Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Down-regulation of 14-3-3zeta reduces proliferation and increases apoptosis in human glioblastoma

Abstract

Many efforts have been taken to develop molecule target for cancer therapy. 14-3-3zeta protein has emerged as a critical regulator of diverse cellular pathways in multiple cancers. Furthermore, 14-3-3zeta expression was elevated and a predictor of poor prognosis in glioblastoma. However, there is no information to evaluate the potential effects of 14-3-3zeta RNAi in glioblastoma. The relationship between 14-3-3zeta expression and cell proliferation and apoptosis was tested in primary glioblastoma samples. Through an RNAi approach using human glioblastoma cells as a model system, we demonstrated the role of 14-3-3zeta in glioblastoma proliferation, apoptosis, invasion and tumor growth. The expression of 14-3-3zeta in glioblastoma stem cells was also investigated by immunostaining. The apoptosis was significantly higher in 14-3-3zeta-negative group than in positive group. 14-3-3zeta immunoreactivity score was negatively correlated with the apoptosis, and positively with proliferation in human specimens. 14-3-3zeta RNAi reduced cell proliferation, induced apoptosis, decreased the invasive capability and colony-formation, and impaired the growth of glioblastoma xenografts in nude mice. Moreover, 14-3-3zeta was positively expressed in glioblastoma stem cells. Our data highlight the importance of 14-3-3zeta in glioblastoma and identify 14-3-3zeta as a potential molecular target for glioblastoma treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Perry JR, Laperriere N, O’Collaghan CJ, Brandes AA, Menten J, Phillips C, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376:1027–37.

    Article  CAS  PubMed  Google Scholar 

  2. Park JK, Hodges T, Arko L, Shen M, Dello lacono D, McNabb A, et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J Clin Oncol. 2010;28:3838–43.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Felsberg J, Rapp M, Loeser S, Fimmers R, Stummer W, Goeppert M, et al. Prognostic significance of molecular markers and extent of resection in primary glioblastoma patients. Clin Cancer Res. 2009;15:6683–93.

    Article  CAS  PubMed  Google Scholar 

  4. Ferl RJ, Manak MS, Reyes MF. The 14-3-3s. Genome Biol. 2002;3:S3010.

    Article  Google Scholar 

  5. Martin H, Patel Y, Jones D, Howell S, Robinson K, Aitken A. Antibodies against the major brain isoforms of 14-3-3 protein: an antibody specific for the N-acetylated amino-terminus of a protein. FEBS Lett. 1993;336:189.

    Article  CAS  PubMed  Google Scholar 

  6. Muslin AJ, Tanner JW, Allen PM, Shaw AS. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996;84:889–97.

    Article  CAS  PubMed  Google Scholar 

  7. Nishimura Y, Komatsu S, Ichikawa D, Nagata H, Hirajima S, Takeshita H, et al. Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma. Br J Cancer. 2013;108:1324–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao GY, Ding JY, Lu CL, Lin ZW, Guo J. The overexpression of 14-3-3zeta and Hsp27 promotes non-small cell lung cancer progression. Cancer. 2014;120:652–63.

    Article  CAS  PubMed  Google Scholar 

  9. Kittirat Y, Techasen A, Thongchot S, Loilome W, Thanan R, Yongvanit P, et al. Suppression of 14-3-3zeta in cholangiocarcinoma cells inhibits proliferation through attenuated Akt activity, enhancing chemosensitivity to gemcitabine. Oncol Lett. 2018;15:347–53.

    PubMed  Google Scholar 

  10. Tang Y, Wang R, Zhang Y, Lin S, Qiao N, Sun Z, et al. Co-upregulation of 14-3-3zeta and P-Akt is associated with oncogenesis and recurrence of hepatocellular carcinoma. Cell Physiol Biochem. 2018;10:1097–107.

