Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Translatable gene therapy for lung cancer using Crispr CAS9—an exploratory review


Gene therapy using CRISPR Cas9 technique is rapidly gaining popularity among the scientific community primarily because of its versatility, cost-effectiveness, and high efficacy. While the laboratory-based experiments and findings making use of CRISPR as a gene editing tool are available in ample amounts, the question arises that how much of these findings are actually translatable into measures helping in combating particular disease conditions. In this review, we highlight the important studies and findings done till now in the perspective of lung cancer with an in-depth analysis of various clinical trials associated with the use of CRISPR Cas9 technology in the field of cancer research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1


  1. 1.

    Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.

    PubMed  Google Scholar 

  2. 2.

    Takiar R, Nadayil D, Nandakumar A. Projections of number of cancer cases in India (2010–2020) by cancer groups. Asian Pac J Cancer Prev. 2010;11:1045–9.

    PubMed  Google Scholar 

  3. 3.

    Malik PS, Sharma MC, Mohanti BK, Shukla NK, Deo S, Mohan A, et al. Clinico-pathological profile of lung cancer at AIIMS: a changing paradigm in India. Asian Pac J Cancer Prev. 2013;14:489–94.

    PubMed  Google Scholar 

  4. 4.

    Mandal SK, Singh TT, Sharma TD, Amrithalingam V. Clinico-pathology of lung cancer in a regional cancer center in Northeastern India. Asian Pac J Cancer Prev. 2013;14:7277–81.

    PubMed  Google Scholar 

  5. 5.

    Noronha V, Dikshit R, Raut N, Joshi A, Pramesh CS, George K, et al. Epidemiology of lung cancer in India: focus on the differences between non-smokers and smokers: a single-centre experience. Indian J Cancer. 2012;49:74–81.

    CAS  PubMed  Google Scholar 

  6. 6.

    Devesa SS, Bray F, Vizcaino AP, Parkin DM. International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising. Int J Cancer. 2005;117:294–9.

    CAS  PubMed  Google Scholar 

  7. 7.

    Thiberville L, Payne P, Vielkinds J, LeRiche J, Horsman D, Nouvet G, et al. Evidence of cumulative gene losses with progression of premalignant epithelial lesions to carcinoma of the bronchus. Cancer Res. 1995;55:5133–9.

    CAS  PubMed  Google Scholar 

  8. 8.

    Xu XL, Wu LC, Du F, Davis A, Peyton M, Tomizawa Y, et al. Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res. 2001;61:7943–9.

    CAS  PubMed  Google Scholar 

  9. 9.

    Sloan EK, Stanley KL, Anderson RL. Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene. 2004;23:7893–7.

    CAS  PubMed  Google Scholar 

  10. 10.

    Pekarsky Y, Zanesi N, Palamarchuk A, Huebner K, Croce CM. FHIT: from gene discovery to cancer treatment and prevention. Lancet Oncol. 2002;3:748–54.

    CAS  PubMed  Google Scholar 

  11. 11.

    Kremer M, Quintanilla-Martinez L, Fuchs M, Gamboa-Dominguez A, Haye S, Kalthoff H, et al. Influence of tumor-associated E-cadherin mutations on tumorigenicity and metastasis. Carcinogenesis. 2003;24:1879–86.

    CAS  PubMed  Google Scholar 

  12. 12.

    Pinsky PF, Church TR, Izmirlian G, Kramer BS. The National Lung Screening Trial: results stratified by demographics, smoking history, and lung cancer histology. Cancer. 2013;119:3976–83.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Scherer S, Davis RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci USA. 1979;76:4951–5.

    CAS  PubMed  Google Scholar 

  14. 14.

    Rong YS, Golic KG. Gene targeting by homologous recombination in Drosophila. Science. 2000;288:2013–8.

    CAS  PubMed  Google Scholar 

  15. 15.

    Rudin N, Sugarman E, Haber JE. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics. 1989;122:519–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14:8096–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Mojica FJ, Diez-Villasenor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 2000;36:244–6.

    CAS  PubMed  Google Scholar 

  19. 19.

    Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 2002;30:482–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Guy CP, Majernik AI, Chong JP, Bolt EL. A novel nuclease-ATPase (Nar71) from archaea is part of a proposed thermophilic DNA repair system. Nucleic Acids Res. 2004;32:6176–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151:2551–61.

    CAS  Google Scholar 

  22. 22.

    Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151:653–63.

    CAS  PubMed  Google Scholar 

  23. 23.

    Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43:1565–75.

    CAS  PubMed  Google Scholar 

  24. 24.

    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 2006;1:7.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA. 2002;99:7536–41.

    CAS  Google Scholar 

  26. 26.

    Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008;322:1843–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Barrangou R, Horvath P. CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol. 2012;3:143–62.

    CAS  PubMed  Google Scholar 

  28. 28.

    Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321:960–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24:1012–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Malina A, Mills JR, Cencic R, Yan Y, Fraser J, Schippers LM, et al. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev. 2013;27:2602–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87.

    CAS  Google Scholar 

  37. 37.

    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–8.

    CAS  PubMed  Google Scholar 

  38. 38.

    Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. 2015;160:339–50.

    CAS  PubMed  Google Scholar 

  39. 39.

