Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

GFPT2: A novel biomarker in mesothelioma for diagnosis and prognosis and its molecular mechanism in malignant progression

Abstract

Background

Mesothelioma (MESO) is an insidious malignancy with a complex diagnosis and a poor prognosis. Our study unveils Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2) as a valuable diagnostic and prognostic marker for MESO, exploring its role in MESO pathogenesis.

Methods

We utilised tissue samples and clinicopathologic data to evaluate the diagnostic and prognostic significance of GFPT2 as a biomarker for MESO. The role of GFPT2 in the malignant progression of MESO was investigated through in vitro and in vivo experiments. The activation of NF-κB-p65 through O-GlcNAcylation at Ser75 was elucidated using experiments like HPLC-QTRAP-MS/MS and mass spectrometry analysis.

Results

The study demonstrates that GFPT2 exhibits a sensitivity of 92.60% in diagnosing MESO. Overexpression of it has been linked to an unfavourable prognosis. Through rigorous verification, we have confirmed that elevated GFPT2 levels drive malignant proliferation, invasiveness, and metastasis in MESO. At the molecular level, GFPT2 augments p65 O-GlcNAcylation, orchestrating its nuclear translocation and activating the NF-κB signalling pathway.

Conclusions

Our insights suggest GFPT2’s potential as a distinctive biomarker for MESO diagnosis and prognosis, and as an innovative therapeutic target, offering a new horizon for identification and treatment strategies in MESO management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of GFPT2 overexpression in MESO.
Fig. 2: Assessment of the utility of GFPT2 in the diagnosis and prognosis of MESO.
Fig. 3: Impact of GFPT2 on MESO cells proliferation, migration, and invasion.
Fig. 4: GFPT2 promotes the tumour growth and metastasis of MESO in vivo.
Fig. 5: NF-κB-p65 is involved in the GFPT2-induced MESO progression.
Fig. 6: GFPT2 facilitates p65 nuclear translocation via O-GlcNAcylation augmentation.

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Yang H, Xu D, Schmid RA, Peng R-W. Biomarker-guided targeted and immunotherapies in malignant pleural mesothelioma. Ther Adv Med Oncol. 2020;12:175883592097142.

    Article  Google Scholar 

  2. Sauter JL, Dacic S, Galateau-Salle F, Attanoos RL, Butnor KJ, Churg A, et al. The 2021 WHO Classification of Tumors of the Pleura: Advances Since the 2015 Classification. J Thorac Oncol. 2022;17:608–22.

    Article  PubMed  Google Scholar 

  3. Van Kooten JP, Belderbos RA, Von Der Thüsen JH, Aarts MJ, Verhoef C, Burgers JA, et al. Incidence, treatment and survival of malignant pleural and peritoneal mesothelioma: a population-based study. Thorax. 2022;77:1260–7.

    Article  PubMed  Google Scholar 

  4. Sinn K, Mosleh B, Hoda MA. Malignant pleural mesothelioma: recent developments. Curr Opin Oncol. 2021;33:80–6.

    Article  PubMed  CAS  Google Scholar 

  5. Miyake N, Ochi N, Yamane H, Fukazawa T, Ikeda T, Yokota E, et al. Targeting ROR1 in combination with pemetrexed in malignant mesothelioma cells. Lung Cancer. 2020;139:170–8.

    Article  PubMed  Google Scholar 

  6. Bibby AC, Tsim S, Kanellakis N, Ball H, Talbot DC, Blyth KG, et al. Malignant pleural mesothelioma: an update on investigation, diagnosis and treatment. Eur Respir Rev. 2016;25:472–86.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Monaco SE, Shuai Y, Bansal M, Krasinskas AM, Dacic S. The diagnostic utility of p16 FISH and GLUT-1 immunohistochemical analysis in mesothelial proliferations. Am J Clin Pathol. 2011;135:619–27.

    Article  PubMed  Google Scholar 

  8. Yoshimura M, Kinoshita Y, Hamasaki M, Matsumoto S, Hida T, Oda Y, et al. Highly expressed EZH2 in combination with BAP1 and MTAP loss, as detected by immunohistochemistry, is useful for differentiating malignant pleural mesothelioma from reactive mesothelial hyperplasia. Lung Cancer. 2019;130:187–93.

    Article  PubMed  Google Scholar 

  9. Hwang HC, Pyott S, Rodriguez S, Cindric A, Carr A, Michelsen C, et al. BAP1 Immunohistochemistry and p16 FISH in the Diagnosis of Sarcomatous and Desmoplastic Mesotheliomas. Am J Surg Pathol. 2016;40:714–8.

    Article  PubMed  Google Scholar 

  10. Shinozaki‐Ushiku A, Ushiku T, Morita S, Anraku M, Nakajima J, Fukayama M. Diagnostic utility of BAP 1 and EZH 2 expression in malignant mesothelioma. Histopathology. 2017;70:722–33.