    Article  CAS  Google Scholar 

  11. Cao W, Yang X, Zhou J, Teng Z, Cao L, Zhang X, et al. Targeting 14-3-3 protein, difopein induces apoptosis of human glioma cells and suppresses tumor growth in mice. Apoptosis. 2010;15:230–41.

    Article  CAS  PubMed  Google Scholar 

  12. Yang X, Cao W, Lin H, Zhang W, Lin W, Cao L, et al. Isoform-specific expression of 14-3-3 proteins in human astrocytoma. J Neurol Sci. 2009;276:54–9.

    Article  CAS  PubMed  Google Scholar 

  13. Cao L, Cao W, Zhang W, Lin H, Yang X, Zhen H, et al. Identification of 14-3-3 protein isoforms in human astrocytoma by immunohistochemistry. Neurosci Lett. 2008;432:94–9.

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Zhou J, Cao W, Zhang W, Zhang X, Lin W, et al. 14-3-3zeta positive expression is associated with a poor prognosis in patients with glioblastoma. Neurosurgery. 2011;68:932–8.

    Article  PubMed  Google Scholar 

  15. Yang X, Cao W, Zhang L, Zhang W, Zhang X, Lin H. Targeting 14-3-3zeta in cancer therapy. Cancer Gene Ther. 2012;19:153–9.

    Article  PubMed  CAS  Google Scholar 

  16. Neal CL, Yao J, Yang W, Zhou X, Nguyen NT, Lu J, et al. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Res. 2009;69:3425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bajpai U, Sharma R, Kausar T, Dattagupta S, Chattopadhayay TK, Ralhan R. Clinical significance of 14-3-3zeta in human esophageal cancer. Int J Biol Markers. 2008;23:231–7.

    Article  CAS  PubMed  Google Scholar 

  18. Lin M, Morrison CD, Jones S, Mohamed N, Bacher J, Plass C. Copy number gain and oncogenic activity of YWHAZ/14-3-3zeta in head and neck squamous cell carcinoma. Int J Cancer. 2009;125:603–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matta A, Bahadur S, Duggal R, Gupta SD, Ralhan R. Over-expression of 14-3-3zeta is an early event in oral cancer. BMC Cancer. 2007;7:169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Matta A, DeSouza LV, Ralhan R, Siu KW. Small interfering RNA targeting 14-3-3zeta increases efficacy of chemotherapeutic agents in head and neck cancer cells. Mol Cancer Ther. 2010;9:2676–88.

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Zhao J, Du Y, Park HR, Sun SY, Bernal-Mizrachi L, et al. Down-regulation of 14-3-3zeta suppresses anchorage-independent growth of lung cancer cells through anoikis activation. Proc Natl Acad Sci USA. 2008;105:162–7.

    Article  CAS  PubMed  Google Scholar 

  22. Lu J, Guo H, Treekitkarnmongkol W, Li P, Zhang J, Shi B, et al. 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial–mesenchymal transition. Cancer Cell. 2009;16:195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan T, Li R, Todd NW, Qiu Q, Fang HB, Wang H, et al. Up-regulation of 14-3-3zeta in lung cancer and its implication as prognostic and therapeutic target. Cancer Res. 2007;67:7901–6.

    Article  CAS  PubMed  Google Scholar 

  24. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  PubMed  Google Scholar 

  25. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.

    Article  CAS  PubMed  Google Scholar 

  26. Mao XG, Zhang X, Xue XY, Guo G, Wang P, Zhang W, et al. Brain tumor stem-like cells identified by neural stem cell marker CD15. Transl Oncol. 2009;2:247–57.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lin W, Zhang J, Zhang J, Liu X, Fei Z, Li X, et al. RNAi-mediated inhibition of MSP58 decreases tumour growth, migration and invasion in a human glioma cell line. J Cell Mol Med. 2009;13:4608–22.

