Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antitumor effect of antibiotic resistance gene-free plasmids encoding interleukin-12 in canine melanoma model

Abstract

The electrotransfer of interleukin-12 (IL-12) has been demonstrated as an efficient and safe treatment for tumors in veterinary oncology. However, the plasmids used encode human or feline IL-12 and harbor the gene for antibiotic resistance. Therefore, our aim was to construct plasmids encoding canine IL-12 without the antibiotic resistance genes driven by two different promoters: constitutive and fibroblast-specific. The results obtained in vitro in different cell lines showed that following gene electrotransfer, the newly constructed plasmids had cytotoxicity and expression profiles comparable to plasmids with antibiotic resistance genes. Additionally, in vivo studies showed a statistically significant prolonged tumor growth delay of CMeC-1 tumors compared to control vehicle-treated mice after intratumoral gene electrotransfer. Besides the higher gene expression obtained by plasmids with constitutive promoters, the main difference between both plasmids was in the distribution of the transgene expression. Namely, after gene electrotransfer, plasmids with constitutive promoters showed an increase of serum IL-12, whereas the gene expression of IL-12, encoded by plasmids with fibroblast-specific promoters, was restricted to the tumor. Furthermore, after the gene electrotransfer of plasmids with constitutive promoters, granzyme B-positive cells were detected in the tumor and spleen, indicating a systemic effect of the therapy. Therefore, plasmids with different promoters present valuable tools for focused therapy with local or systemic effects. The results of the present study demonstrated that plasmids encoding canine IL-12 under constitutive and fibroblast-specific promoters without the gene for antibiotic resistance provide feasible tools for controlled gene delivery that could be used for the treatment of client-owned dogs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng. 2014;16:295–320.

    Article  CAS  Google Scholar 

  2. Gothelf A, Gehl J. What you always needed to know about electroporation based DNA vaccines. Hum Vaccin Immunother. 2012;8:1694–702.

    Article  CAS  Google Scholar 

  3. Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. Clinical applications of DNA vaccines: current progress. Clin Infect Dis. 2011;53:296–302.

    Article  CAS  Google Scholar 

  4. Cemazar M, Jarm T, Sersa G. Cancer electrogene therapy with interleukin-12. Curr Gene Ther. 2010;10:300–11.

    Article  CAS  Google Scholar 

  5. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, et al. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13:4677–85.

    Article  Google Scholar 

  6. Lampreht Tratar U, Loiacono L, Cemazar M, Kamensek U, Fazio VM, Sersa G, et al. Gene electrotransfer of plasmid-encoding IL-12 recruits the M1 macrophages and antigen-presenting cells inducing the eradication of aggressive B16F10 murine melanoma. Mediat Inflamm. 2017;2017:5285890.

    Article  Google Scholar 

  7. Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002;13:155–68.

    Article  CAS  Google Scholar 

  8. Cicchelero L, Denies S, Haers H, Vanderperren K, Stock E, Van Brantegem L, et al. Intratumoural interleukin 12 gene therapy stimulates the immune system and decreases angiogenesis in dogs with spontaneous cancer. Vet Comp Oncol. 2016;400:205–18.

    Google Scholar 

  9. Sedlar A, Kranjc S, Dolinsek T, Cemazar M, Coer A, Sersa G. Radiosensitizing effect of intratumoral interleukin-12 gene electrotransfer in murine sarcoma. BMC Cancer. 2013;13:38.

    Article  CAS  Google Scholar 

  10. Pavlin D, Cemazar M, Kamensek U, Tozon N, Pogacnik A, Sersa G. Local and systemic antitumor effect of intratumoral and peritumoral IL-12 electrogene therapy on murine sarcoma. Cancer Biol Ther. 2009;8:2114–22.

    Article  CAS  Google Scholar 

  11. Reed SD, Fulmer A, Buckholz J, Zhang B, Cutrera J, Shiomitsu K, et al. Bleomycin/interleukin-12 electrochemogene therapy for treating naturally occurring spontaneous neoplasms in dogs. Cancer Gene Ther. 2010;17:457–64.

    Article  CAS  Google Scholar 

  12. Cemazar M, Ambrozic Avgustin J, Pavlin D, Sersa G, Poli A, Krhac Levacic A, et al. Efficacy and safety of electrochemotherapy combined with peritumoral IL-12 gene electrotransfer of canine mast cell tumours. Vet Comp Oncol. 2016;15:641–54.

    Article  Google Scholar 

  13. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008;26:5896–903.

    Article  CAS  Google Scholar 

  14. Ranieri G, Gadaleta CD, Patruno R, Zizzo N, Daidone MG, Hansson MG, et al. A model of study for human cancer: Spontaneous occurring tumors in dogs. Biological features and translation for new anticancer therapies. Crit Rev Oncol Hematol. 2013;88:187–97.

    Article  CAS  Google Scholar 

  15. Gillard M, Cadieu E, De Brito C, Abadie J, Vergier B, Devauchelle P, et al. Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas. Pigment Cell Melanoma Res. 2014;27:90–102.