    Article  PubMed  Google Scholar 

  11. Hakim SA, Abou Gabal HH. Diagnostic utility of BAP1, EZH2 and Survivin in differentiating pleural epithelioid mesothelioma and reactive mesothelial Hyperplasia: immunohistochemical study. Pathol Oncol Res. 2021;27:600073.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tolwani A, Matusiak M, Bui N, Forgó E, Varma S, Baratto L, et al. Prognostic relevance of the hexosamine biosynthesis pathway activation in leiomyosarcoma. npj Genom Med. 2021;6:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Oki T, Yamazaki K, Kuromitsu J, Okada M, Tanaka I. cDNA cloning and mapping of a novel subtype of Glutamine:fructose-6-phosphate Amidotransferase (GFAT2) in human and mouse. Genomics. 1999;57:227–34.

    Article  PubMed  CAS  Google Scholar 

  14. Szymura SJ, Zaemes JP, Allison DF, Clift SH, D’Innocenzi JM, Gray LG, et al. NF-κB upregulates glutamine-fructose-6-phosphate transaminase 2 to promote migration in non-small cell lung cancer. Cell Commun Signal. 2019;17:24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang W, Bouchard G, Yu A, Shafiq M, Jamali M, Shrager JB, et al. GFPT2 -Expressing cancer-associated fibroblasts mediate metabolic reprogramming in human lung Adenocarcinoma. Cancer Res. 2018;78:3445–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu L, Pan Y, Ren X, Zeng Z, Sun J, Zhou K, et al. GFPT2 promotes metastasis and forms a positive feedback loop with p65 in colorectal cancer. Am J Cancer Res. 2020;10:2510–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang Q, Karvelsson ST, Kotronoulas A, Gudjonsson T, Halldorsson S, Rolfsson O. Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2) is upregulated in breast epithelial–mesenchymal transition and responds to oxidative stress. Mol Cell Proteom. 2022;21:100185.

    Article  CAS  Google Scholar 

  18. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hardivillé S, Hart GW. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 2014;20:208–13.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chiaradonna F, Ricciardiello F, Palorini R. The nutrient-sensing hexosamine biosynthetic pathway as the hub of cancer metabolic rewiring. Cells. 2018;7:53.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNacylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011;80:825–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Dong DL, Hart GW. Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. J Biol Chem. 1994;269:19321–30.

    Article  PubMed  CAS  Google Scholar 

  23. Wang ZV, Deng Y, Gao N, Pedrozo Z, Li DL, Morales CR, et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell. 2014;156:1179–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Parker MP, Peterson KR, Slawson C. O-GlcNAcylation and O-GlcNAc cycling regulate gene transcription: emerging roles in cancer. Cancers. 2021;13:1666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL, et al. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell. 2014;54:820–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. The UniProt Consortium, Bateman A, Martin M-J, Orchard S, Magrane M, Ahmad S, et al. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–31.

    Article  Google Scholar 

  27. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023;51:D1373–80.

    Article  PubMed  Google Scholar 

  28. Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics. 2014;30:1771–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774–97.

    Article  PubMed  CAS  Google Scholar 

  30. Kassambara A, Kosinski M, Biecek P, Fabian Sjdsc. Package ‘survminer.’ Drawing Survival Curves using ‘ggplot2’(R package version 03 1). (2017);

  31. Therneau TM, Lumley T. Package ‘survival.’. R Top Doc 2015;128:28–33.

    Google Scholar 

  32. Suraokar MB, Nunez MI, Diao L, Chow CW, Kim D, Behrens C, et al. Expression profiling stratifies mesothelioma tumors and signifies deregulation of spindle checkpoint pathway and microtubule network with therapeutic implications. Ann Oncol. 2014;25:1184–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Knelson EH, Ivanova EV, Tarannum M, Campisi M, Lizotte PH, Booker MA, et al. Activation of tumor-cell STING Primes NK-cell therapy. Cancer Immunol Res. 2022;10:947–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yang F, Li S, Cheng Y, Li J, Han X. Karyopherin α 2 promotes proliferation, migration and invasion through activating NF-κB/p65 signaling pathways in melanoma cells. Life Sci. 2020;252:117611.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou L, Luo M, Cheng L, Li R, Liu B, Linghu H. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) promotes the EMT of serous ovarian cancer by activating the hexosamine biosynthetic pathway to increase the nuclear location of β-catenin. Pathol - Res Pract. 2019;215:152681.

    Article  PubMed  CAS  Google Scholar 

  36. Kroef V, Ruegenberg S, Horn M, Allmeroth K, Ebert L, Bozkus S, et al. GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway. eLife. 2022;11:e69223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Stinchcombe TE. Flashback Foreword: Pemetrexed and Cisplatin in Mesothelioma. J Clin Oncol. 2023;41:2123–4.

    Article  PubMed  CAS  Google Scholar 

  38. Carbone M, Adusumilli PS, Alexander HR, Baas P, Bardelli F, Bononi A, et al. Mesothelioma: Scientific clues for prevention, diagnosis, and therapy. CA A Cancer J Clin. 2019;69:402–29.

