Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin-17A polymorphisms predict the response and development of tolerance to FOLFOX chemotherapy in colorectal cancer treatment

Abstract

Polymorphic variants in IL-17A gene were differentially associated with colorectal cancer (CRC) susceptibility but their link with response and toxicity to CRC treatment have not yet been evaluated. We investigated association between seven IL-17A variants with the response and toxicity to CRC treatment in 294 patients with CRC. IL-17A genotyping was done by real-time PCR. MAF of rs3748067 was significantly higher in CRC cases resistant to FOLFOX treatment (R+) than non resistant (R−). Significantly higher rs3804513 MAF was noted in R+ versus R− colon cancer (CC). Higher rs2275913 and rs10484879, and reduced rs3804513 MAF were seen in rectal cancer (RC) tolerant to FOLFOX (T+) compared to (T−) patients. Strong association of rs3819025, rs3804513, and rs7747909 was found with tolerance to RC treatment. rs3748067 was associated with FOLFOX tolerance in CC but not RC. Significant higher frequency of AGGCAGG and GAGCAGG haplotypes was seen among R + CC, thus assigning non-favorable nature to these haplotypes. Higher and lower frequencies of GAGTAAG and AGGCTGA haplotypes, respectively, were observed in T + RC, thereby assigning FOLFOX-tolerant and non-tolerant nature to these haplotypes. The obtained results suggest that IL-17A variants and haplotypes may be a target for future management of CRC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Peters U, Bien S, Zubair N. Genetic architecture of colorectal cancer. Gut. 2015;64:1–14.

    Article  Google Scholar 

  2. Giordano L, Bisanti L, Salamina G, Ancelle Park R, Sancho-Garnier H, Espinas J, et al. The EUROMED CANCER network: state-of-art of cancer screening programmes in non-EU Mediterranean countries. Eur J Public Health. 2016;26:83–9.

    Article  Google Scholar 

  3. Khiari H, Ben Ayoub HW, Ben Khadhra H, Hsairi M. Colorectal cancer incidence trend and projections in Tunisia (1994–2024). Asian Pac J Cancer Prev. 2017;18:2733–9.

    PubMed  PubMed Central  Google Scholar 

  4. Wheat CL, Clark-Snustad K, Devine B, Grembowski D, Thornton TA, Ko CW. Worldwide incidence of colorectal cancer, leukemia, and lymphoma in inflammatory bowel disease: an updated systematic review and meta-analysis. Gastroenterol Res Pract. 2016;2016:1632439. https://doi.org/10.1155/2016/1632439/.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boakye D, Rillmann B, Walter V, Jansen L, Hoffmeister M, Brenner H. Impact of comorbidity and frailty on prognosis in colorectal cancer patients: a systematic review and meta- analysis. Cancer Treat Rev. 2018;64:30–9.

    Article  Google Scholar 

  6. Lee J, Xiao YY, Sun YY, Balderacchi J, Clark B, Desani J, et al. Prevalence and characteristics of hereditary non-polyposis colorectal cancer (HNPCC) syndrome in immigrant Asian colorectal cancer patients. BMC Cancer. 2017;17:843.

    Article  Google Scholar 

  7. Sperling D, Jandorf L, Sriphanlop P, Martinez C, Brown KL, Soper ER, et al. Co-care: a registry for individuals at increased risk for colorectal cancer. J Regist Manag. 2017;44:11–6.

    Google Scholar 

  8. Kim ER, Chang DK. Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol. 2014;20:9872–81.

    Article  CAS  Google Scholar 

  9. Mager LF, Wasmer MH, Tilman T Rau, Krebs P. Cytokine-induced modulation of colorectal cancer. Front Oncol. 2016;6:96 https://doi.org/10.3389/fonc.2016.00096/.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflam- mation, and cancer. J Clin Investig. 2007;117:1175–83.

    Article  CAS  Google Scholar 

  11. Murugaiyan G, Saha B. Protumor vs antitumor functions of IL17. J Immunol. 2009;183:4169–75.

    Article  CAS  Google Scholar 

  12. Ibrahim S, Girault A, Ohresser M, Lereclus E, Paintaud G, Lecomte T, et al. Monoclonal antibodies targeting the IL-17/IL-17RA axis: an opportunity to improve the efficiency of anti-vegf therapy in fighting metastatic colorectal cancer? Clin Colorectal Cancer. 2018;17:e109–13. https://doi.org/10.1016/j.clcc.2017.10.003/

    Article  PubMed  Google Scholar 

  13. Wu D, Wu P, Huang Q, Liu Y, Ye J, Huang J. Interleukin-17: a promoter in colorectal cancer progression. Clin Dev Immunol. 2013;2013:436307. https://doi.org/10.1155/2013/436307/.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89.

