Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

ESCCPred: a machine learning model for diagnostic prediction of early esophageal squamous cell carcinoma using autoantibody profiles

Abstract

Background

Esophageal squamous cell carcinoma (ESCC) is a deadly cancer with no clinically ideal biomarkers for early diagnosis. The objective of this study was to develop and validate a user-friendly diagnostic tool for early ESCC detection.

Methods

The study encompassed three phases: discovery, verification, and validation, comprising a total of 1309 individuals. Serum autoantibodies were profiled using the HuProtTM human proteome microarray, and autoantibody levels were measured using the enzyme-linked immunosorbent assay (ELISA). Twelve machine learning algorithms were employed to construct diagnostic models, and evaluated using the area under the receiver operating characteristic curve (AUC). The model application was facilitated through R Shiny, providing a graphical interface.

Results

Thirteen autoantibodies targeting TAAs (CAST, FAM131A, GABPA, HDAC1, HDGFL1, HSF1, ISM2, PTMS, RNF219, SMARCE1, SNAP25, SRPK2, and ZPR1) were identified in the discovery phase. Subsequent verification and validation phases identified five TAAbs (anti-CAST, anti-HDAC1, anti-HSF1, anti-PTMS, and anti-ZPR1) that exhibited significant differences between ESCC and control subjects (P < 0.05). The support vector machine (SVM) model demonstrated robust performance, with AUCs of 0.86 (95% CI: 0.82–0.89) in the training set and 0.83 (95% CI: 0.78–0.88) in the test set. For early-stage ESCC, the SVM model achieved AUCs of 0.83 (95% CI: 0.79–0.88) in the training set and 0.83 (95% CI: 0.77–0.90) in the test set. Notably, promising results were observed for high-grade intraepithelial neoplasia, with an AUC of 0.87 (95% CI: 0.77–0.98). The web-based implementation of the early ESCC diagnostic tool is publicly accessible at https://litdong.shinyapps.io/ESCCPred/.

Conclusion

This study provides a promising and easy-to-use diagnostic prediction model for early ESCC detection. It holds promise for improving early detection strategies and has potential implications for public health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The flow diagram of this study.
Fig. 2: Identification of 13 candidate TAAbs based on the HuProtTM protein microarray
Fig. 3: Validation of the TAAb in the training and test set (validation phase).
Fig. 4: Comparative performance evaluation of 12 machine learning models for ESCC diagnosis.
Fig. 5: Diagnostic performance of the SVM model.

Similar content being viewed by others

Data availability

All data utilized in this study are accessible from the corresponding authors upon reasonable request. Additionally, the R codes used to develop ESCCPred are openly available at https://github.com/tiandongli/ESCCPred.

References

  1. Liu K, Zhao T, Wang J, Chen Y, Zhang R, Lan X, et al. Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer. Cancer Lett. 2019;458:21–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, et al. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates From GLOBOCAN 2020. Gastroenterology. 2022;163:649–58.e2.

    Article  PubMed  Google Scholar 

  3. Wang GQ, Abnet CC, Shen Q, Lewin KJ, Sun XD, Roth MJ, et al. Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year prospective follow up study in a high risk population. Gut. 2005;54:187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Codipilly DC, Qin Y, Dawsey SM, Kisiel J, Topazian M, Ahlquist D, et al. Screening for esophageal squamous cell carcinoma: recent advances. Gastrointest Endosc. 2018;88:413–26.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sheikh M, Roshandel G, McCormack V, Malekzadeh R. Current Status and Future Prospects for Esophageal Cancer. Cancers (Basel). 2023;15.

  6. Codipilly DC, Wang KK. Squamous Cell Carcinoma of the Esophagus. Gastroenterol Clin North Am. 2022;51:457–84.

    Article  PubMed  Google Scholar 

  7. Mou X, Peng Z, Yin T, Sun X. Non-endoscopic Screening for Esophageal Squamous Cell Carcinoma: Recent Advances. J Gastrointest Cancer. 2023.

