Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PLK1 promotes proliferation and suppresses apoptosis of renal cell carcinoma cells by phosphorylating MCM3

A Correction to this article was published on 31 March 2022

This article has been updated

Abstract

Minichromosome maintenance 3 (MCM3) protein has been widely studied due to its essential role in DNA replication. In addition, it is overexpressed in several human tumor types. However, the role of this protein in renal cell carcinoma (RCC) is not widely known. In this study, we demonstrated that polo-like kinase 1 (PLK1)-mediated MCM3 phosphorylation regulates proliferation and apoptosis in RCC. Our results confirm that PLK1 and phospho-MCM3 (p-MCM3) are highly expressed in renal cell carcinoma. The expression of PLK1 is closely related to the clinical characteristics of renal cell carcinoma. They play important roles in the proliferation and apoptosis of RCC. In vitro, after overexpression of PLK1 or MCM3, the proliferation of RCC cells was significantly enhanced and cell apoptosis was inhibited, while after knockout, the proliferation of RCC cells was weakened and cell apoptosis was promoted. In addition, Mn2+-Phos-tag SDS–PAGE, western blotting, and immunofluorescence were utilized to determine that MCM3 is a physiological substrate of PLK1, which is phosphorylated on serine 112 (Ser112) in a PLK1-dependent manner. PLK1-mediated MCM3 phosphorylation promotes RCC cell cycle proliferation and suppresses apoptosis in vitro. Moreover, we found that PLK1-mediated MCM3 phosphorylation induced cellular proliferation and decreased apoptosis, as well as tumor growth in mice. Overall, we conclude that PLK1-mediated MCM3 phosphorylation is a novel mechanism to regulate RCC proliferation and apoptosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67:913–24.

    PubMed  Google Scholar 

  2. Ljungberg B, Campbell SC, Choi HY, Cho HY, Jacqmin D, Lee JE, et al. The epidemiology of renal cell carcinoma. Eur Urol. 2011;60:615–21.

    PubMed  Google Scholar 

  3. Pantuck AJ, Zisman A, Belldegrun AS. The changing natural history of renal cell carcinoma. J Urol. 2001;166:1611–23.

    CAS  PubMed  Google Scholar 

  4. Motzer RJ, Russo P. Systemic therapy for renal cell carcinoma. J Urol. 2000;163:408–17.

    CAS  PubMed  Google Scholar 

  5. Winkles JA, Alberts GF. Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene. 2005;24:260–6.

    CAS  PubMed  Google Scholar 

  6. Brandwein JM. Targeting polo-like kinase 1 in acute myeloid leukemia. Ther Adv Hematol. 2015;6:80–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Llamazares S, Moreira A, Tavares A, Girdham C, Spruce BA, Gonzalez C, et al. polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes Dev. 1991;5:2153–65.

    CAS  PubMed  Google Scholar 

  8. Barr FA, Silljé HH, Nigg EA. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol. 2004;5:429–40.

    CAS  PubMed  Google Scholar 

  9. Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, Menendez JA. Polo-like kinase 1 regulates activation of AMP-activated protein kinase (AMPK) at the mitotic apparatus. Cell Cycle. 2011;10:1295–302.

    CAS  PubMed  Google Scholar 

  10. Yoon HE, Kim SA, Choi HS, Ahn MY, Yoon JH, Ahn SG. Inhibition of Plk1 and Pin1 by 5’-nitro-indirubinoxime suppresses human lung cancer cells. Cancer Lett. 2012;316:97–104.

    CAS  PubMed  Google Scholar 

  11. Francescangeli F, Patrizii M, Signore M, Federici G, Di FS, Pagliuca A, et al. Proliferation state and polo-like kinase1 dependence of tumorigenic colon cancer cells. Stem Cells. 2012;30:1819–30.

    CAS  PubMed  Google Scholar 

  12. Peng DX, Luo M, Qiu LW, He YL, Wang XF. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep. 2012;27:1238–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. de Oliveira JC, Brassesco MS, Pezuk JA, Morales AG, Valera ET, Montaldi AP, et al. In vitro PLK1 inhibition by BI 2536 decreases proliferation and induces cell-cycle arrest in melanoma cells. J Drugs Dermatol. 2012;11:587–92.