    Article  CAS  Google Scholar 

  15. Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol. 2017;18:612–21.

    Article  CAS  Google Scholar 

  16. Kurebayashi Y, Nagai S, Ikejiri A, Koyasu S. Recent advances in understanding the molecular mechanisms of the development and function of Th17 cells. Genes Cells. 2013;18:247–65.

    Article  CAS  Google Scholar 

  17. Joerger M, Finn SP, Cuffe S, Byrne AT, Gray SG. The IL-17-Th1/Th17 pathway: an attractive target for lung cancer therapy? Exp Opin Ther Targets. 2016;20:1339–56.

    Article  CAS  Google Scholar 

  18. Lee MH, Tung-Chieh Chang J, Liao CT, Chen YS, Kuo ML, et al. Interleukin 17 andperipheral IL-17-expressing T cells are negatively correlated with the overall survival of head and neck cancer patients. Oncotarget. 2018;9:9825–37.

    Article  Google Scholar 

  19. Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood. 2003;101:2620–7.

    Article  CAS  Google Scholar 

  20. Tseng JY, Yang CY, Liang SC, Liu RS, Yang SH, Lin JK. Interleukin-17A modulates circulating tumor cells in tumor draining vein of colorectal cancers and affects metastases. Clin Cancer Res. 2014;20:2885–97. https://doi.org/10.1158/1078-0432.CCR-13-2162/.

    Article  CAS  PubMed  Google Scholar 

  21. Cui G, Yuan A, Goll R, Florholmen J. IL-17A in the tumor microenvironment of the human colorectal adenoma-carcinoma sequence. Scand J Gastroenterol. 2012;47:1304–12.

    Article  CAS  Google Scholar 

  22. Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol. 2007;178:67303. https://doi.org/10.4049/jimmunol.178.11.6730/.

    Article  Google Scholar 

  23. Limagne E, Euvrard R, Thibaudin M, Rébé C, Derangère V, Chevriaux A, et al. Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX-Bevacizumab drug treatment regimen. Cancer Res. 2016;76:5241–52.

    Article  CAS  Google Scholar 

  24. Dai ZM, Zhang TS, Lin S, Zhang WG, Liu J, Cao XM. Role of IL-17A rs2275913 and IL-17F rs763780 polymorphisms in risk of cancer development: an updated meta-analysis. Sci Rep. 2016;4:20439. https://doi.org/10.1038/srep20439/.

    Article  Google Scholar 

  25. Zhou F, Qiu LX, Cheng L, Wang MY, Li J, Sun MH, et al. Associations of genotypes and haplotypes of IL-17 with risk of gastric cancer in an eastern Chinese population. Oncotarget. 2016;7:82384–95.

    Article  Google Scholar 

  26. Omrane I, Baroudi O, Bougatef K, Mezlini A, Abidi A, Medimegh I, et al. Significant association between IL23R and IL17F polymorphisms and clinical features of colorectal cancer. Immunol Lett. 2014;158:189–94.

    Article  CAS  Google Scholar 

  27. Zhu L, Wang Y, Jie G, Chi Q, Zhou J, Cui B, et al. Association between Toll-like receptor 4 and interleukin 17 gene polymorphisms and colorectal cancer susceptibility in Northeast China. Med Oncol. 2014;31:73. https://doi.org/10.1007/s12032-014-0073-x/.

    Article  PubMed  Google Scholar 

  28. Bedoui SA, Barbirou M, Stayoussef M, Dallel M, Mokrani A, Makni L, et al. Association of interleukin-17A polymorphisms with the risk of colorectal cancer: a case-control study. Cytokine. 2018;110:18–23.

    Article  CAS  Google Scholar 

  29. Douillard JY, Hoff PM, Skillings JR, Eisenberg P, Davidson N, Harper P, et al. Multicenter phase III study of uracil/tegafur and oral leucovorin versus fluorouracil and leucovorin in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2002;20:3605–16.

    Article  CAS  Google Scholar 

  30. Cassidy J, Twelves C, Van Cutsem E, Hoff P, Bajetta E, Boyer M, et al. First-line oral capecitabine therapy in metastatic colorectal cancer: a favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. Ann Oncol. 2002;13:566–75.

    Article  CAS  Google Scholar 

  31. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  CAS  Google Scholar 

  32. Regnier DV, Poirson J, Nourissat A, Jacquin JP, Guastalla JP, Chauvin F. Adherence with oral chemotherapy: results from a qualitative study of the behaviour and representations of patients and oncologists. Eur J Cancer Care. 2011;20:520–7.

    Article  Google Scholar 

  33. Twelves C, Wong A, Nowacki MP, Abt M, Burris H 3rd, Carrato A, et al. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med. 2005;352:2696–704.

