Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of leukemia stem cell expression signatures through Monte Carlo feature selection strategy and support vector machine

Abstract

Acute myeloid leukemia (AML) is a type of blood cancer characterized by the rapid growth of immature white blood cells from the bone marrow. Therapy resistance resulting from the persistence of leukemia stem cells (LSCs) are found in numerous patients. Comparative transcriptome studies have been previously conducted to analyze differentially expressed genes between LSC+ and LSC− cells. However, these studies mainly focused on a limited number of genes with the most obvious expression differences between the two cell types. We developed a computational approach incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS), incremental feature selection (IFS), support vector machine (SVM), Repeated Incremental Pruning to Produce Error Reduction (RIPPER), to identify gene expression features specific to LSCs. One thousand 0ne hudred fifty-nine features (genes) were first identified, which can be used to build the optimal SVM classifier for distinguishing LSC+ and LSC− cells. Among these 1159 genes, the top 17 genes were identified as LSC-specific biomarkers. In addition, six classification rules were produced by RIPPER algorithm. The subsequent literature review on these features/genes and the classification rules and functional enrichment analyses of the 1159 features/genes confirmed the relevance of extracted genes and rules to the characteristics of LSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ballen KK, Lazarus H. Cord blood transplant for acute myeloid leukaemia. Br J Haematol. 2016;173:25–36.

    PubMed  Google Scholar 

  2. Chevallier P, Labopin M, Socie G, Rubio MT, Blaise D, Vigouroux S, et al. Comparison of umbilical cord blood allogeneic stem cell transplantation vs. auto-SCT for adult acute myeloid leukemia patients in second complete remission at transplant: a retrospective study on behalf of the SFGM-TC. Eur J Haematol. 2015;94:449–55.

    PubMed  Google Scholar 

  3. Cheuk D, Chiang A, Ha SY, Chan G. Favorable outcomes of unrelated cord blood transplant for pediatric acute myeloid leukemia In Hong Kong. Pediatr Blood Cancer. 2013;60:78–78.

    Google Scholar 

  4. Huang XX, Xiong M, Jin YJ, Deng CH, Xu H, An CQ, et al. Evidence that high-migration drug-surviving MOLT4 leukemia cells exhibit cancer stem cell-like properties. Int J Oncol. 2016;49:343–51.

    CAS  PubMed  Google Scholar 

  5. Fong CY, Gilan O, Lam EYN, Rubin AF, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sinclair A, Latif AL, Holyoake TL. Targeting survival pathways in chronic myeloid leukaemia stem cells. Br J Pharmacol. 2013;169:1693–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brenner AK, Tvedt THA, Bruserud O. The complexity of targeting PI3K-Akt-mTOR signalling in human acute myeloid leukaemia: the importance of leukemic cell heterogeneity, neighbouring mesenchymal stem cells and immunocompetent cells. Molecules. 2016;21:1512.

    PubMed Central  Google Scholar 

  8. Zoller M. CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front Immunol. 2015;6:235.

    PubMed  PubMed Central  Google Scholar 

  9. Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Prost S, Relouzat F, Spentchian M, Ouzegdouh Y, Saliba J, Massonnet G, et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPAR gamma agonists. Nature. 2015;525:380–3.

    CAS  PubMed  Google Scholar 

  11. Crews LA, Jamieson CHM. Selective elimination of leukemia stem cells: Hitting a moving target. Cancer Lett. 2013;338:15–22.

    CAS  PubMed  Google Scholar 

  12. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci USA. 2007;104:11008–13.

    CAS  PubMed  Google Scholar 

  13. Kinstrie R, Horne GA, Morrison H, Moka HA, Cassels J, Dunn K, et al. CD93 is a novel biomarker of leukemia stem cells in chronic myeloid leukemia. Blood. 2015;126:49.

    Google Scholar 

  14. Horacek JM, Jebavy L, Tichy M, Pudil R, Zak P, Slovacek L, et al. Multiple biomarkers in the assessment of cardiac toxicity during haematopoietic stem cell transplantation in acute leukaemia. Bone Marrow Transplant. 2008;41:S100.

    Google Scholar 

  15. Tohda S. [Biomarker for hematopoietic tumors--aiming for personalized diagnosis of leukemia stem cells]. Rinsho Byori. 2015;63:1110–3.