    Article  CAS  Google Scholar 

  16. Lampreht U, Kamensek U, Stimac M, Sersa G, Tozon N, Bosnjak M, et al. Gene electrotransfer of canine interleukin 12 into canine melanoma cell lines. J Membr Biol. 2015;248:909–17.

    Article  CAS  Google Scholar 

  17. Kos S, Tesic N, Kamensek U, Blagus T, Cemazar M, Kranjc S, et al. Improved specificity of gene electrotransfer to skin using pDNA under the control of collagen tissue-specific promoter. J Membr Biol. 2015;248:919–28.

    Article  CAS  Google Scholar 

  18. Kamensek U, Tesic N, Sersa G, Kos S, Cemazar M. Tailor-made fibroblast-specific and antibiotic-free interleukin 12 plasmid for gene electrotransfer-mediated cancer immunotherapy. Plasmid. 2017;89:9–15.

    Article  CAS  Google Scholar 

  19. Tesic N, Kamensek U, Sersa G, Kranjc S, Stimac M, Lampreht U, et al. Endoglin (CD105) silencing mediated by shRNA under the control of endothelin-1 promoter for targeted gene therapy of melanoma. Mol Ther Nucleic Acids. 2015;4:e239.

    Article  CAS  Google Scholar 

  20. Vandermeulen G, Marie C, Scherman D, Préat V. New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Mol Ther. 2011;19:1942–9.

    Article  CAS  Google Scholar 

  21. Dean DA, Stivers C, Linkhart TA, Strong DD. Sequences from the human type 1 alpha 2 procollagen promoter mediate osteoblast-specific plasmid nuclear import. Mol Ther. 2006;13(S413):S413.

    Article  Google Scholar 

  22. Büttner M, Belke-Louis G, Rziha HJ, McInnes C, Kaaden OR. Detection, cDNA cloning and sequencing of canine interleukin 12. Cytokine. 1998;10:241–8.

    Article  Google Scholar 

  23. Dos Santos LR, Barrouin-Melo SM, Chang YF, Olsen J, McDonough SP, Quimby F, et al. Recombinant single-chain canine interleukin 12 induces interferon gamma mRNA expression in peripheral blood mononuclear cells of dogs with visceral leishmaniasis. Vet Immunol Immunopathol. 2004;98:43–8.

    Article  Google Scholar 

  24. Dean DA. Cell-specific targeting strategies for electroporation-mediated gene delivery in cells and animals. J Membr Biol. 2013;246:737–44.

    Article  CAS  Google Scholar 

  25. Inoue K, Ohashi E, Kadosawa T, Hong S-H, Matsunaga S, Mochizuki M, et al. Establishment and characterization of four canine melanoma cell lines. J Vet Med Sci. 2004;66:1437–40.

    Article  Google Scholar 

  26. Bosnjak M, Lorente BC, Pogacar Z, Makovsek V, Cemazar M. Different incubation times of cells after gene electrotransfer in fetal bovine serum affect cell viability, but not transfection efficiency. J Membr Biol. 2014;247:421–8.

    Article  CAS  Google Scholar 

  27. Kos S, Blagus T, Cemazar M, Lampreht Tratar U, Stimac M, Prosen L, et al. Electrotransfer parameters as a tool for controlled and targeted gene expression in skin. Mol Ther Nucleic Acids. 2016;5:e356.

    Article  CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.

    Article  CAS  Google Scholar 

  29. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54.

    Article  CAS  Google Scholar 

  30. Dolinsek T, Prosen L, Cemazar M, Potocnik T, Sersa G. Electrochemotherapy with bleomycin is effective in BRAF mutated melanoma cells and interacts with BRAF inhibitors. Radiol Oncol. 2016;50:274–9.

    Article  CAS  Google Scholar 

  31. Nakamura S, Watanabe S, Ohtsuka M, Maehara T, Ishihara M, Yokomine T, et al. Cre-loxP system as a versatile tool for conferring increased levels of tissue-specific gene expression from a weak promoter. Mol Reprod Dev. 2008;75:1085–93.

    Article  CAS  Google Scholar 

  32. Vandermeulen G, Richiardi H, Escriou V, Ni J, Fournier P, Schirrmacher V, et al. Skin-specific promoters for genetic immunisation by DNA electroporation. Vaccine. 2009;27:4272–7.

    Article  CAS  Google Scholar 

  33. Hong Z-F, Zhao W-X, Yin Z-Y, Xie C-R, Xu Y-P, Chi X-Q, et al. Natural killer cells inhibit pulmonary metastasis of hepatocellular carcinoma in nude mice. Oncol Lett. 2016;11:2019–26.

