Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

SON is an essential RNA splicing factor promoting ErbB2 and ErbB3 expression in breast cancer

Abstract

Background

In breast cancer, ErbB receptors play a critical role, and overcoming drug resistance remains a major challenge in the clinic. However, intricate regulatory mechanisms of ErbB family genes are poorly understood. Here, we demonstrate SON as an ErbB-regulatory splicing factor and a novel therapeutic target for ErbB-positive breast cancer.

Methods

SON and ErbB expression analyses using public database, patient tissue microarray, and cell lines were performed. SON knockdown assessed its impact on cell proliferation, apoptosis, kinase phosphorylation, RNA splicing, and in vivo tumour growth. RNA immunoprecipitation was performed to measure SON binding.

Results

SON is highly expressed in ErbB2-positive breast cancer patient samples, inversely correlating with patient survival. SON knockdown induced intron retention in selective splice sites within ErbB2 and ErbB3 transcripts, impairing effective RNA splicing and reducing protein expression. SON disruption suppressed downstream kinase signalling of ErbB2/3, including the Akt, p38, and JNK pathways, with increased vulnerability in ErbB2-positive breast cancer cells compared to ErbB2-negative cells. SON silencing in ErbB2-positive breast cancer xenografts led to tumour regression in vivo.

Conclusion

We identified SON as a novel RNA splicing factor that plays a critical role in regulating ErbB2/3 expression, suggesting SON is an ideal therapeutic target in ErbB2-positive breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SON expression is associated with ErbB2-positive breast cancer patients with poor outcomes.
Fig. 2: SON is required for ErbB2 and ErbB3 expression.
Fig. 3: SON knockdown causes intron retention of ErbB2 and ErbB3 transcripts.
Fig. 4: SON disruption suppresses ErbB-downstream signalling pathways.
Fig. 5: SON expression is critical for cell proliferation and apoptosis of ErbB-positive cancer cells.
Fig. 6: SON knockdown reduces ErbB2-positive tumour growth in vivo.
Fig. 7: A model of the functional interaction between SON and ErbB.

Similar content being viewed by others

Data availability

The Clinical Proteomic Tumour Analysis Consortium (CPTAC2 Retrospective; PDC000173) data are available through the National Cancer Institute Proteomic Data Commons (https://pdc.cancer.gov/).

References

  1. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    Article  CAS  PubMed  Google Scholar 

  2. Plowman GD, Green JM, Culouscou JM, Carlton GW, Rothwell VM, Buckley S. Heregulin induces tyrosine phosphorylation of HER4/p180erbB4. Nature. 1993;366:473–5.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, et al. ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Investig. 2007;117:2051–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lenferink AE, Pinkas-Kramarski R, van de Poll ML, van Vugt MJ, Klapper LN, Tzahar E, et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 1998;17:3385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 2000;19:3159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature. 1986;319:226–30.

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, et al. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature. 1986;319:230–4.

    Article  CAS  PubMed  Google Scholar 

  8. Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014:852748.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell. 2003;11:495–505.

    Article  CAS  PubMed  Google Scholar 

  10. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16:5276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer. 2012;12:553–63.

    Article  CAS  PubMed  Google Scholar 

  12. Shepard HM, Lewis GD, Sarup JC, Fendly BM, Maneval D, Mordenti J, et al. Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J Clin Immunol. 1991;11:117–27.

    Article  CAS  PubMed  Google Scholar 

  13. Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol. 1998;16:2659–71.

    Article  CAS  PubMed  Google Scholar 

  14. Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer. 2013;13:663–73.