    CAS  PubMed  Google Scholar 

  16. Ng SWK, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540:433–7.

    CAS  PubMed  Google Scholar 

  17. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.

    Google Scholar 

  18. Draminski M, Rada-Iglesias A, Enroth S, Wadelius C, Koronacki J, Komorowski J. Monte Carlo feature selection for supervised classification. Bioinformatics. 2008;24:110–7.

    CAS  PubMed  Google Scholar 

  19. Fast effective rule induction. Proc the twelfth international conference on machine learning. Elsevier, Tahoe City, California, USA, 1995.

  20. Dramiński M, Kierczak M, Nowak-Brzezińska A, Koronecki J, Komorowski J. The Monte Carlo feature selection and interdependency discovery is unbiased. Control Cybern. 2011;40:199–211.

    Google Scholar 

  21. Chen L, Li J, Zhang Y-H, Feng K, Wang S, Zhang Y, et al. Identification of gene expression signatures across different types of neural stem cells with the Monte-Carlo feature selection method. J Cell Biochem. 2018;119:3394–403.

    CAS  PubMed  Google Scholar 

  22. Wang D, Li J-R, Zhang Y-H, Chen L, Huang T, Cai Y-D. Identification of differentially expressed genes between original breast cancer and xenograft using machine learning algorithms. Genes. 2018;9:155.

    PubMed Central  Google Scholar 

  23. Pan X, Hu X, Zhang Y-h, Feng K, Wang SP, Chen L, et al. Identifying patients with atrioventricular septal defect in down syndrome populations by using self-normalizing neural networks and feature selection. Genes. 2018;9:208.

    PubMed Central  Google Scholar 

  24. Wang S, Zhang YH, Lu J, Cui W, Hu J, Cai YD. Analysis and identification of aptamer-compound interactions with a maximum relevance minimum redundancy and nearest neighbor algorithm. Biomed Res Int. 2016:2016:8351204.

    Google Scholar 

  25. A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint Conference on artificial intelligence. Lawrence Erlbaum Associates Ltd, Montreal, QC, Canada, 1995.

  26. Platt J. Sequential minimal optimizaton: a fast algorithm for training support vector machines. Tech. Rep. MSR-TR-98-14. 1998. https://www.microsoft.com/en-us/research/publication/sequential-minimaloptimization-a-fast-algorithm-for-training-support-vector-machines/.

  27. Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using Weka. Bioinformatics. 2004;20:2479–81.

    CAS  PubMed  Google Scholar 

  28. Chen L, Zhang YH, Lu G, Huang T, Cai YD. Analysis of cancer-related lncRNAs using gene ontology and KEGG pathways. Artif Intell Med. 2017;76:27–36.

    PubMed  Google Scholar 

  29. Zhang Q, Sun X, Feng K, Wang S, Zhang YH, Wang S, et al. Predicting citrullination sites in protein sequences using mRMR method and random forest algorithm. Comb Chem High Throughput Screen. 2017;20:164–73.

    CAS  PubMed  Google Scholar 

  30. Chen L, Zhang YH, Huang T, Cai YD. Gene expression profiling gut microbiota in different races of humans. Sci Rep. 2016;6:23075.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang YH, Xing ZH, Liu CL, Wang SP, Huang T, Cai YD, et al. Identification of the core regulators of the HLA I-peptide binding process. Sci Rep. 2017;7:42768.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Lu L, Zhang Y, Liu M, Chen L, Huang T, et al. Identification of synthetic lethality based on a functional network by using machine learning algorithms. J Cell Biochem. 2019;120:405–16.

    CAS  PubMed  Google Scholar 

  33. Chen L, Pan X, Hu X, Zhang Y-H, Wang S, Huang T, et al. Gene expression differences among different MSI statuses in colorectal cancer. Int J Cancer. 2018;143:1731–40.

    CAS  PubMed  Google Scholar 

  34. Zhao X, Chen L, Lu J. A similarity-based method for prediction of drug side effects with heterogeneous information. Math Biosci. 2018;306:136–44.

    CAS  PubMed  Google Scholar 

  35. Zhao X, Chen L, Guo Z-H, Liu T. Predicting drug side effects with compact integration of heterogeneous networks. Curr. Bioinforma. 2019. https://www.benthamscience.com/journals/current-bioinformatics/article/170114/.

  36. Wang S, Zhang Q, Lu J, Cai YD. Analysis and prediction of nitrated tyrosine sites with mRMR method and support vector machine algorithm. Curr Bioinforma. 2018;13:3–13.

