Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer immunotherapy using the Fusion gene of Sendai virus

Abstract

Inactivated Sendai virus particle (or hemagglutinating virus of Japan envelope; HVJ-E) has been previously reported to possess antitumour properties that activate antitumour immunity. Two glycoproteins, fusion (F) and hemagglutinin-neuraminidase (HN), are present on the surface of HVJ-E. HN is necessary for binding to receptors such as acidic gangliosides, and F induces membrane fusion by associating with membrane lipids. We previously reported that liposomes reconstituted with F but not HN showed antitumour activity by inducing IL-6 secretion in dendritic cells (DCs), suggesting that F protein is capable of eliciting antitumour activity. Here, we attempted to deliver F gene into tumour tissue in mice by electroporation and demonstrated that F gene therapy retarded tumour growth, increased CD4+ and CD8+ T-cell infiltration into tumours and induced tumour-specific IFN-γ T-cell response. However, neutralisation of IL-6R signalling did not impact F plasmid-mediated antitumour effect. Instead, we found that F plasmid treatment resulted in a significant increase in the secretion of the chemokine RANTES (regulated upon activation, normal T cell expressed and secreted) by tumour-infiltrating T cells. Neutralising antibody against RANTES abolished the antitumour effect of F plasmid treatment in a dose-dependent manner. Thus, F gene therapy may show promise as a novel therapeutic for single or combined cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olsson SE, Villa LL, Costa RL, Petta CA, Andrade RP, Malm C, et al. Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine. 2007;25:4931–9.

    Article  CAS  PubMed  Google Scholar 

  2. Petrella T, Quirt I, Verma S, Haynes AE, Charette M, Bak K, et al. Single-agent interleukin-2 in the treatment of metastatic melanoma. Curr Oncol. 2007;14:21–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.

    Article  CAS  PubMed  Google Scholar 

  4. Yang JC, Rosenberg SA. Adoptive T-cell therapy for cancer. Adv Immunol. 2016;130:279–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14:463–82.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmad M, Rees RC, Ali SA. Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother. 2004;53:844–54.

    Article  PubMed  Google Scholar 

  8. Yang L, Carbone DP. Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res. 2004;92:13–27.

    Article  CAS  PubMed  Google Scholar 

  9. Seliger B. Strategies of tumor immune evasion. BioDrugs. 2005;19:347–54.

    Article  CAS  PubMed  Google Scholar 

  10. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.

    Article  CAS  PubMed  Google Scholar 

  11. Okada Y. Sendai virus-induced cell fusion. Methods Enzymol. 1993;221:18–41.

    Article  CAS  PubMed  Google Scholar 

  12. White JM. Viral and cellular membrane fusion proteins. Annu Rev Physiol. 1990;52:675–97.

    Article  CAS  PubMed  Google Scholar 

  13. Yasuoka E, Oshima K, Tamai K, Kubo T, Kaneda Y. Needleless intranasal administration of HVJ-E containing allergen attenuates experimental allergic rhinitis. J Mol Med (Berl). 2007;85:283–92.

    Article  CAS  Google Scholar 

  14. Kaneda Y, Nakajima T, Nishikawa T, Yamamoto S, Ikegami H, Suzuki N, et al. Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther. 2002;6:219–26.

    Article  CAS  PubMed  Google Scholar 

  15. Oshima K, Shimamura M, Mizuno S, Tamai K, Doi K, Morishita R, et al. Intrathecal injection of HVJ-E containing HGF gene to cerebrospinal fluid can prevent and ameliorate hearing impairment in rats. FASEB J. 2004;18:212–4.

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura H, Aoki M, Tamai K, Oishi M, Ogihara T, Kaneda Y, et al. Prevention and regression of atopic dermatitis by ointment containing NF-kB decoy oligodeoxynucleotides in NC/Nga atopic mouse model. Gene Ther. 2002;9:1221–9.

    Article  CAS  PubMed  Google Scholar 

  17. Ito M, Yamamoto S, Nimura K, Hiraoka K, Tamai K, Kaneda Y. Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin. J Gene Med. 2005;7:1044–52.

    Article  CAS  PubMed  Google Scholar 

  18. Kurooka M, Kaneda Y. Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res. 2007;67:227–36.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki H, Kurooka M, Hiroaki Y, Fujiyoshi Y, Kaneda Y. Sendai virus F glycoprotein induces IL-6 production in dendritic cells in a fusion-independent manner. FEBS Lett. 2008;582:1325–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gotoh B, Ogasawara T, Toyoda T, Inocencio NM, Hamaguchi M, Nagai Y. An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. EMBO J. 1990;9:4189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lamb RA. Paramyxovirus fusion: a hypothesis for changes. Virology. 1993;197:1–11.

    Article  CAS  PubMed  Google Scholar 

  22. Iwata S, Schmidt AC, Titani K, Suzuki M, Kido H, Gotoh B, et al. Assignment of disulfide bridges in the fusion glycoprotein of Sendai virus. J Virol. 1994;68:3200–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoekstra D, Klappe K, Hoff H, Nir S. Mechanism of fusion of Sendai virus: role of hydrophobic interactions and mobility constraints of viral membrane proteins. Effects of polyethylene glycol. J Biol Chem. 1989;264:6786–92.