    PubMed  Google Scholar 

  14. Maire V, Némati F, Richardson M, Vincent-Salomon A, Tesson B, Rigaill G, et al. Polo-like kinase 1: a potential therapeutic option in combination with conventional chemotherapy for the management of patients with triple-negative breast cancer. Cancer Res. 2013;73:813–23.

    CAS  PubMed  Google Scholar 

  15. Zhang XG, Lu XF, Jiao XM, Chen B, Wu JX. PLK1 gene suppresses cell invasion of undifferentiated thyroid carcinoma through the inhibition of CD44v6, MMP-2 and MMP-9. Exp Ther Med. 2012;4:1005–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Samson RY, Bell SD. MCM loading—an open-and-shut case. Mol Cell. 2013;50:457–8.

    CAS  PubMed  Google Scholar 

  17. Kobierzycki C, Pula B, Skiba M, Jablonska K, Latkowski K, Zabel M, et al. Comparison of minichromosome maintenance proteins (MCM-3, MCM-7) and metallothioneins (MT-I/II, MT-III) expression in relation to clinicopathological data in ovarian cancer. Anticancer Res. 2013;33:5375–83.

    CAS  PubMed  Google Scholar 

  18. Rezvani G, Andisheh-Tadbir A, Ashraf MJ, Amanpour S, Kamali F, Fardisi S. Evaluation of minichromosome maintenance-3 (MCM3) in oral squamous cell carcinoma. J Dent. 2015;16:87–92.

    Google Scholar 

  19. Nodin B, Fridberg M, Jonsson L, Bergman J, Uhlén M, Jirström K. High MCM3 expression is an independent biomarker of poor prognosis and correlates with reduced RBM3 expression in a prospective cohort of malignant melanoma. Diagn Pathol. 2012;7:82.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Vidal MT, Lourenço SV, Soares FA, Gurgel CA, Studart EJ, Valverde LF, et al. The sonic hedgehog signaling pathway contributes to the development of salivary gland neoplasms regardless of perineural infiltration. Tumour Biol. 2016;37:9587–601.

    CAS  PubMed  Google Scholar 

  21. Jian T, Chen Y. Regulatory mechanisms of transcription factors and target genes on gastric cancer by bioinformatics method. Hepatogastroenterology. 2015;62:524–8.

    PubMed  Google Scholar 

  22. Lau KM, Chan QK, Pang JC, Li KK, Yeung WW, Chung NY, et al. Minichromosome maintenance proteins 2, 3 and 7 in medulloblastoma: overexpression and involvement in regulation of cell migration and invasion. Oncogene. 2010;29:5475–89.

    CAS  PubMed  Google Scholar 

  23. Zhong H, Chen B, Neves H, Xing J, Ye Y, Lin Y, et al. Expression of minichromosome maintenance genes in renal cell carcinoma. Cancer Manag Res. 2017;9:637–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM, et al. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol. 2008;10:1076–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng DD, Zhang HZ, Yuan JQ, Li SJ, Yang QC, Fan CY. Minichromosome maintenance protein 2 and 3 promote osteosarcoma progression via DHX9 and predict poor patient prognosis. Oncotarget. 2017;8:26380–93.

    PubMed  PubMed Central  Google Scholar 

  26. Petronczki M, Lénárt P, Peters JM. Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev Cell. 2008;14:646–59.

    CAS  PubMed  Google Scholar 

  27. Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I. Polo-like kinases (Plks) and cancer. Oncogene. 2005;24:287–91.

    CAS  PubMed  Google Scholar 

  28. Simizu S, Osada H. Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nat Cell Biol. 2000;2:852–4.

    CAS  PubMed  Google Scholar 

  29. Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Disco. 2009;8:547–66.

    CAS  Google Scholar 

  30. Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov. 2010;9:643–60.

    CAS  PubMed  Google Scholar 

  31. Cholewa BD, Liu X, Ahmad N. The role of polo-like kinase 1 in carcinogenesis: cause or consequence. Cancer Res. 2013;73:6848–55.