    Article  CAS  Google Scholar 

  34. Renehan AG, Flood A, Adams KF, Olden M, Hollenbeck AR, Cross AJ. Body mass index at different adult ages, weight change, and colorectal cancer risk in the National Institutes of Health-AARP Cohort. Am J Epidemiol. 2012;176:1130–40.

    Article  Google Scholar 

  35. Kopetz S, Hoff PM, Morris JS, Wolff RA, Eng C, Glover KY, et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol. 2010;28:453–9.

    Article  CAS  Google Scholar 

  36. Reppert S, Boross I, Koslowski M, Türeci Ö, Koch S, Lehr HA, et al. A role for T-bet-mediated tumour immune surveillance in anti-IL-17A treatment of lung cancer. Nat Commun. 2011;20:600. https://doi.org/10.1038/ncomms1609.

    Article  Google Scholar 

  37. Cochaud S, Giustiniani J, Thomas C, Laprevotte E, Garbar C, Savoye AM, et al. IL-17A is produced by breast cancer TILs and promotes chemoresistance and proliferation through ERK1/2. Sci Rep. 2013;9:1–10.

    Google Scholar 

  38. Omrane I, Medimegh I, Baroudi O, Ayari H, Bedhiafi W, Stambouli N. Involvement of IL17A, IL17F and IL23R polymorphisms in colorectal cancer therapy. PLoS ONE. 2015;10:e0128911. https://doi.org/10.1371/journal.pone.0128911/.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Slattery ML, Wolff RK, Herrick JS, Caan BJ, Potter JD. IL6 genotypes and colon and rectal cancer. Cancer Causes Control. 2007;18:1095–105.

    Article  Google Scholar 

  40. Chung YC, Chaen YL, Hsu CP. Clinical significance of tissue expression of interleukin-6 in colorectal carcinoma. Anticancer Res. 2006;26(5B):3905–11.

    CAS  PubMed  Google Scholar 

  41. Sui G, Qiu Y, Yu H, Kong Q, Zhen B. Interleukin-17 promotes the development of cisplatin resistance in colorectal cancer. Oncol Lett. 2019;17:944–50.

    CAS  PubMed  Google Scholar 

  42. Birkenkamp-Demtroder K, Olesen SH, Sørensen FB, Laurberg S, Laiho P, Aaltonen LA, et al. Differential gene expression in colon cancer of the caecum versus the sigmoid and rectosigmoid. Gut. 2005;54:374–84.

    Article  CAS  Google Scholar 

  43. Gock M, Mullins CS, Bergner C, Prall F, Ramer R, Göder A. et al. Establishment, functional and genetic characterization of three novel patient-derived rectal cancer cell lines. World J Gastroenterol. 2018;24:4880–92.

    Article  CAS  Google Scholar 

  44. Imperial R, Ahmed Z, Toor OM, Erdoğan C, Khaliq A, Case P, et al. Comparative proteogenomic analysis of right-sided colon cancer, left-sided colon cancer and rectal cancer reveals distinct mutational profiles. Mol Cancer. 2018;17:177. https://doi.org/10.1186/s12943-018-0923-9/.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hong TS, Clark JW, Haigis KM. Cancers of the colon and rectum: identical or fraternal twins? Cancer Discov. 2012;2:117–21.

    Article  Google Scholar 

  46. Venook AP, Niedzwiecki D, Lenz H-J. CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV)or cetuximab (CET) forpatients (pts) with KRAS wild-type (wt) untreated metastaticadenocarcinoma of the colon or rectum (MCRC). J Clin Oncol. 2014;32(LBA3):2014. https://doi.org/10.1200/jco.2014.32.18_suppl.lba3.2.

  47. Maniati E, Soper R, Hagemann T. Up for Mischief? IL-17/Th17 in the tumour micro-environment. Oncogene. 2010;21(29):5653–62.

    Article  Google Scholar 

  48. Zou W, Restifo NP. T(H)17cells in tumour immunity and immunotherapy. Nat Rev Immunol. 2010;10:248–56.

    Article  CAS  Google Scholar 

  49. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all blood donors and the patients with CRC who participated in the present study. This study was funded in part by the Ministry of High Education and Scientific Research and the National Agency of Promotion of Research, Project 2017 D4P1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besma Yacoubi-Loueslati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedoui, S., Dallel, M., Barbirou, M. et al. Interleukin-17A polymorphisms predict the response and development of tolerance to FOLFOX chemotherapy in colorectal cancer treatment. Cancer Gene Ther 27, 311–318 (2020). https://doi.org/10.1038/s41417-019-0102-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0102-1

Search

Quick links