase-1 (DNMT1). Oncol Res. 2019;27:911–21.

    PubMed  PubMed Central  Google Scholar 

  209. Shi Y-K, Guo Y-H. MiR-139-5p suppresses osteosarcoma cell growth and invasion through regulating DNMT1. Biochem Biophys Res Commun. 2018;503:459–66.

    CAS  PubMed  Google Scholar 

  210. Li XY, Feng XZ, Tang JZ, Dong K, Wang JF, Meng CC, et al. MicroRNA-200b inhibits the proliferation of hepatocellular carcinoma by targeting DNA methyltransferase 3a. Mol Med Rep. 2016;13:3929–35.

    CAS  PubMed  Google Scholar 

  211. Sun J, Ji J, Huo G, Song Q, Zhang X. miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3a. Int J Clin Exp Pathol. 2015;8:4755.

    PubMed  PubMed Central  Google Scholar 

  212. Ng E, Tsang W, Ng S, Jin H, Yu J, Li J, et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer. 2009;101:699–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhang Q, Feng Y, Liu P, Yang J. MiR-143 inhibits cell proliferation and invasion by targeting DNMT3A in gastric cancer. Tumor Biol. 2017;39:1010428317711312.

    Google Scholar 

  214. Wang Y, Xie Y, Li X, Lin J, Zhang S, Li Z, et al. MiR-876-5p acts as an inhibitor in hepatocellular carcinoma progression by targeting DNMT3A. Pathol Res Pract. 2018;214:1024–30.

    CAS  PubMed  Google Scholar 

  215. Gu X, Gong H, Shen L, Gu Q. MicroRNA-129-5p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting DNMT3A. Am J Transl Res. 2018;10:2834.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Wang Y, Wang L, Yu X, Duan J. Overexpression of miR-450 affects the biological behavior of HepG2 cells by targeting DNMT3a. OncoTargets Ther. 2019;12:5069.

    CAS  Google Scholar 

  217. Wang L, Wang Z, Huang L, Wu C, Zhang B. MiR-29b suppresses proliferation and mobility by targeting SOX12 and DNMT3b in pancreatic cancer. Anticancer Drugs 2019;30:281–8.

    PubMed  Google Scholar 

  218. Zo RB, Long Z. MiR‐124‐3p suppresses bladder cancer by targeting DNA methyltransferase 3B. J Cell Physiol. 2019;234:464–74.

    CAS  Google Scholar 

  219. To KK, Leung WW, Ng SS. A novel miR‐203‐DNMT3b‐ABCG2 regulatory pathway predisposing colorectal cancer development. Mol Carcinogen. 2017;56:464–77.

    CAS  Google Scholar 

  220. Xue G, Ren Z, Chen Y, Zhu J, Du Y, Pan D, et al. A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett. 2015;361:121–7.

    CAS  PubMed  Google Scholar 

  221. Yang C, Ota-Kurogi N, Ikeda K, Okumura T, Horie-Inoue K, Takeda S, et al. MicroRNA-191 regulates endometrial cancer cell growth via TET1-mediated epigenetic modulation of APC. J Biochem. 2020.

  222. He Z, Wang X, Huang C, Gao Y, Yang C, Zeng P, et al. The FENDRR/miR-214-3P/TET2 axis affects cell malignant activity via RASSF1A methylation in gastric cancer. Am J Transl Res. 2018;10:3211.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Pakzad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimzadeh, M.R., Pourdavoud, P., Ehtesham, N. et al. Regulation of DNA methylation machinery by epi-miRNAs in human cancer: emerging new targets in cancer therapy. Cancer Gene Ther 28, 157–174 (2021). https://doi.org/10.1038/s41417-020-00210-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00210-7

This article is cited by

Search

Quick links