    CAS  PubMed  Google Scholar 

  24. Ghosh JK, Peisajovich SG, Shai Y. Sendai virus internal fusion peptide: structural and functional characterization and a plausible mode of viral entry inhibition. Biochemistry. 2000;39:11581–92.

    Article  CAS  PubMed  Google Scholar 

  25. Kawachi M, Tamai K, Saga K, Yamazaki T, Fujita H, Shimbo T, et al. Development of tissue-targeting hemagglutinating virus of Japan envelope vector for successful delivery of therapeutic gene to mouse skin. Hum Gene Ther. 2007;18:881–94.

    Article  CAS  PubMed  Google Scholar 

  26. Chuang TH, Lee J, Kline L, Mathison JC, Ulevitch RJ. Toll-like receptor 9 mediates CpG-DNA signaling. J Leukoc Biol. 2002;71:538–44.

    CAS  PubMed  Google Scholar 

  27. Lou Y, Liu C, Lizee G, Peng W, Xu C, Ye Y, et al. Antitumor activity mediated by CpG: the route of administration is critical. J Immunother. 2011;34:279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma RK, Chheda ZS, Jala VR, Haribabu B. Regulation of cytotoxic T-Lymphocyte trafficking to tumors by chemoattractants: implications for immunotherapy. Expert Rev Vaccin. 2015;14:537–49.

    Article  CAS  Google Scholar 

  29. Saga K, Tamai K, Yamazaki T, Kaneda Y. Systemic administration of a novel immune-stimulatory pseudovirion suppresses lung metastatic melanoma by regionally enhancing IFN-gamma production. Clin Cancer Res. 2013;19:668–79.

    Article  CAS  PubMed  Google Scholar 

  30. Chang CY, Tai JA, Li S, Nishikawa T, Kaneda Y. Virus-stimulated neutrophils in the tumor microenvironment enhance T cell-mediated anti-tumor immunity. Oncotarget. 2016;7:42195–207.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature. 2006;440:890–5.

    Article  CAS  PubMed  Google Scholar 

  32. Appay V, Rowland-Jones SL. RANTES: a versatile and controversial chemokine. Trends Immunol. 2001;22:83–7.

    Article  CAS  PubMed  Google Scholar 

  33. Aldinucci D, Colombatti A. The inflammatory chemokine CCL5 and cancer progression. Mediat Inflamm. 2014;2014:292376.

    Article  CAS  Google Scholar 

  34. Nishikawa T, Tung LY, Kaneda Y. Systemic administration of platelets incorporating inactivated Sendai virus eradicates melanoma in mice. Mol Ther. 2014;22:2046–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gronevik E, von Steyern FV, Kalhovde JM, Tjelle TE, Mathiesen I. Gene expression and immune response kinetics using electroporation-mediated DNA delivery to muscle. J Gene Med. 2005;7:218–27.

    Article  CAS  PubMed  Google Scholar 

  36. Ishikawa H, Takano M, Matsumoto N, Sawada H, Ide C, Mimura O, et al. Effect of GDNF gene transfer into axotomized retinal ganglion cells using in vivo electroporation with a contact lens-type electrode. Gene Ther. 2004;12:289.

    Article  CAS  Google Scholar 

  37. Yu JW, Bhattacharya S, Yanamandra N, Kilian D, Shi H, Yadavilli S, et al. Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS ONE. 2018;13:e0206223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kawaguchi Y, Miyamoto Y, Inoue T, Kaneda Y. Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle. Int J Cancer. 2009;124:2478–87.

    Article  CAS  PubMed  Google Scholar 

  39. Liu LW, Nishikawa T, Kaneda Y. An RNA molecule derived from Sendai virus DI particles induces antitumor immunity and cancer cell-selective apoptosis. Mol Ther. 2016;24:135–45.

    Article  CAS  PubMed  Google Scholar 

  40. Barber GN. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 2014;35:88–93.

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Wilson HL, Kiss-Toth E. Regulating STING in health and disease. J Inflamm. 2017;14:11.

    Article  CAS  Google Scholar 

  42. Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. J Virol. 2014;88:5328–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. An X, Zhu Y, Zheng T, Wang G, Zhang M, Li J, et al. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer. Mol Ther Nucleic Acids. 2019;14:80–9.

    Article  CAS  PubMed  Google Scholar 

  44. Larkin B, Ilyukha V, Sorokin M, Buzdin A, Vannier E, Poltorak A. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J Immunol. 2017;199:397–402.

    Article  CAS  PubMed  Google Scholar 

  45. Cerboni S, Jeremiah N, Gentili M, Gehrmann U, Conrad C, Stolzenberg MC, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med. 2017;214:1769–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Kotaro Saga for providing the pCY4B and pCY4B-F plasmids. The authors received donations from Ishihara Sangyo Kaisha, Ltd. and Stemrim, Inc. for the research of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasufumi Kaneda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, J.A., Chang, C.Y., Nishikawa, T. et al. Cancer immunotherapy using the Fusion gene of Sendai virus. Cancer Gene Ther 27, 498–508 (2020). https://doi.org/10.1038/s41417-019-0126-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0126-6

Search

Quick links