Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AAV-mediated expression of 3TSR inhibits tumor and metastatic lesion development and extends survival in a murine model of epithelial ovarian carcinoma

Abstract

An integral step in the development of solid tumors is the recruitment of blood vessels to fuel tumor growth. Antiangiogenic therapies can inhibit this process and control solid tumor growth. Thrombospondin-1 is an antiangiogenic protein possessing three type I repeats (3TSR) near the center of the protein and a CD47-binding peptide (CD47) in its C-terminus. Previously, we showed that treatment with recombinant 3TSR induces tumor regression, normalizes tumor vasculature, and improves uptake of chemotherapy drugs in an orthotopic, syngeneic mouse model of advanced stage epithelial ovarian cancer (EOC). While effective, this intervention required daily intraperitoneal injections. To circumvent this, here we employ adeno-associated virus (AAV) gene therapy vectors to express 3TSR alone or in combination with the CD47-binding peptide of TSP-1 and evaluate the impact on tumor development and survival in a mouse model of EOC. A single intraperitoneal injection of 1 × 1011 vg of AAV expressing 3TSR, CD47-binding peptide, or 3TSR + CD47 effectively suppressed primary tumor growth; however, only AAV-3TSR was able to inhibit development of secondary lesions at 90-days post-tumor implantation and significantly improve survival. Taken together, AAV-mediated expression of 3TSR appears safe and effective at inhibiting tumor development and represents a novel, less invasive approach for treating ovarian carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. NCI. Surveillance, epidemiology, and end results (SEER). National Cancer Institute; 2018.

  2. Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3:502–16.

    CAS  PubMed  Google Scholar 

  3. Sato-Dahlman M, Wirth K, Yamamoto M. Role of gene therapy in pancreatic cancer-a review. Cancers. 2018;10:E103.

    PubMed  Google Scholar 

  4. Schambach A, Morgan M. Retroviral vectors for cancer gene therapy. Recent Results Cancer Res. 2016;209:17–35.

    CAS  PubMed  Google Scholar 

  5. Lin T, Zhang L, Davis J, Gu J, Nishizaki M, Ji L, et al. Combination of TRAIL gene therapy and chemotherapy enhances antitumor and antimetastasis effects in chemosensitive and chemoresistant breast cancers. Mol Ther. 2003;8:441–8.

    CAS  PubMed  Google Scholar 

  6. Li ZB, Zeng ZJ, Chen Q, Luo SQ, Hu WX. Recombinant AAV-mediated HSVtk gene transfer with direct intratumoral injections and Tet-On regulation for implanted human breast cancer. BMC Cancer. 2006;6:66.

    PubMed  Google Scholar 

  7. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177:1053–64.

    PubMed  PubMed Central  Google Scholar 

  8. Xie Y, Hicks MJ, Kaminsky SM, Moore MA, Crystal RG, Rafii A. AAV-mediated persistent bevacizumab therapy suppresses tumor growth of ovarian cancer. Gynecol Oncol. 2014;135:325–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA. 1990;87:6624–8.

    CAS  PubMed  Google Scholar 

  10. Henkin J, Volpert OV. Therapies using anti-angiogenic peptide mimetics of thrombospondin-1. Expert Opin Ther Targets. 2011;15:1369–86.

    CAS  PubMed  Google Scholar 

  11. Miao WM, Seng WL, Duquette M, Lawler P, Laus C, Lawler J. Thrombospondin-1 type 1 repeat recombinant proteins inhibit tumor growth through transforming growth factor-beta-dependent and -independent mechanisms. Cancer Res. 2001;61:7830–9.

    CAS  PubMed  Google Scholar 

  12. Greenaway J, Henkin J, Lawler J, Moorehead R, Petrik J. ABT-510 induces tumor cell apoptosis and inhibits ovarian tumor growth in an orthotopic, syngeneic model of epithelial ovarian cancer. Mol Cancer Ther. 2009;8:64–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Campbell N, Greenaway J, Henkin J, Petrik J. ABT-898 induces tumor regression and prolongs survival in a mouse model of epithelial ovarian cancer. Mol Cancer Ther. 2011;10:1876–85.

    CAS  PubMed  Google Scholar 

  14. Campbell NE, Greenaway J, Henkin J, Moorehead RA, Petrik J. The thrombospondin-1 mimetic ABT-510 increases the uptake and effectiveness of cisplatin and paclitaxel in a mouse model of epithelial ovarian cancer. Neoplasia. 2010;12:275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Russell S, Duquette M, Liu J, Drapkin R, Lawler J, Petrik J. Combined therapy with thrombospondin-1 type I repeats (3TSR) and chemotherapy induces regression and significantly improves survival in a preclinical model of advanced stage epithelial ovarian cancer. FASEB J. 2015;29:576–88.