    Article  CAS  PubMed  Google Scholar 

  28. Hong HY, Jeon WK, Bae EJ, Kim ST, Lee HJ, Kim SJ, et al. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1. Mol Cells. 2010;29:305–9.

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Li Y, et al. Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nat Med. 2010;16:214–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Neal CL, Xu J, Li P, Mori S, Yang J, Neal NN, et al. Overexpression of 14-3-3zeta in cancer cells activates PI3K via binding the p85 regulatory subunit. Oncogene. 2012;31:897–906.

    Article  CAS  PubMed  Google Scholar 

  31. Mellai M, Caldera V, Patrucco A, Annovazzi L, Schiffer D. Survivin expression in glioblastomas correlates with proliferation, but not with apoptosis. Anticancer Res. 2008;28:109–18.

    CAS  PubMed  Google Scholar 

  32. Momota H, Shih AH, Edgar MA, Holland EC. c-Myc and beta-catenin cooperate with loss of p53 to generate multiple members of the primitive neuroectodermal tumor family in mice. Oncogene. 2008;27:4392–401.

    Article  CAS  PubMed  Google Scholar 

  33. Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, et al. Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther. 2009;16:351–61.

    Article  CAS  PubMed  Google Scholar 

  34. Schonthal AH. Exploiting cyclooxygenase-(in)dependent properties of COX-2 inhibitors for malignant glioma therapy. Anticancer Agents Med Chem. 2010;10:450–61.

    Article  CAS  PubMed  Google Scholar 

  35. Shirai K, Suzuki Y, Oka K, Noda SE, Katoh H, Suzuki Y, et al. Nuclear surviving expression predicts poorer prognosis in glioblastoma. J Neurooncol. 2009;91:353–8.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang LY, Jiang LN, Li FF, Li H, Liu F, Gu Y, et al. Reduced beta-catenin expression is associated with good prognosis in Astrocytoma. Pathol Oncol Res. 2010;16:253–7.

    Article  CAS  PubMed  Google Scholar 

  37. Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF. Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res. 2001;61:4375–81.

    CAS  PubMed  Google Scholar 

  38. Mils V, Baldin V, Goubin F, Pinta I, Papin C, Waye M, et al. Specific interaction between 14-3-3 isoforms and the human CDC25B phosphatase. Oncogene. 2000;19:1257–65.

    Article  CAS  PubMed  Google Scholar 

  39. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkin C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  40. Tian Q, He XC, Hood L, Li L. Bridging the BMP and Wnt pathways by PI3 kinase/Akt and 14-3-3zeta. Cell Cycle. 2005;4:215–6.

    Article  CAS  PubMed  Google Scholar 

  41. Tian Q, Feetham MC, Tao WA, He XC, Li L, Aebersold R, et al. Proteomic analysis identifies that 14-3-3zeta interacts with beta-catenin and facilitates its activation by Akt. Proc Natl Acad Sci USA. 2004;101:15370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee YK, Hur W, Lee SW, Hong SW, Kim SW, Choi JE, et al. Knockdown of 14-3-3zeta enhances radiosensitivity and radio-induced apoptosis in CD133(+) liver cancer stem cell. Exp Mol Med. 2014;46:e77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mauting Lin (Cancer Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco) for his helpful communication and Bo Wang’s (Department of Epidemiology, School of Military Preventive Medicine in our university) help in statistical analysis. The authors thank Jingrong Hu (Department of Immune in our university) for assistance in flow cytometry and Wanjuan Yang for the preparation of material for this research.

Funding

Supported by the National Natural Science Foundation of China (Nos. 39970752, 81472357, and 81072083) and Scientific and Technological Project of ShaanXi Province (No. 2008K09-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Cao, W., Wang, X. et al. Down-regulation of 14-3-3zeta reduces proliferation and increases apoptosis in human glioblastoma. Cancer Gene Ther 27, 399–411 (2020). https://doi.org/10.1038/s41417-019-0097-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0097-7

This article is cited by

Search

Quick links