    Article  CAS  Google Scholar 

  34. Topham NJ, Hewitt EW. Natural killer cell cytotoxicity: how do they pull the trigger? Immunology. 2009;128:7–15.

    Article  CAS  Google Scholar 

  35. Tevz G, Kranjc S, Cemazar M, Kamensek U, Coer A, Krzan M, et al. Controlled systemic release of interleukin-12 after gene electrotransfer to muscle for cancer gene therapy alone or in combination with ionizing radiation in murine sarcomas. J Gene Med. 2009;11:1125–37.

    Article  CAS  Google Scholar 

  36. Lucas ML, Heller L, Coppola D, Heller R. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther. 2002;5:668–75.

    Article  CAS  Google Scholar 

  37. Kos S, Blagus T, Cemazar M, Lampreht Tratar U, Stimac M, Prosen L, et al. Electrotransfer parameters as a tool for controlled and targeted gene expression in skin. Mol Ther Nucleic Acids. 2016;5:1–12.

    Article  Google Scholar 

  38. Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets. 2010;11:1000–17.

    Article  CAS  Google Scholar 

  39. Stimac M, Dolinsek T, Lampreht U, Cemazar M, Sersa G. Gene electrotransfer of plasmid with tissue specific promoter encoding shRNA against endoglin exerts antitumor efficacy against murine TS/A tumors by vascular targeted effects. PLoS ONE. 2015;10:e0124913.

    Article  Google Scholar 

  40. Shirley SA, Lundberg CG, Li F, Burcus N, Heller R. Controlled gene delivery can enhance therapeutic outcome for cancer immune therapy for melanoma. Curr Gene Ther. 2015;15:32–43.

    Article  CAS  Google Scholar 

  41. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35(Suppl):S185–98.

    Article  Google Scholar 

  42. Rakhmilevich AL, Janssen K, Hao Z, Sondel PM, Yang NS. Interleukin-12 gene therapy of a weakly immunogenic mouse mammary carcinoma results in reduction of spontaneous lung metastases via a T-cell-independent mechanism. Cancer Gene Ther. 2000;7:826–38.

    Article  CAS  Google Scholar 

  43. Grohmann U, Bianchi R, Ayroldi E, Belladonna ML, Surace D, Fioretti MC, et al. A tumor-associated and self antigen peptide presented by dendritic cells may induce T cell anergy in vivo, but IL-12 can prevent or revert the anergic state. J Immunol. 1997;158:3593–602.

    CAS  PubMed  Google Scholar 

  44. Tugues S, Burkhard SH, Ohs I, Vrohlings M, Nussbaum K, Vom Berg J, et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015;22:237–46.

    Article  CAS  Google Scholar 

  45. Shi X, Liu J, Xiang Z, Mitsuhashi M, Wu RS, Ma X. Gene expression analysis in Interleukin-12-induced suppression of mouse mammary carcinoma. Int J Cancer. 2004;110:570–8.

    Article  CAS  Google Scholar 

  46. Kishida T, Asada H, Itokawa Y, Yasutomi K, Shin-Ya M, Gojo S, et al. Electrochemo-gene therapy of cancer: intratumoral delivery of interleukin-12 gene and bleomycin synergistically induced therapeutic immunity and suppressed subcutaneous and metastatic melanomas in mice. Mol Ther. 2003;8:738–45.

    Article  CAS  Google Scholar 

  47. Jia S-F, Duan X, Worth LL, Guan H, Kleinerman ES. Intratumor murine interleukin-12 gene therapy suppressed the growth of local and distant Ewing’s sarcoma. Cancer Gene Ther. 2006;13:948–57.

    Article  CAS  Google Scholar 

  48. Chuang T-F, Lee S-C, Liao K-W, Hsiao Y-W, Lo C-H, Chiang B-L, et al. Electroporation-mediated IL-12 gene therapy in a transplantable canine cancer model. Int J Cancer. 2009;125:698–707.

    Article  CAS  Google Scholar 

  49. Dolinsek T, Markelc B, Sersa G, Coer A, Stimac M, Lavrencak J, et al. Multiple delivery of siRNA against endoglin into murine mammary adenocarcinoma prevents angiogenesis and delays tumor growth. PLoS ONE. 2013;8:e58723.

    Article  CAS  Google Scholar 

  50. Strasly M, Cavallo F, Geuna M, Mitola S, Colombo MP, Forni G, et al. IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. J Immunol. 2001;166:3890–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported through grants from the state budget of the Slovenian Research Agency (program no. P3-0003, projects no. J3-6796 and J3-4259). The research was conducted in the scope of LEA EBAM (French-Slovenian European Associated Laboratory: Pulsed Electric Fields Applications in Biology and Medicine) and reflects the networking efforts within COST TD1104 Action. Linguistic revision was done by American Journal Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Cemazar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lampreht Tratar, U., Kos, S., Kamensek, U. et al. Antitumor effect of antibiotic resistance gene-free plasmids encoding interleukin-12 in canine melanoma model. Cancer Gene Ther 25, 260–273 (2018). https://doi.org/10.1038/s41417-018-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0014-5

Search

Quick links