    CAS  Google Scholar 

  37. Li BQ, Cai YD, Feng KY, Zhao GJ. Prediction of protein cleavage site with feature selection by random forest. PloS ONE. 2012;7:e45854.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen L, Wang S, Zhang Y-H, Li J, Xing Z-H, Yang J, et al. Identify key sequence features to improve CRISPR sgRNA efficacy. IEEE Access. 2017;5:26582–90.

    Google Scholar 

  39. Liu L, Chen L, Zhang YH, Wei L, Cheng S, Kong X, et al. Analysis and prediction of drug-drug interaction by minimum redundancy maximum relevance and incremental feature selection. J Biomol Struct Dyn. 2017;35:312–29.

    CAS  PubMed  Google Scholar 

  40. Chen L, Chu C, Zhang Y-H, Zheng M-Y, Zhu L, Kong X, et al. Identification of drug-drug interactions using chemical interactions. Curr Bioinforma. 2017;12:526–34.

    CAS  Google Scholar 

  41. Cui H, Chen L.. A binary classifier for the prediction of EC numbers of enzymes. Curr. Proteom. 2019;16:381–9.

    Google Scholar 

  42. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405:442–51.

    CAS  PubMed  Google Scholar 

  43. Minagawa K, Jamil MO, Al-Obaidi M, Pereboeva L, Salzman D, Erba HP, et al. In vitro pre-clinical validation of suicide gene modified anti-CD33 redirected chimeric antigen receptor T-Cells for acute myeloid leukemia. PloS ONE. 2016;11:e0166891.

    PubMed  PubMed Central  Google Scholar 

  44. Lakshmikanth T, Olin A, Chen Y, Mikes J, Fredlund E, Remberger M, et al. Mass cytometry and topological data analysis reveal immune parameters associated with complications after allogeneic stem cell transplantation. Cell Rep. 2017;20:2238–50.

    CAS  PubMed  Google Scholar 

  45. Hashiguchi K, Ozaki M, Kuraoka I, Saitoh H. Establishment of a human cell line stably overexpressing mouse Nip45 and characterization of Nip45 subcellular localization. Biochem Biophys Res Commun. 2013;430:72–7.

    CAS  PubMed  Google Scholar 

  46. Kozlowska M, Smolenski RT, Makarewicz W, Hoffmann C, Jastorff B, Swierczynski J. ATP depletion, purine riboside triphosphate accumulation and rat thymocyte death induced by purine riboside. Toxicol Lett. 1999;104:171–81.

    CAS  PubMed  Google Scholar 

  47. Sekelova Z, Polansky O, Stepanova H, Fedr R, Faldynova M, Rychlik I. et al. Different roles of CD4, CD8 and gammadelta T-lymphocytes in naive and vaccinated chickens during Salmonella Enteritidis infection. Proteomics. 2017;17:13–4.

    Google Scholar 

  48. Huang W, Li H, Luo R. The microRNA-1246 promotes metastasis in non-small cell lung cancer by targeting cytoplasmic polyadenylation element-binding protein 4. Diagn Pathol. 2015;10:127.

    PubMed  PubMed Central  Google Scholar 

  49. Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. Wiley Inter Rev RNA. 2013;4:437–61.

    CAS  Google Scholar 

  50. Maillo C, Martin J, Sebastian D, Hernandez-Alvarez M, Garcia-Rocha M, Reina O, et al. Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nat Cell Biol. 2017;19:94–105.

    CAS  PubMed  Google Scholar 

  51. Crowther-Swanepoel D, Broderick P, Di Bernardo MC, Dobbins SE, Torres M, Mansouri M, et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet. 2010;42:132–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yin J, Park G, Lee JE, Park JY, Kim TH, Kim YJ, et al. CPEB1 modulates differentiation of glioma stem cells via downregulation of HES1 and SIRT1 expression. Oncotarget. 2014;5:6756–69.

    PubMed  PubMed Central  Google Scholar 

  53. Coleman EA, Lee JY, Erickson SW, Goodwin JA, Sanathkumar N, Raj VR, et al. GWAS of 972 autologous stem cell recipients with multiple myeloma identifies 11 genetic variants associated with chemotherapy-induced oral mucositis. Support Care Cancer. 2015;23:841–9.