    CAS  PubMed  Google Scholar 

  16. Matuszewska K, Santry LA, van Vloten JP, Au Yeung AW, Major PP, Lawler J, et al. Combining vascular normalization with an oncolytic virus enhances immunotherapy in a preclinical model of advanced-stage ovarian cancer. Clin Cancer Res. 2018;25:1624–38.

    PubMed  Google Scholar 

  17. Chao MP, Weissman IL, Majeti R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24:225–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaur S, Martin-Manso G, Pendrak ML, Garfield SH, Isenberg JS, Roberts DD. Thrombospondin-1 inhibits VEGF receptor-2 signaling by disrupting its association with CD47. J Biol Chem. 2010;285:38923–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res. 2003;63:4342–6.

    CAS  PubMed  Google Scholar 

  20. Pietras K, Hanahan D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol. 2005;23:939–52.

    CAS  PubMed  Google Scholar 

  21. Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis. 2000;21:585–91.

    CAS  PubMed  Google Scholar 

  22. Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE. 2011;6:e18556.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, et al. The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004;14:2121–7.

    PubMed  Google Scholar 

  24. Halbert CL, Allen JM, Chamberlain JS. AAV6 vector production and purification for muscle gene therapy. Methods Mol Biol. 2018;1687:257–66.

    CAS  PubMed  Google Scholar 

  25. van Lieshout LP, Domm JM, Wootton SK. AAV-mediated gene delivery to the lung. Methods Mol Biol. 2019;1950:361–72.

    PubMed  Google Scholar 

  26. Huang X, Hartley AV, Yin Y, Herskowitz JH, Lah JJ, Ressler KJ. AAV2 production with optimized N/P ratio and PEI-mediated transfection results in low toxicity and high titer for in vitro and in vivo applications. J Virol Methods. 2013;193:270–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Aurnhammer C, Haase M, Muether N, Hausl M, Rauschhuber C, Huber I, et al. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum Gene Ther Methods. 2012;23:18–28.

    CAS  PubMed  Google Scholar 

  28. Linnerth-Petrik NM, Santry LA, Petrik JJ, Wootton SK. Opposing functions of Akt isoforms in lung tumor initiation and progression. PLoS ONE. 2014;9:e94595.

    PubMed  PubMed Central  Google Scholar 

  29. Greenaway J, Moorehead R, Shaw P, Petrik J. Epithelial-stromal interaction increases cell proliferation, survival and tumorigenicity in a mouse model of human epithelial ovarian cancer. Gynecol Oncol. 2008;108:385–94.

    CAS  PubMed  Google Scholar 

  30. Yan J, Wang H, Xu Q, Jain N, Toxavidis V, Tigges J, et al. Signal sequence is still required in genes downstream of “autocleaving” 2A peptide for secretary or membrane-anchored expression. Anal Biochem. 2010;399:144–6.

    CAS  PubMed  Google Scholar 

  31. Lawler J, Detmar M. Tumor progression: the effects of thrombospondin-1 and -2. Int J Biochem Cell Biol. 2004;36:1038–45.

    CAS  PubMed  Google Scholar 

  32. Zhang X, Xu J, Lawler J, Terwilliger E, Parangi S. Adeno-associated virus-mediated antiangiogenic gene therapy with thrombospondin-1 type 1 repeats and endostatin. Clin Cancer Res. 2007;13:3968–76.

    CAS  PubMed  Google Scholar 

  33. Short SM, Derrien A, Narsimhan RP, Lawler J, Ingber DE, Zetter BR. Inhibition of endothelial cell migration by thrombospondin-1 type-1 repeats is mediated by beta1 integrins. J Cell Biol. 2005;168:643–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang X, Galardi E, Duquette M, Lawler J, Parangi S. Antiangiogenic treatment with three thrombospondin-1 type 1 repeats versus gemcitabine in an orthotopic human pancreatic cancer model. Clin Cancer Res. 2005;11:5622–30.

    CAS  PubMed  Google Scholar 

  35. Kisker O, Becker CM, Prox D, Fannon M, D’Amato R, Flynn E, et al. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res. 2001;61:7669–74.

    CAS  PubMed  Google Scholar 

  36. Drixler TA, Borel Rinkes IH, Ritchie ED, van Vroonhoven TJ, Gebbink MF, Voest EE. Continuous administration of angiostatin inhibits accelerated growth of colorectal liver metastases after partial hepatectomy. Cancer Res. 2000;60:1761–5.

    CAS  PubMed  Google Scholar 

  37. Zhang X, Connolly C, Duquette M, Lawler J, Parangi S. Continuous administration of the three thrombospondin-1 type 1 repeats recombinant protein improves the potency of therapy in an orthotopic human pancreatic cancer model. Cancer Lett. 2007;247:143–9.

