Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Andrographolide sensitizes glioma to temozolomide by inhibiting DKK1 expression

Abstract

Background

Temozolomide (TMZ) is the first-line chemotherapeutic drug for gliomas treatment. However, the clinical efficacy of TMZ in glioma patients was very limited. Therefore, it is urgently needed to discover a novel approach to increase the sensitivity of glioma cells to TMZ.

Methods

Western blot, immunohistochemical staining, and qRT-PCR assays were used to explore the mechanisms underlying TMZ promoting DKK1 expression and andrographolide (AND) inhibiting DKK1 expression. HPLC was used to detect the ability of andrographolide (AND) to penetrate the blood-brain barrier. MTT assay, bioluminescence images, magnetic resonance imaging (MRI) and H&E staining were employed to measure the proliferative activity of glioma cells and the growth of intracranial tumors.

Results

TMZ can promote DKK1 expression in glioma cells and brain tumors of an orthotopic model of glioma. DKK1 could promote glioma cell proliferation and tumor growth in an orthotopic model of glioma. Mechanistically, TMZ increased EGFR expression and subsequently induced the activation of its downstream MEK-ERK and PI3K-Akt pathways, thereby promoting DKK1 expression in glioma cells. Andrographolide inhibited TMZ-induced DKK1 expression through inactivating MEK-ERK and PI3K-Akt pathways. Andrographolide can cross the blood-brain barrier, the combination of TMZ and andrographolide not only improved the anti-tumor effects of TMZ but also showed a survival benefit in an orthotopic model of glioma.

Conclusion

Andrographolide can enhance anti-tumor activity of TMZ against glioma by inhibiting DKK1 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temozolomide promotes DKK1 expression in both glioma cells and glioma model of mice.
Fig. 2: DKK1 is a sensitizing target for TMZ in glioma.
Fig. 3: EGFR-mediated MEK-ERK and PI3K-Akt pathways are involved in TMZ-induced DKK1 expression in glioma.
Fig. 4: Andrographolide inhibits DKK1 expression but has no effects on EGFR expression in glioma cells.
Fig. 5: Andrographolide alleviates DKK1 expression through inhibiting MEK-ERK and PI3K-Akt pathways in glioma cells.
Fig. 6: Andrographolide enhances the antitumor effect of temozolomide by inhibiting DKK1 in an orthotopic model of glioma.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kannan S, Murugan AK, Balasubramanian S, Munirajan AK, Alzahrani AS. Gliomas: genetic alterations, mechanisms of metastasis, recurrence, drug resistance, and recent trends in molecular therapeutic options. Biochem Pharm. 2022;201:115090.

    Article  CAS  PubMed  Google Scholar 

  2. Venkataramani V, Schneider M, Giordano FA, Kuner T, Wick W, Herrlinger U, et al. Disconnecting multicellular networks in brain tumours. Nat Rev Cancer. 2022;22:481–91.

    Article  CAS  PubMed  Google Scholar 

  3. Tong S, Wang Y, Wu J, Long J, Zhong P, Wang B. Comprehensive pharmacogenomics characterization of temozolomide response in gliomas. Eur J Pharm. 2021;912:174580.

    Article  CAS  Google Scholar 

  4. Lang F, Liu Y, Chou FJ, Yang C. Genotoxic therapy and resistance mechanism in gliomas. Pharm Ther. 2021;228:107922.

    Article  CAS  Google Scholar 

  5. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1998;391:357–62.

    Article  CAS  PubMed  Google Scholar 

  6. Jumpertz S, Hennes T, Asare Y, Schutz AK, Bernhagen J. CSN5/JAB1 suppresses the WNT inhibitor DKK1 in colorectal cancer cells. Cell Signal. 2017;34:38–46.

    Article  CAS  PubMed  Google Scholar 

  7. Kim HY, Park JH, Won HY, Lee JY, Kong G. CBX7 inhibits breast tumorigenicity through DKK-1-mediated suppression of the Wnt/beta-catenin pathway. FASEB J. 2015;29:300–13.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H, Yu C, Dai J, Keller JM, Hua A, Sottnik JL, et al. Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of beta-catenin activation of the DKK1 promoter in prostate cancer. Oncogene. 2014;33:2464–77.