    PubMed  Google Scholar 

  54. Sanders MA, Madoux F, Mladenovic L, Zhang H, Ye X, Angrish M, et al. Endogenous and synthetic ABHD5 ligands regulate ABHD5-perilipin interactions and lipolysis in fat and muscle. Cell Metab. 2015;22:851–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vieyres G, Welsch K, Gerold G, Gentzsch J, Kahl S, Vondran FW, et al. ABHD5/CGI-58, the Chanarin-Dorfman syndrome protein, mobilises lipid stores for hepatitis C virus production. PLoS Pathog. 2016;12:e1005568.

    PubMed  PubMed Central  Google Scholar 

  56. Demignot S, Beilstein F, Morel E. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders. Biochimie. 2014;96:48–55.

    CAS  PubMed  Google Scholar 

  57. Gal H, Amariglio N, Trakhtenbrot L, Jacob-Hirsh J, Margalit O, Avigdor A, et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia. 2006;20:2147–54.

    CAS  PubMed  Google Scholar 

  58. Xiao S, Li R, Diao H, Zhao F, Ye X. Progesterone receptor-mediated regulation of N-acetylneuraminate pyruvate lyase (NPL) in mouse uterine luminal epithelium and nonessential role of NPL in uterine function. PloS ONE. 2013;8:e65607.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Byers HL, Homer KA, Beighton D. Utilization of sialic acid by viridans streptococci. J Dent Res. 1996;75:1564–71.

    CAS  PubMed  Google Scholar 

  60. Minelli A, Maserati E, Rossi G, Bernardo ME, De Stefano P, Cecchini MP, et al. Familial platelet disorder with propensity to acute myelogenous leukemia: genetic heterogeneity and progression to leukemia via acquisition of clonal chromosome anomalies. Genes Chromosomes Cancer. 2004;40:165–71.

    CAS  PubMed  Google Scholar 

  61. Horwitz M, Benson KF, Li FQ, Wolff J, Leppert MF, Hobson L, et al. Genetic heterogeneity in familial acute myelogenous leukemia: evidence for a second locus at chromosome 16q21-23.2. Am J Hum Genet. 1997;61:873–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sharma HS, Muresanu DF, Lafuente JV, Patnaik R, Tian ZR, Ozkizilcik A, et al. Co-Administration of TiO2 Nanowired Mesenchymal Stem Cells with Cerebrolysin Potentiates Neprilysin Level and Reduces Brain Pathology in Alzheimer’s Disease. Mol Neurobiol. 2018;55:300–11.

    CAS  PubMed  Google Scholar 

  63. Wong SH, Goode DL, Iwasaki M, Wei MC, Kuo HP, Zhu L, et al. The H3K4-methyl epigenome regulates leukemia stem cell oncogenic potential. Cancer Cell. 2015;28:198–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Roos J, Oancea C, Heinssmann M, Khan D, Held H, Kahnt AS, et al. 5-Lipoxygenase is a candidate target for therapeutic management of stem cell-like cells in acute myeloid leukemia. Cancer Res. 2014;74:5244–55.

    CAS  PubMed  Google Scholar 

  65. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Maekawa S, Imamachi N, Irie T, Tani H, Matsumoto K, Mizutani R, et al. Analysis of RNA decay factor mediated RNA stability contributions on RNA abundance. BMC Genom. 2015;16:154.

    Google Scholar 

  67. Yeung ML, Houzet L, Yedavalli VS, Jeang KT. A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem. 2009;284:19463–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schwartz EL, Nilson LA. Activation of 2’,5’-oligoadenylate synthetase activity on induction of HL-60 leukemia cell differentiation. Mol Cell Biol. 1989;9:3897–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ksionda O, Melton AA, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658–68.

    CAS  PubMed  Google Scholar 

  70. Oki T, Kitaura J, Watanabe-Okochi N, Nishimura K, Maehara A, Uchida T, et al. Aberrant expression of RasGRP1 cooperates with gain-of-function NOTCH1 mutations in T-cell leukemogenesis. Leukemia. 2012;26:1038–45.

    CAS  PubMed  Google Scholar 

  71. Wang Y, Wu P, Lin R, Rong L, Xue Y, Fang Y. LncRNA NALT interaction with NOTCH1 promoted cell proliferation in pediatric T cell acute lymphoblastic leukemia. Sci Rep. 2015;5:13749.