  8. Tan EM, Zhang J. Autoantibodies to tumor-associated antigens: reporters from the immune system. Immunol Rev. 2008;222:328–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tan EM. Autoantibodies, autoimmune disease, and the birth of immune diagnostics. J Clin Investig. 2012;122:3835–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shome M, Chung Y, Chavan R, Park JG, Qiu J, LaBaer J. Serum autoantibodyome reveals that healthy individuals share common autoantibodies. Cell Rep. 2022;39:110873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Monroy-Iglesias MJ, Crescioli S, Beckmann K, Le N, Karagiannis SN, Van Hemelrijck M, et al. Antibodies as biomarkers for cancer risk: a systematic review. Clin Exp Immunol. 2022;209:46–63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sexauer D, Gray E, Zaenker P. Tumour- associated autoantibodies as prognostic cancer biomarkers- a review. Autoimmun Rev. 2022;21:103041.

    Article  CAS  PubMed  Google Scholar 

  13. Hancox J, Ayling K, Bedford L, Vedhara K, Roberston JFR, Young B, et al. Psychological impact of lung cancer screening using a novel antibody blood test followed by imaging: the ECLS randomized controlled trial. J Public Health (Oxf). 2023;45:e275–e84.

    Article  CAS  PubMed  Google Scholar 

  14. Chen G, Yang L, Liu G, Zhu Y, Yang F, Dong X, et al. Research progress in protein microarrays: Focussing on cancer research. Proteom Clin Appl. 2023;17:e2200036.

    Article  Google Scholar 

  15. Liao W, Guo S, Zhao XS. Novel probes for protein chip applications. Front Biosci : a J virtual Libr 2006;11:186–97.

    Article  CAS  Google Scholar 

  16. Vlahou A, Schellhammer PF, Wright GL Jr. Application of a novel protein chip mass spectrometry technology for the identification of bladder cancer-associated biomarkers. Adv Exp Med Biol 2003;539:47–60.

    PubMed  Google Scholar 

  17. Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol. 2003;7:55–63.

    Article  CAS  PubMed  Google Scholar 

  18. Wu J, Wang P, Han Z, Li T, Yi C, Qiu C, et al. A novel immunodiagnosis panel for hepatocellular carcinoma based on bioinformatics and the autoantibody-antigen system. Cancer Sci. 2022;113:411–22.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang S, Liu Y, Chen J, Shu H, Shen S, Li Y, et al. Autoantibody signature in hepatocellular carcinoma using seromics. J Hematol Oncol. 2020;13:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tan Q, Wang D, Yang J, Xing P, Yang S, Li Y, et al. Autoantibody profiling identifies predictive biomarkers of response to anti-PD1 therapy in cancer patients. Theranostics. 2020;10:6399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li T, Xia J, Yun H, Sun G, Shen Y, Wang P, et al. A novel autoantibody signatures for enhanced clinical diagnosis of pancreatic ductal adenocarcinoma. Cancer Cell Int. 2023;23:273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong MCS, Deng Y, Huang J, Bai Y, Wang HHX, Yuan J, et al. Performance of screening tests for esophageal squamous cell carcinoma: a systematic review and meta-analysis. Gastrointest Endosc. 2022;96:197–207.e34.

    Article  PubMed  Google Scholar 

  23. Zhang JY, Tan EM. Autoantibodies to tumor-associated antigens as diagnostic biomarkers in hepatocellular carcinoma and other solid tumors. Expert Rev Mol Diagn. 2010;10:321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao HJ, Yue ZG, Zheng M, Zheng ZX. Identification and expression of a tumor-associated antigen in esophageal squamous cell carcinoma. Zhongguo yi xue ke xue yuan xue bao Acta Academiae Medicinae Sin. 2012;34:244–8.

    CAS  Google Scholar 

  25. Ren S, Zhang S, Jiang T, He Y, Ma Z, Cai H, et al. Early detection of lung cancer by using an autoantibody panel in Chinese population. Oncoimmunology. 2018;7:e1384108.