    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154:442–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M, Cong L, et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature. 2013;500:472–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013;10:977–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. 2014;516:263–6.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013;155:1479–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159:647–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Albers J, Danzer C, Rechsteiner M, Lehmann H, Brandt LP, Hejhal T, et al. A versatile modular vector system for rapid combinatorial mammalian genetics. J Clin Invest. 2015;125:1603–19.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature. 2014;516:428–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Eichner LJ, Brun SN, Herzig S, Young NP, Curtis SD, Shackelford DB, et al. Genetic analysis reveals AMPK is required to support tumor growth in Murine Kras-dependent lung cancer models. Cell Metab. 2019;29:285–302 e7.

    CAS  PubMed  Google Scholar 

  49. 49.

    Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516:423–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    CAS  PubMed  Google Scholar 

  51. 51.

    Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 2016;22:1108–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Wang GZ, Cheng X, Li XC, Liu YQ, Wang XQ, Shi X, et al. Tobacco smoke induces production of chemokine CCL20 to promote lung cancer. Cancer Lett. 2015;363:60–70.

    CAS  PubMed  Google Scholar 

  53. 53.

    Park S, Zhang X, Li C, Yin C, Li J, Fallon JT, et al. Single-cell RNA sequencing reveals an altered gene expression pattern as a result of CRISPR/cas9-mediated deletion of Gene 33/Mig6 and chronic exposure to hexavalent chromium in human lung epithelial cells. Toxicol Appl Pharm. 2017;330:30–39.

    CAS  Google Scholar 

  54. 54.

    Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547:413–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Li L, Li W, Chen N, Zhao H, Xu G, Zhao Y, et al. FLI1 exonic circular RNAs as a novel oncogenic driver to promote tumor metastasis in small cell lung cancer. Clin Cancer Res. 2019;25:1302–17.

    PubMed  Google Scholar 

  56. 56.

    Zhou X, Padanad MS, Evers BM, Smith B, Novaresi N, Suresh S, et al. Modulation of mutant Kras(G12D)-driven lung tumorigenesis in vivo by gain or loss of PCDH7 function. Mol Cancer Res. 2019;17:594–603.

    CAS  PubMed  Google Scholar 

  57. 57.

    Wanzel M, Vischedyk JB, Gittler MP, Gremke N, Seiz JR, Hefter M, et al. CRISPR-Cas9-based target validation for p53-reactivating model compounds. Nat Chem Biol. 2016;12:22–8.

    CAS  PubMed  Google Scholar 

  58. 58.

    Wang K, Xing ZH, Jiang QW, Yang Y, Huang JR, Yuan ML, et al. Targeting uPAR by CRISPR/Cas9 system attenuates cancer malignancy and multidrug resistance. Front Oncol. 2019;9:80.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360:439–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013;10:957–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Yi L, Li J. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochim Biophys Acta. 2016;1866:197–207.

    CAS  PubMed  Google Scholar 

  62. 62.

    Palmer DC, Guittard GC, Franco Z, Crompton JG, Eil RL, Patel SJ, et al. Cish actively silences TCR signaling in CD8(+) T cells to maintain tumor tolerance. J Exp Med. 2015;212:2095–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202:907–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Bidnur S, Savdie R, Black PC. Inhibiting immune checkpoints for the treatment of bladder cancer. Bladder Cancer. 2016;2:15–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Festino L, Botti G, Lorigan P, Masucci GV, Hipp JD, Horak CE, et al. Cancer treatment with anti-PD-1/PD-L1 agents: is PD-L1 expression a biomarker for patient selection? Drugs. 2016;76:925–45.

    CAS  PubMed  Google Scholar 

  66. 66.

    Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol. 2018;9:947.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Miliotou AN, Papadopoulou LC. CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol. 2018;19:5–18.

    PubMed  Google Scholar 

  68. 68.

    Howland KC, Ausubel LJ, London CA, Abbas AK. The roles of CD28 and CD40 ligand in T cell activation and tolerance. J Immunol. 2000;164:4465–70.

    CAS  PubMed  Google Scholar 

  69. 69.

    Franco EL, Rohan TE, Villa LL. Epidemiologic evidence and human papillomavirus infection as a necessary cause of cervical cancer. JNCI J Natl Cancer Inst. 1999;91:506–11.

    CAS  PubMed  Google Scholar 

  70. 70.

    Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 2005;37:319–24.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Hu Z, Ding W, Zhu D, Yu L, Jiang X, Wang X, et al. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J Clin Invest. 2015;125:425–36.

    PubMed  Google Scholar 

  72. 72.

    Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, et al. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int. 2014;2014:612823.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Fish RJ, Kruithof EK. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol Biol. 2004;5:9.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Choi PS, Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun. 2014;5:3728.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160:1246–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Blasco RB, Karaca E, Ambrogio C, Cheong TC, Karayol E, Minero VG, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 2014;9:1219–27.

    CAS  PubMed  Google Scholar 

  80. 80.

    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11:636–46.

    CAS  PubMed  Google Scholar 

  81. 81.

    Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14:49–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

    PubMed  Google Scholar 

Download references


DS is supported by a start-up fund (SEED grant) from VIT, Vellore. DS is also supported by a Indian Council of Medical Research (ICMR) Funded Project (Sanction Order No.NCD/Ad-hoc/66/2016-17), a “Fast Track Young Scientist” grant (YSS/2014/000027) from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India and an extramural grant (BT/PR19625/MED/30/1703/2016) from the Department of Biotechnology, Government of India.

Author information



Corresponding author

Correspondence to Dwaipayan Sen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nair, J., Nair, A., Veerappan, S. et al. Translatable gene therapy for lung cancer using Crispr CAS9—an exploratory review. Cancer Gene Ther 27, 116–124 (2020).

Download citation

Further reading


Quick links