    Article  CAS  PubMed  Google Scholar 

  9. Niu J, Li W, Liang C, Wang X, Yao X, Yang RH, et al. EGF promotes DKK1 transcription in hepatocellular carcinoma by enhancing the phosphorylation and acetylation of histone H3. Sci Signal. 2020;13:eabb5727.

    Article  CAS  PubMed  Google Scholar 

  10. Kimura H, Sada R, Takada N, Harada A, Doki Y, Eguchi H, et al. The Dickkopf1 and FOXM1 positive feedback loop promotes tumor growth in pancreatic and esophageal cancers. Oncogene. 2021;40:4486–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen Q, Fan J, Yang XR, Tan Y, Zhao W, Xu Y, et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study. Lancet Oncol. 2012;13:817–26.

    Article  CAS  PubMed  Google Scholar 

  12. Chu HY, Chen Z, Wang L, Zhang ZK, Tan X, Liu S, et al. Dickkopf-1: a promising target for cancer immunotherapy. Front Immunol. 2021;12:658097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kikuchi A, Matsumoto S, Sada R. Dickkopf signaling, beyond Wnt-mediated biology. Semin Cell Dev Biol. 2022;125:55–65.

    Article  CAS  PubMed  Google Scholar 

  14. Salim H, Zong D, Haag P, Novak M, Mork B, Lewensohn R, et al. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines. BMC Cancer. 2015;15:628.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Wang C, Goel A. Andrographis overcomes 5-fluorouracil-associated chemoresistance through inhibition of DKK1 in colorectal cancer. Carcinogenesis. 2021;42:814–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Agbarya A, Ruimi N, Epelbaum R, Ben-Arye E, Mahajna J. Natural products as potential cancer therapy enhancers: a preclinical update. SAGE Open Med. 2014;2:2050312114546924.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ouyang L, Luo Y, Tian M, Zhang SY, Lu R, Wang JH, et al. Plant natural products: from traditional compounds to new emerging drugs in cancer therapy. Cell Prolif. 2014;47:506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: current achievements and future perspectives. Eur J Med Chem. 2021;224:113710.

    Article  CAS  PubMed  Google Scholar 

  19. Malik Z, Parveen R, Parveen B, Zahiruddin S, Aasif Khan M, Khan A, et al. Anticancer potential of andrographolide from Andrographis paniculata (Burm.f.) Nees and its mechanisms of action. J Ethnopharmacol. 2021;272:113936.

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Zhang P, Qiu F, Chen L, Miao C, Li J, et al. Inactivation of PI3K/Akt signaling mediates proliferation inhibition and G2/M phase arrest induced by andrographolide in human glioblastoma cells. Life Sci. 2012;90:962–7.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Li C, Zhang L, Heng Y, Wang S, Pan Y, et al. Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27. Phytomedicine. 2022;98:153933.

    Article  CAS  PubMed  Google Scholar 

  22. Bodiga VL, Bathula J, Kudle MR, Vemuri PK, Bodiga S. Andrographolide suppresses cisplatin-induced endothelial hyperpermeability through activation of PI3K/Akt and eNOS -derived nitric oxide. Bioorg Med Chem. 2020;28:115809.

    Article  CAS  PubMed  Google Scholar 

  23. Yang SH, Wang SM, Syu JP, Chen Y, Wang SD, Peng YS, et al. Andrographolide induces apoptosis of C6 glioma cells via the ERK-p53-caspase 7-PARP pathway. Biomed Res Int. 2014;2014:312847.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lu J, Ma Y, Wu J, Huang H, Wang X, Chen Z, et al. A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed Pharmacother. 2019;117:109078.

    Article  CAS  PubMed  Google Scholar 

  25. Ortiz R, Perazzoli G, Cabeza L, Jimenez-Luna C, Luque R, Prados J, et al. Temozolomide: an updated overview of resistance mechanisms, nanotechnology advances and clinical applications. Curr Neuropharmacol. 2021;19:513–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Desai R, Suryadevara CM, Batich KA, Farber SH, Sanchez-Perez L, Sampson JH. Emerging immunotherapies for glioblastoma. Expert Opin Emerg Drugs. 2016;21:133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cruz JVR, Batista C, Afonso BH, Alexandre-Moreira MS, Dubois LG, Pontes B, et al. Obstacles to glioblastoma treatment two decades after temozolomide. Cancers. 2022;14:3203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vilar JB, Christmann M, Tomicic MT. Alterations in molecular profiles affecting glioblastoma resistance to radiochemotherapy: where does the good go? Cancers. 2022;14:2416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tomar MS, Kumar A, Srivastava C, Shrivastava A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer. 2021;1876:188616.