    PubMed  PubMed Central  Google Scholar 

  72. Chen T, Meng Z, Gan Y, Wang X, Xu F, Gu Y, et al. The viral oncogene Np9 acts as a critical molecular switch for co-activating beta-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia. 2013;27:1469–78.

    CAS  PubMed  Google Scholar 

  73. Choi DB, Park MR, Kim HR, Jun CD, Kim HJ, Shim H, et al. Aberrant proteomic expression of NSRP70 and its clinical implications and connection to the transcriptional level in adult acute leukemia. Leuk Res. 2014;38:1252–9.

    CAS  PubMed  Google Scholar 

  74. Liu J, Huang B, Xiao Y, Xiong HM, Li J, Feng DQ, et al. Aberrant expression of splicing factors in newly diagnosed acute myeloid leukemia. Onkologie. 2012;35:335–40.

    PubMed  Google Scholar 

  75. Niemsiri V, Wang X, Pirim D, Radwan ZH, Bunker CH, Barmada MM, et al. Genetic contribution of SCARB1 variants to lipid traits in African Blacks: a candidate gene association study. BMC Med Genet. 2015;16:106.

    PubMed  PubMed Central  Google Scholar 

  76. Kobayashi S, Suzuki T, Kawaguchi A, Phongphaew W, Yoshii K, Iwano T, et al. Rab8b regulates transport of West Nile virus particles from recycling endosomes. J Biol Chem. 2016;291:6559–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015;163:712–23.

    CAS  PubMed  Google Scholar 

  78. Usman H, Ameer F, Munir R, Iqbal A, Zaid M, Hasnain S, et al. Leukemia cells display lower levels of intracellular cholesterol irrespective of the exogenous cholesterol availability. Clin Chim Acta. 2016;457:12–7.

    CAS  PubMed  Google Scholar 

  79. Capalbo G, Mueller-Kuller T, Koschmieder S, Klein HU, Ottmann OG, Hoelzer D, et al. Endoplasmic reticulum protein GliPR1 regulates G protein signaling and the cell cycle and is overexpressed in AML. Oncol Rep. 2013;30:2254–62.

    CAS  PubMed  Google Scholar 

  80. Bansal AK, Vishnubhatla S, Bakhshi S. Correlation of serum immunoglobulins with infection-related parameters during induction chemotherapy of pediatric acute myeloid leukemia: a prospective study. Pedia Hematol Oncol. 2015;32:129–37.

    CAS  Google Scholar 

  81. Jefferson AL, Woodhead HJ, Fyfe S, Briody J, Bebbington A, Strauss BJ, et al. Bone mineral content and density in Rett syndrome and their contributing factors. Pedia Res. 2011;69:293–8.

    Google Scholar 

  82. Cho WK, Ahn MB, Lee JW, Chung NG, Jung MH, Cho B, et al. Low bone mineral density in adolescents with leukemia after hematopoietic stem cell transplantation: prolonged steroid therapy for GvHD and endocrinopathy after hematopoietic stem cell transplantation might be major concerns? Bone Marrow Transpl. 2017;52:144–6.

    CAS  Google Scholar 

  83. Hopkins M, Tyson JJ, Novak B. Cell-cycle transitions: a common role for stoichiometric inhibitors. Mol Biol Cell. 2017;28:3437–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kar S. Unraveling cell-cycle dynamics in cancer. Cell Syst. 2016;2:8–10.

    CAS  PubMed  Google Scholar 

  85. Wang W, Stiehl T, Raffel S, Hoang VT, Hoffmann I, Poisa-Beiro L, et al. Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia. Haematologica. 2017;102:1567–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017;129:1577–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jeong YH, Sekiya M, Hirata M, Ye M, Yamagishi A, Lee SM, et al. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/beta-catenin signaling pathway. Biochem Biophys Res Commun. 2010;392:495–9.

    CAS  PubMed  Google Scholar 

  88. Giambra V, Jenkins CE, Lam SH, Hoofd C, Belmonte M, Wang X, et al. Leukemia stem cells in T-ALL require active Hif1alpha and Wnt signaling. Blood. 2015;125:3917–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dong L, Yu WM, Zheng H, Loh ML, Bunting ST, Pauly M, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature. 2016;539:304–8.

    PubMed  PubMed Central  Google Scholar 

  90. Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, et al. BCAT1 restricts alphaKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature. 2017;551:384–8.