    CAS  PubMed  Google Scholar 

  32. Stewart PA, Khamis ZI, Zhau HE, Duan P, Li Q, LWK C, et al. Upregulation of minichromosome maintenance complex component 3 during epithelial-to-mesenchymal transition in human prostate cancer. Oncotarget. 2017;8:39209–17.

    PubMed  PubMed Central  Google Scholar 

  33. Han X, Mayca PF, Wisotsky JN, Wang B, Jacobberger JW, Zhang Y. Phosphorylation of minichromosome maintenance 3 (MCM3) by checkpoint kinase 1 (Chk1) negatively regulates DNA replication and checkpoint activation. J Biol Chem. 2015;290:12370–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamamoto K, Makino N, Nagai M, Araki H, Ushimaru T. CDK phosphorylation regulates Mcm3 degradation in budding yeast. Biochem Biophys Res Commun. 2018;506:680–4.

    CAS  PubMed  Google Scholar 

  35. Wu J, Ivanov AI, Fisher PB, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. Elife. 2016;5:e10734. pii

    PubMed  PubMed Central  Google Scholar 

  36. Lee K, Rhee K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J Cell Biol. 2011;195:1093–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Casenghi M, Barr FA, Nigg EA. Phosphorylation of Nlp by Plk1 negatively regulates its dynein-dynactin-dependent targeting to the centrosome. J Cell Sci. 2005;118:5101–8.

    CAS  PubMed  Google Scholar 

  38. Song B, Liu XS, Liu X. Polo-like kinase 1 (Plk1): an unexpected player in DNA replication. Cell Div. 2012;7:3.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee JK, Ha GH, Kim HS, Lee CW. Oncogenic potential of BEX4 is conferred by Polo-like kinase 1-mediated phosphorylation. Exp Mol Med. 2018;50:138.

    PubMed Central  Google Scholar 

  40. Ha SA, Shin SM, Namkoong H, Lee H, Cho GW, Hur SY, et al. Cancer-associated expression of minichromosome maintenance 3 gene in several human cancers and its involvement in tumorigenesis. Clin Cancer Res. 2004;10:8386–95.

    CAS  PubMed  Google Scholar 

  41. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO Classification of tumours of the urinary system and male genital organs—Part A: renal, penile, and testicular tumours. Eur Urol. 2016;70:93–105.

    PubMed  Google Scholar 

  42. Delahunt B, Cheville JC, Martignoni G, Humphrey PA, Magi-Galluzzi C, McKenney J, et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol. 2013;37:1490–504.

    PubMed  Google Scholar 

  43. Xing C, Lu XX, Guo PD, Shen T, Zhang S, He XS, et al. Ubiquitin-specific protease 4-mediated deubiquitination and stabilization of PRL-3 is required for potentiating colorectal oncogenesis. Cancer Res. 2016;76:83–95.

    CAS  PubMed  Google Scholar 

  44. Kinoshita E, Kinoshita-Kikuta E, Koike T. Separation and detection of large phosphoproteins using Phos-tag SDS–PAGE. Nat Protoc. 2009;4:1513–21.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Fund (Grant No. 81672525), the Project of Liaoning Distinguished Professor (Grant No. [2012]145), Liaoning Natural Science Fund (Grant No. 201602830), Shenyang Plan Project of Science and Technology (Grant No. F17-230-9-08) and Shenyang clinical medicine research center (Grant No. [2017]76), China Medical University’s 2017 discipline promotion program (Grant No. 2017XK08), China Medical University’s 2018 discipline promotion program, 2017 National Key R&D Program Key Projects of Precision Medical Research (2017YFC0908000). Funding agency did not participate in the design of the study and collection, analysis and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Zhang or Chuize Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Man, X., Li, Z. et al. PLK1 promotes proliferation and suppresses apoptosis of renal cell carcinoma cells by phosphorylating MCM3. Cancer Gene Ther 27, 412–423 (2020). https://doi.org/10.1038/s41417-019-0094-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0094-x

This article is cited by

Search

Quick links