    Article  CAS  PubMed  Google Scholar 

  30. Grotewold L, Theil T, Ruther U. Expression pattern of Dkk-1 during mouse limb development. Mech Dev. 1999;89:151–3.

    Article  CAS  PubMed  Google Scholar 

  31. Reis M, Czupalla CJ, Ziegler N, Devraj K, Zinke J, Seidel S, et al. Endothelial Wnt/beta-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression. J Exp Med. 2012;209:1611–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kahlert UD, Maciaczyk D, Doostkam S, Orr BA, Simons B, Bogiel T, et al. Activation of canonical WNT/beta-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Lett. 2012;325:42–53.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Liu F, Xu Q, Wang X. Analysis of the expression profile of Dickkopf-1 gene in human glioma and the association with tumor malignancy. J Exp Clin Cancer Res. 2010;29:138.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luo T, Ding K, Ji J, Zhang X, Yang X, Chen A, et al. Cytoskeleton-associated protein 4 (CKAP4) promotes malignant progression of human gliomas through inhibition of the Hippo signaling pathway. J Neurooncol. 2021;154:275–83.

    Article  CAS  PubMed  Google Scholar 

  35. Sui Q, Liu D, Jiang W, Tang J, Kong L, Han K, et al. Dickkopf 1 impairs the tumor response to PD-1 blockade by inactivating CD8+ T cells in deficient mismatch repair colorectal cancer. J Immunother Cancer. 2021;9:e001498.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12:3–20.

    Article  PubMed  Google Scholar 

  37. Woodburn JR. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharm Ther. 1999;82:241–50.

    Article  CAS  Google Scholar 

  38. Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 2017;9:52.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Oprita A, Baloi SC, Staicu GA, Alexandru O, Tache DE, Danoiu S, et al. Updated insights on EGFR signaling pathways in glioma. Int J Mol Sci. 2021;22:587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang PH, Xu AM, White FM. Oncogenic EGFR signaling networks in glioma. Sci Signal. 2009;2:re6.

    Article  PubMed  Google Scholar 

  41. Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis. 2014;5:e1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Z, Hu P, Tang F, Lian H, Chen X, Zhang Y, et al. HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma. Cancer Lett. 2016;379:134–42.

    Article  CAS  PubMed  Google Scholar 

  43. Artene SA, Tuta C, Dragoi A, Alexandru O, Stefana Oana P, Tache DE, et al. Current and emerging EGFR therapies for glioblastoma. J Immunoass Immunochem. 2018;39:1–11.

    Article  CAS  Google Scholar 

  44. Meng X, Zhao Y, Han B, Zha C, Zhang Y, Li Z, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun. 2020;11:594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Danhier F, Messaoudi K, Lemaire L, Benoit JP, Lagarce F. Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: in vivo evaluation. Int J Pharm. 2015;481:154–61.

    Article  CAS  PubMed  Google Scholar 

  46. Qin RX, Li S, Qiu YW, Feng YS, Liu YQ, Ding DD, et al. Carbonized paramagnetic complexes of Mn (II) as contrast agents for precise magnetic resonance imaging of sub-millimeter-sized orthotopic tumors. Nat Commun. 2022;13:1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2021YFA0909600), Natural Science Foundation of Henan (232300420050), Key projects of Henan Science and Technology Department (232102311115, 242102311032, 242102311072). This work was also supported by the Open Projects in the Key Laboratory for Neuroscience of Peking University.

Author information

Authors and Affiliations

Authors

Contributions

ZSZ, ZXG, JJH, CM, HTT, FYZ, YNC, CQX, JQL, and ZZL carried out the experiments, LLH and HS performed the data analysis, SQX and DF designed this study and wrote the manuscript.

Corresponding authors

Correspondence to Hua Sun, Song-Qiang Xie or Dong Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to publish

All contributing authors agree to the publication of this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZS., Gao, ZX., He, JJ. et al. Andrographolide sensitizes glioma to temozolomide by inhibiting DKK1 expression. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02842-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02842-0

Search

Quick links