    CAS  PubMed  Google Scholar 

  91. Fukawa T, Ono M, Matsuo T, Uehara H, Miki T, Nakamura Y, et al. DDX31 regulates the p53-HDM2 pathway and rRNA gene transcription through its interaction with NPM1 in renal cell carcinomas. Cancer Res. 2012;72:5867–77.

    CAS  PubMed  Google Scholar 

  92. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic acids Res. 2013;41(Database issue):D991–5.

    CAS  PubMed  Google Scholar 

  93. Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science. 2016;351:1166–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Helgadottir A, Sulem P, Thorgeirsson G, Gretarsdottir S, Thorleifsson G, Jensson BO, et al. Rare SCARB1 mutations associate with high-density lipoprotein cholesterol but not with coronary artery disease. Eur Heart J. 2018;39:2172–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Toomey MB, Lopes RJ, Araujo PM, Johnson JD, Gazda MA, Afonso S, et al. High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. Proc Natl Acad Sci USA. 2017;114:5219–24.

    CAS  PubMed  Google Scholar 

  96. Zhang W, Dong R, Diao S, Du J, Fan Z, Wang F. Differential long noncoding RNA/mRNA expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells. Stem Cell Res Ther. 2017;8:30.

    PubMed  PubMed Central  Google Scholar 

  97. Martineau C, Martin-Falstrault L, Brissette L, Moreau R. Gender- and region-specific alterations in bone metabolism in Scarb1-null female mice. J Endocrinol. 2014;222:277–88.

    CAS  PubMed  Google Scholar 

  98. Oehler VG, Yeung KY, Choi YE, Bumgarner RE, Raftery AE, Radich JP. The derivation of diagnostic markers of chronic myeloid leukemia progression from microarray data. Blood. 2009;114:3292–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang S, Hu B, Ding Z, Dang Y, Wu J, Li D, et al. ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Disco. 2018;4:2.

    Google Scholar 

  100. Wang HH, Cui Q, Zhang T, Wang ZB, Ouyang YC, Shen W, et al. Rab3A, Rab27A, and Rab35 regulate different events during mouse oocyte meiotic maturation and activation. Histochem Cell Biol. 2016;145:647–57.

    CAS  PubMed  Google Scholar 

  101. Li L, Bhatia R. Role of SIRT1 in the growth and regulation of normal hematopoietic and leukemia stem cells. Curr Opin Hematol. 2015;22:324–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kleppe M, Spitzer MH, Li S, Hill CE, Dong L, Papalexi E, et al. Jak1 integrates cytokine sensing to regulate hematopoietic stem cell function and stress hematopoiesis. Cell Stem Cell. 2018;22:277.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen G, Zhou G, Aras S, He Z, Lucas S, Podgorski I, et al. Loss of ABHD5 promotes the aggressiveness of prostate cancer cells. Sci Rep. 2017;7:13021.

    PubMed  PubMed Central  Google Scholar 

  104. Peng Y, Miao H, Wu S, Yang W, Zhang Y, Xie G, et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy. 2016;12:2167–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ichim CV. Kinase-independent mechanisms of resistance of leukemia stem cells to tyrosine kinase inhibitors. Stem Cells Transl Med. 2014;3:405–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu J, Zhang X, Zhong JF, Zhang C. CAR-T cells and allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia. Immunotherapy. 2017;9:1115–25.

    CAS  PubMed  Google Scholar 

  107. Danis E, Yamauchi T, Echanique K, Zhang X, Haladyna JN, Riedel SS, et al. Ezh2 controls an early hematopoietic program and growth and survival signaling in early T cell precursor acute lymphoblastic leukemia. Cell Rep. 2016;14:1953–65.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (31701151), Natural Science Foundation of Shanghai (17ZR1412500), National Key R&D Program of China (2018YFC0910403), Shanghai Sailing Program (16YF1413800), the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (2016245), the fund of the key Laboratory of Stem Cell Biology of Chinese Academy of Sciences (201703), Science and Technology Commission of Shanghai Municipality (STCSM) (18dz2271000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiangYin Kong, Tao Huang or Yu-Dong Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lu, L., Zhang, YH. et al. Identification of leukemia stem cell expression signatures through Monte Carlo feature selection strategy and support vector machine. Cancer Gene Ther 27, 56–69 (2020). https://doi.org/10.1038/s41417-019-0105-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0105-y

This article is cited by

Search

Quick links