    Article  CAS  PubMed  Google Scholar 

  15. Drago JZ, Ferraro E, Abuhadra N, Modi S. Beyond HER2: targeting the ErbB receptor family in breast cancer. Cancer Treat Rev. 2022;109:102436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kinnel B, Singh SK, Oprea-Ilies G, Singh R. Targeted therapy and mechanisms of drug resistance in breast cancer. Cancers. 2023;15:1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jackson C, Browell D, Gautrey H, Tyson-Capper A. Clinical significance of HER-2 splice variants in breast cancer progression and drug resistance. Int J Cell Biol. 2013;2013:973584.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hart V, Gautrey H, Kirby J, Tyson-Capper A. HER2 splice variants in breast cancer: investigating their impact on diagnosis and treatment outcomes. Oncotarget. 2020;11:4338–57.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ahn EY, DeKelver RC, Lo MC, Nguyen TA, Matsuura S, Boyapati A, et al. SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell. 2011;42:185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vukadin L, Kim JH, Park EY, Stone JK, Ungerleider N, Baddoo MC, et al. SON inhibits megakaryocytic differentiation via repressing RUNX1 and the megakaryocytic gene expression program in acute megakaryoblastic leukemia. Cancer Gene Ther. 2021;28:1000–15.

    Article  CAS  PubMed  Google Scholar 

  21. Kim JH, Jeong K, Li J, Murphy JM, Vukadin L, Stone JK, et al. SON drives oncogenic RNA splicing in glioblastoma by regulating PTBP1/PTBP2 switching and RBFOX2 activity. Nat Commun. 2021;12:5551.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim JH, Park EY, Chitayat D, Stachura DL, Schaper J, Lindstrom K, et al. SON haploinsufficiency causes impaired pre-mRNA splicing of CAKUT genes and heterogeneous renal phenotypes. Kidney Int. 2019;95:1494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim JH, Shinde DN, Reijnders MRF, Hauser NS, Belmonte RL, Wilson GR, et al. De novo mutations in SON disrupt RNA splicing of genes essential for brain development and metabolism, causing an intellectual-disability syndrome. Am J Hum Genet. 2016;99:711–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim JH, Baddoo MC, Park EY, Stone JK, Park H, Butler TW, et al. SON and its alternatively spliced isoforms control MLL complex-mediated H3K4me3 and transcription of leukemia-associated genes. Mol Cell. 2016;61:859–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berdichevskii FB, Chumakov IM, Kiselev LL. [Decoding of the primary structure of the son3 region in human genome: identification of a new protein with unusual structure and homology with DNA-binding proteins]. Mol Biol. 1988;22:794–801.

    CAS  Google Scholar 

  26. Sun CT, Lo WY, Wang IH, Lo YH, Shiou SR, Lai CK, et al. Transcription repression of human hepatitis B virus genes by negative regulatory element-binding protein/SON. J Biol Chem. 2001;276:24059–67.

    Article  CAS  PubMed  Google Scholar 

  27. Reymond A, Friedli M, Henrichsen CN, Chapot F, Deutsch S, Ucla C, et al. From PREDs and open reading frames to cDNA isolation: revisiting the human chromosome 21 transcription map. Genomics. 2001;78:46–54.

    Article  CAS  PubMed  Google Scholar 

  28. Saunders LR, Barber GN. The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J. 2003;17:961–83.

    Article  CAS  PubMed  Google Scholar 

  29. Aravind L, Koonin EV. G-patch: a new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins. Trends Biochem Sci. 1999;24:342–4.

    Article  CAS  PubMed  Google Scholar 

  30. Birney E, Kumar S, Krainer AR. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 1993;21:5803–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saitoh N, Spahr CS, Patterson SD, Bubulya P, Neuwald AF, Spector DL. Proteomic analysis of interchromatin granule clusters. Mol Biol Cell. 2004;15:3876–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mattioni T, Hume CR, Konigorski S, Hayes P, Osterweil Z, Lee JS. A cDNA clone for a novel nuclear protein with DNA binding activity. Chromosoma. 1992;101:618–24.

    Article  CAS  PubMed  Google Scholar 

  33. Livyatan I, Meshorer E. SON sheds light on RNA splicing and pluripotency. Nat Cell Biol. 2013;15:1139–40.

    Article  CAS  PubMed  Google Scholar 

  34. Lu X, Goke J, Sachs F, Jacques PE, Liang H, Feng B, et al. SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nat Cell Biol. 2013;15:1141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tan M, Li P, Klos KS, Lu J, Lan KH, Nagata Y, et al. ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis. Cancer Res. 2005;65:1858–67.