    CAS  PubMed  Google Scholar 

  38. Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success–a personal perspective. Hum Gene Ther. 2015;26:257–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Matuszewska K, Santry LA, van Vloten JP, Au Yeung AWK, Major PP, Lawler J et al. Combining vascular normalization with an oncolytic virus enhances immunotherapy in a preclinical model of advanced-stage ovarian cancer. Clinical Cancer Res. 2018.

  40. Chtarto A, Bender HU, Hanemann CO, Kemp T, Lehtonen E, Levivier M, et al. Tetracycline-inducible transgene expression mediated by a single AAV vector. Gene Ther. 2003;10:84–94.

    CAS  PubMed  Google Scholar 

  41. Lee TY, Tjin Tham Sjin RM, Movahedi S, Ahmed B, Pravda EA, Lo KM, et al. Linking antibody Fc domain to endostatin significantly improves endostatin half-life and efficacy. Clin Cancer Res. 2008;14:1487–93.

    CAS  PubMed  Google Scholar 

  42. Wang L, Nichols TC, Read MS, Bellinger DA, Verma IM. Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol Ther. 2000;1:154–8.

    CAS  PubMed  Google Scholar 

  43. Crudele JM, Finn JD, Siner JI, Martin NB, Niemeyer GP, Zhou S, et al. AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood. 2015;125:1553–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sabatino DE, Lange AM, Altynova ES, Sarkar R, Zhou S, Merricks EP, et al. Efficacy and safety of long-term prophylaxis in severe hemophilia A dogs following liver gene therapy using AAV vectors. Mol Ther. 2011;19:442–9.

    CAS  PubMed  Google Scholar 

  45. van Lieshout LP, Soule G, Sorensen D, Frost KL, He S, Tierney K, et al. Intramuscular adeno-associated virus-mediated expression of monoclonal antibodies provides 100% protection against ebola virus infection in mice. J Infect Dis. 2018;217:916–25.

    PubMed  PubMed Central  Google Scholar 

  46. Song S, Morgan M, Ellis T, Poirier A, Chesnut K, Wang J, et al. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci USA. 1998;95:14384–8.

    CAS  PubMed  Google Scholar 

  47. Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA, et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA. 1996;93:14082–7.

    CAS  PubMed  Google Scholar 

  48. Buchlis G, Podsakoff GM, Radu A, Hawk SM, Flake AW, Mingozzi F, et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood. 2012;119:3038–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zincarelli C, Soltys S, Rengo G, Rabinowitz J. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16:1073–80.

    CAS  PubMed  Google Scholar 

  50. Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol. 2006;80:11393–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mao Y, Wang X, Yan R, Hu W, Li A, Wang S, et al. Single point mutation in adeno-associated viral vectors -DJ capsid leads to improvement for gene delivery in vivo. BMC Biotechnol. 2016;16:1.

    PubMed  PubMed Central  Google Scholar 

  52. van Lieshout LP, Domm JM, Rindler TN, Frost KL, Sorensen DL, Medina SJ, et al. A novel triple-mutant AAV6 capsid induces rapid and potent transgene expression in the muscle and respiratory tract of mice. Mol Ther Methods Clin Dev. 2018;9:323–9.

    PubMed  PubMed Central  Google Scholar 

  53. Rivera VM, Gao GP, Grant RL, Schnell MA, Zoltick PW, Rozamus LW, et al. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood. 2005;105:1424–30.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Campus Animal Facilities, University of Guelph, for animal care services. We also thank Betty-Anne McBey for her technical assistance with this project and Jessica Minott for assistance with monitoring mice during the survival study.

Funding

Funding for this research was provided by grants from the Canadian Institutes of Health Research (JJP) and the Cancer Research Society (JJP and SKW) AAS was supported by a Vanier Canada Graduate Scholarship (CIHR) and a Brock Doctoral Scholarship; DLY was supported by an OVC PhD Scholarship. The project was also supported by a CAO Pilot grant from the Beth Israel Deaconess Medical Center (JL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byram W. Bridle, James J. Petrik or Sarah K. Wootton.

Ethics declarations

Conflict of interest

JJP and JL are co-inventors on US patent US20140271641A1 for the treatment of ovarian cancer with 3TSR.

Ethics

All animal experiments were conducted in accordance with the Canadian Council on Animal Care guidelines and approved by the Animal Care Committee of the University of Guelph (AUP# 3827). 8-week-old C57BL/6 female mice were purchased from Charles River Laboratories (St. Constant, Quebec, Canada).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D.L., Stegelmeier, A.A., Chow, N. et al. AAV-mediated expression of 3TSR inhibits tumor and metastatic lesion development and extends survival in a murine model of epithelial ovarian carcinoma. Cancer Gene Ther 27, 356–367 (2020). https://doi.org/10.1038/s41417-019-0108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0108-8

Search

Quick links