    Article  Google Scholar 

  39. Yuce TH, Ak G, Metintas S, Dundar E, Roe OD, Panou V, et al. BAP1, Wilms’ tumor 1, and calretinin in predicting survival and response to first-line chemotherapy in patients with pleural mesothelioma. J Cancer Res Clin Oncol. 2024;150:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mohammad T, Garratt J, Torlakovic E, Gilks B, Churg A. Utility of a CEA, CD15, Calretinin, and CK5/6 panel for distinguishing between mesotheliomas and pulmonary adenocarcinomas in clinical practice. Am J Surgical Pathol. 2012;36:1503–8.

    Article  Google Scholar 

  41. Powell G, Roche H, Roche WR. Expression of calretinin by breast carcinoma and the potential for misdiagnosis of mesothelioma. Histopathology. 2011;59:950–6.

    Article  PubMed  Google Scholar 

  42. Gulyás M, Hjerpe A. Proteoglycans and WT1 as markers for distinguishing adenocarcinoma, epithelioid mesothelioma, and benign mesothelium. J Pathol. 2003;199:479–87.

    Article  PubMed  Google Scholar 

  43. Ma G-Y, Shi S, Wang P, Wang X-G, Zhang Z-G. Clinical significance of 9P21 gene combined with BAP1 and MTAP protein expression in diagnosis and prognosis of mesothelioma serous effusion. Biomed Rep. 2022;17:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hung YP, Chirieac LR. Molecular and immunohistochemical testing in mesothelioma and other mesothelial lesions. Arch Pathol Lab Med. 2024;148:e77–e89.

    Article  PubMed  CAS  Google Scholar 

  45. Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel MS. Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun. 2020;11:687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–55.

    Article  PubMed  CAS  Google Scholar 

  47. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Sig Transduct Target Ther. 2020;5:209.

    Article  CAS  Google Scholar 

  48. Carbone M, Yang H. Molecular pathways: targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma. Clin Cancer Res. 2012;18:598–604.

    Article  PubMed  CAS  Google Scholar 

  49. Allison DF, Wamsley JJ, Kumar M, Li D, Gray LG, Hart GW, et al. Modification of RelA by O - linked N -acetylglucosamine links glucose metabolism to NF-κB acetylation and transcription. Proc Natl Acad Sci USA. 2012;109:16888–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Liu J-R, Xu G-M, Shi X-M, Zhang G-J. Low temperature plasma promoting fibroblast proliferation by activating the NF-κB pathway and increasing cyclinD1 expression. Sci Rep. 2017;7:11698.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene. 2007;26:711–24.

    Article  PubMed  CAS  Google Scholar 

  52. Wang K, Ni L, Wang S, Zheng C. Herpes Simplex Virus 1 Protein Kinase US3 Hyperphosphorylates p65/RelA and Dampens NF-κB Activation. Hutt-Fletcher L, editor. J Virol. 2014;88:7941–51.

  53. Silva JF, Olivon VC, Mestriner FLAC, Zanotto CZ, Ferreira RG, Ferreira NS, et al. Acute Increase in O-GlcNAc improves survival in mice with LPS-induced systemic inflammatory response syndrome. Front Physiol. 2020;10:1614.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dong X, Shu L, Zhang J, Yang X, Cheng X, Zhao X, et al. Ogt-mediated O-GlcNAcylation inhibits astrocytes activation through modulating NF-κB signaling pathway. J Neuroinflamm. 2023;20:146.

    Article  CAS  Google Scholar 

  55. Zhang HR, Li TJ, Yu XJ, Liu C, Wu WD, Ye LY, et al. The GFPT2-O-GlcNAcylation-YBX1 axis promotes IL-18 secretion to regulate the tumor immune microenvironment in pancreatic cancer. Cell Death Dis. 2024;15:244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kim J, Lee HM, Cai F, Ko B, Yang C, Lieu EL, et al. The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer. Nat Metab. 2020;2:1401–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Li N, Liu Q, Han Y, Pei S, Cheng B, Xu J, et al. ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression. Nat Commun. 2022;13:7281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chen S, Jiang S, Zheng W, Tu B, Liu S, Ruan H, et al. RelA/p65 inhibition prevents tendon adhesion by modulating inflammation, cell proliferation, and apoptosis. Cell Death Dis. 2017;8:e2710.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Postgraduate Research & Practice Innovation Programme of Jiangsu Province (SJCX23_0708), and Nanjing Medical University.

Author information

Authors and Affiliations

Authors

Contributions

QG, JL, and FZ designed the experiments. JW, SZ, and GC performed the experiments. JW and SZ performed the data analyses. JW and SZ wrote the manuscript. TC, YW and JZ provided technical support and sample tissues. QG, JL, and FZ organised and supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fang Zhou, Jiali Liu or Qixing Gong.

Ethics declarations

Competing interests

The authors declare no conficts of interest.

Ethics approval and consent to participate

The study was approved by The Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (2023-SR-502). All animal care and experimental procedures were conducted according to the National Research Council’s Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) of Nanjing Medical University (IACUC-2308001).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Zhou, S., Chen, G. et al. GFPT2: A novel biomarker in mesothelioma for diagnosis and prognosis and its molecular mechanism in malignant progression. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02830-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02830-4

Search

Quick links