    Article  CAS  PubMed  Google Scholar 

  36. Edwards NJ, Oberti M, Thangudu RR, Cai S, McGarvey PB, Jacob S, et al. The CPTAC data portal: a resource for cancer proteomics research. J Proteome Res. 2015;14:2707–13.

    Article  CAS  PubMed  Google Scholar 

  37. Ellis MJ, Gillette M, Carr SA, Paulovich AG, Smith RD, Rodland KK, et al. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 2013;3:1108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534:55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  40. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    Article  PubMed  Google Scholar 

  41. Aigner A, Juhl H, Malerczyk C, Tkybusch A, Benz CC, Czubayko F. Expression of a truncated 100 kDa HER2 splice variant acts as an endogenous inhibitor of tumour cell proliferation. Oncogene. 2001;20:2101–11.

    Article  CAS  PubMed  Google Scholar 

  42. Koletsa T, Kostopoulos I, Charalambous E, Christoforidou B, Nenopoulou E, Kotoula V. A splice variant of HER2 corresponding to Herstatin is expressed in the noncancerous breast and in breast carcinomas. Neoplasia. 2008;10:687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31:3568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Behm-Ansmant I, Kashima I, Rehwinkel J, Sauliere J, Wittkopp N, Izaurralde E. mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett. 2007;581:2845–53.

    Article  CAS  PubMed  Google Scholar 

  45. Martin L, Grigoryan A, Wang D, Wang J, Breda L, Rivella S, et al. Identification and characterization of small molecules that inhibit nonsense-mediated RNA decay and suppress nonsense p53 mutations. Cancer Res. 2014;74:3104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abdelmohsen K. (editor) Modulation of gene expression by RNA binding proteins: mRNA stability and translation. In: Binding protein. United Kingdom: IntechOpen Limited; 2012:123–138 https://doi.org/10.5772/48485

  47. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2015;7:a026716.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem. 1998;273:33533–9.

    Article  CAS  PubMed  Google Scholar 

  49. Senapedis WT, Kennedy CJ, Boyle PM, Silver PA. Whole genome siRNA cell-based screen links mitochondria to Akt signaling network through uncoupling of electron transport chain. Mol Biol Cell. 2011;22:1791–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sharma A, Markey M, Torres-Munoz K, Varia S, Kadakia M, Bubulya A, et al. Son maintains accurate splicing for a subset of human pre-mRNAs. J Cell Sci. 2011;124:4286–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. She QB, Chandarlapaty S, Ye Q, Lobo J, Haskell KM, Leander KR, et al. Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS ONE. 2008;3:e3065.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537:102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin NU, Winer EP. Brain metastases: the HER2 paradigm. Clin Cancer Res. 2007;13:1648–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the following grants: China Medical University Ying-Tsai Scholar Fund CMU109-YT-04 and the National Science and Technology Council NSTC 113-2314-B-039-067- (to MT), National Cancer Center grants (NCC-2311410 and 2310390 to JK), the National Institutes of Health (NIH) grants (R01CA236911 and R01HL168659 to EA).

Author information

Authors and Affiliations

Authors

Contributions

JK, EEA and MT developed the study concept and experiment design. SP, JK and JBP performed all the experiments with assistance from CL, JC, SL, RA, JK, AA, BP, JKS and SSL. AGK performed the pathologic analysis of murine tumours. BW provided statistical support. AA performed protein data analyses and interpretation. EEA, MT and JK provided advice throughout the development of the project. EEA, MT, JK, JBP, CHL and SP wrote and revised the manuscript with input from all the authors.

Corresponding authors

Correspondence to Jung-Hyun Kim, Eun-Young Erin Ahn or Ming Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted in accordance with the principles of the Declaration of Helsinki principles. The animal study was approved by the Institutional Animal Care and Use Committee of the University of South Alabama.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillips, J.B., Park, SS., Lin, CH. et al. SON is an essential RNA splicing factor promoting ErbB2 and ErbB3 expression in breast cancer. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02853-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02853-x

Search

Quick links