    Article  PubMed  Google Scholar 

  26. Zhou Y, Cui J, Du H. Autoantibody-targeted TAAs in pancreatic cancer: A comprehensive analysis. Pancreatol : Off J Int Assoc Pancreatol (IAP) [et al]. 2019;19:760–8.

    Article  CAS  Google Scholar 

  27. Yang Q, Ye H, Sun G, Wang K, Dai L, Qiu C, et al. Human Proteome Microarray identifies autoantibodies to tumor-associated antigens as serological biomarkers for the diagnosis of hepatocellular carcinoma. Mol Oncol. 2023;17:887–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun G, Ye H, Wang X, Cheng L, Ren P, Shi J, et al. Identification of novel autoantibodies based on the protein chip encoded by cancer-driving genes in detection of esophageal squamous cell carcinoma. Oncoimmunology. 2020;9:1814515.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qiu C, Wang B, Wang P, Wang X, Ma Y, Dai L, et al. Identification of novel autoantibody signatures and evaluation of a panel of autoantibodies in breast cancer. Cancer Sci. 2021;112:3388–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiu C, Ma Y, Wang B, Zhang X, Wang X, Zhang JY Autoantibodies to PAX5, PTCH1, and GNA11 as Serological Biomarkers in the Detection of Hepatocellular Carcinoma in Hispanic Americans. International journal of molecular sciences. 2023;24.

  31. Qin J, Wang S, Shi J, Ma Y, Wang K, Ye H, et al. Using recursive partitioning approach to select tumor-associated antigens in immunodiagnosis of gastric adenocarcinoma. Cancer Sci. 2019;110:1829–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shebzukhov YV, Koroleva EP, Khlgatian SV, Belousov PV, Kuz’mina KE, Radko BV, et al. Antibody response to a non-conserved C-terminal part of human histone deacetylase 3 in colon cancer patients. Int J Cancer. 2005;117:800–6.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang YM, Liang L, Yang HB, Shu XM, Lu X, Wang GC, et al. Identification of a novel autoantibody against heat shock factor 1 in idiopathic inflammatory myopathy. Clin Exp Rheumatol. 2020;38:1191–200.

    PubMed  Google Scholar 

  34. Wilson AL, Moffitt LR, Duffield N, Rainczuk A, Jobling TW, Plebanski M, et al. Autoantibodies against HSF1 and CCDC155 as Biomarkers of Early-Stage, High-Grade Serous Ovarian Cancer. Cancer Epidemiol Biomark Prev. 2018;27:183–92.

    Article  CAS  Google Scholar 

  35. Yang MW, Tao LY, Jiang YS, Yang JY, Huo YM, Liu DJ, et al. Perineural Invasion Reprograms the Immune Microenvironment through Cholinergic Signaling in Pancreatic Ductal Adenocarcinoma. Cancer Res. 2020;80:1991–2003.

    Article  CAS  PubMed  Google Scholar 

  36. Oh SJ, Lee HJ, Song KH, Kim S, Cho E, Lee J, et al. Targeting the NANOG/HDAC1 axis reverses resistance to PD-1 blockade by reinvigorating the antitumor immunity cycle. J Clin Invest. 2022;132.

  37. Li Y, Li Q, Liu J, Huang Y, Mao J, Zhang G. HSF1 expression in tumor-associated macrophages promotes tumor cell proliferation and indicates poor prognosis in esophageal squamous cell carcinoma. Clin Transl Oncol. 2023;25:1682–9.

    Article  CAS  PubMed  Google Scholar 

  38. Vareli K, Frangou-Lazaridis M, van der Kraan I, Tsolas O, van Driel R. Nuclear distribution of prothymosin alpha and parathymosin: evidence that prothymosin alpha is associated with RNA synthesis processing and parathymosin with early DNA replication. Exp Cell Res. 2000;257:152–61.

    Article  CAS  PubMed  Google Scholar 

  39. Chen K, Xiong L, Yang Z, Huang S, Zeng R, Miao X. Prothymosin-α and parathymosin expression predicts poor prognosis in squamous and adenosquamous carcinomas of the gallbladder. Oncol Lett. 2018;15:4485–94.

    PubMed  PubMed Central  Google Scholar 

  40. He L, Xie Y, Qiu Y, Zhang Y. Pan-Cancer Profiling and Digital Pathology Analysis Reveal Negative Prognostic Biomarker ZPR1 Associated with Immune Infiltration and Treatment Response in Hepatocellular Carcinoma. J Hepatocell Carcinoma. 2023;10:1309–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu YW, Chen H, Guo HP, Yang SH, Luo YH, Liu CT, et al. Combined detection of serum autoantibodies as diagnostic biomarkers in esophagogastric junction adenocarcinoma. Gastric Cancer : Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc 2019;22:546–57.

    Article  CAS  Google Scholar 

  42. Zheng Q, Zhang L, Tu M, Yin X, Cai L, Zhang S, et al. Development of a panel of autoantibody against NSG1 with CEA, CYFRA21-1, and SCC-Ag for the diagnosis of esophageal squamous cell carcinoma. Clin Chim Acta. 2021;520:126–32.

    Article  CAS  PubMed  Google Scholar 

  43. Pan J, Zheng QZ, Li Y, Yu LL, Wu QW, Zheng JY, et al. Discovery and Validation of a Serologic Autoantibody Panel for Early Diagnosis of Esophageal Squamous Cell Carcinoma. Cancer Epidemiol Biomark Prev. 2019;28:1454–60.

    Article  CAS  Google Scholar 

  44. Chen Z, Xing J, Zheng C, Zhu Q, He P, Zhou D, et al. Identification of novel serum autoantibody biomarkers for early esophageal squamous cell carcinoma and high-grade intraepithelial neoplasia detection. Front Oncol. 2023;13:1161489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu X, Zhao S, Wang K, Zhou L, Jiang M, Gao Y, et al. Spatial transcriptomics analysis of esophageal squamous precancerous lesions and their progression to esophageal cancer. Nat Commun. 2023;14:4779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen M, Kong C, Lin G, Chen W, Guo X, Chen Y, et al. Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study. EClinicalMedicine. 2023;63:102176.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ye H, Li T, Wang H, Wu J, Yi C, Shi J, et al. TSPAN1, TMPRSS4, SDR16C5, and CTSE as Novel Panel for Pancreatic Cancer: A Bioinformatics Analysis and Experiments Validation. Front Immunol. 2021;12:649551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang JM, Hong R, Demicco EG, Tan J, Lazcano R, Moreira AL, et al. Deep learning integrates histopathology and proteogenomics at a pan-cancer level. Cell Rep. Med. 2023;4:101173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Poirion OB, Jing Z, Chaudhary K, Huang S, Garmire LX. DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data. Genome Med. 2021;13:112.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their sincerest appreciation to the Dr. Shipeng Guo for their invaluable assistance throughout the process of learning R Shiny. Particularly, heartfelt thanks are extended to Prof. Jianying Zhang for his unwavering support and invaluable feedback throughout this research endeavor.

Funding

This work was supported by the Funded Project of International Training of High-level Talents in Henan Province (no grant ID), Zhengzhou Major Project for Collaborative Innovation (18XTZX12007), and Key Research Project of Higher Education in Henan Province (22A330003).

Author information

Authors and Affiliations

Authors

Contributions

PW designed the study, TL and GS conducted the experiments and analyzed data, TL wrote the manuscript and GS, HY, CS, YC, YZ, YS, ZF, JS, KW, LD revised the full manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Peng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of Zhengzhou University (ZZURIB2019001). All clinical sample patients were informed of the purpose of the study and signed the consent form.

Consent to publish

The manuscript was read and approved for publication by all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Sun, G., Ye, H. et al. ESCCPred: a machine learning model for diagnostic prediction of early esophageal squamous cell carcinoma using autoantibody profiles. Br J Cancer 131, 883–894 (2024). https://doi.org/10.1038/s41416-024-02781-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-024-02781-w

Search

Quick links