Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

KDM1A, a potent and selective target, for the treatment of DNMT3A-deficient non-small cell lung cancer

Abstract

Background

DNMT3A is a crucial epigenetic regulation enzyme. However, due to its heterogeneous nature and frequent mutation in various cancers, the role of DNMT3A remains controversial. Here, we determine the role of DNMT3A in non-small cell lung cancer (NSCLC) to identify potential treatment strategies.

Methods

To investigate the role of loss-of-function mutations of DNMT3A in NSCLC, CRISPR/Cas9 was used to induce DNMT3A-inactivating mutations. Epigenetic inhibitor library was screened to find the synthetic lethal partner of DNMT3A. Both pharmacological inhibitors and gene manipulation were used to evaluate the synthetic lethal efficacy of DNMT3A/KDM1A in vitro and in vivo. Lastly, MS-PCR, ChIP-qPCR, dual luciferase reporter gene assay and clinical sample analysis were applied to elucidate the regulation mechanism of synthetic lethal interaction.

Results

We identified DNMT3A is a tumour suppressor gene in NSCLC and KDM1A as a synthetic lethal partner of DNMT3A deletion. Both chemical KDM1A inhibitors and gene manipulation can selectively reduce the viability of DNMT3A-KO cells through inducing cell apoptosis in vitro and in vivo. We clarified that the synthetic lethality is not only limited to the death mode, but also involved into tumour metastasis. Mechanistically, DNMT3A deficiency induces KDM1A upregulation through reducing the methylation status of the KDM1A promoter and analysis of clinical samples indicated that DNMT3A expression was negatively correlated with KDM1A level.

Conclusion

Our results provide new insight into the role of DNMT3A in NSCLC and elucidate the mechanism of synthetic lethal interaction between KDM1A and DNMT3A, which might represent a promising approach for treating patients with DNMT3A-deficient tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNMT3A is mutated in cancer and knockout of DNMT3A increases the malignant phenotype of lung cancer cells.
Fig. 2: In DNMT3A-deficient cells, KDM1A inhibition exerts a synthetic lethal effect through inducing apoptosis.
Fig. 3: Gene manipulation of KDM1A mimics the selective effect of chemical KDM1A inhibitors on DNMT3A-deficient NSCLC cells.
Fig. 4: In DNMT3A-KO NSCLC subcutaneous xenograft models, KDM1A inhibition effectively suppresses cell proliferation and induces cell apoptosis.
Fig. 5: KDM1A inhibitor suppresses tumor metastasis in DNMT3A-deficient NSCLCs in vitro and in vivo.
Fig. 6: DNMT3A deficiency induces KDM1A expression by reducing promoter methylation status.
Fig. 7: Illustration showing the proposed mechanism of the synthetic lethal effect mediated by deficiency of DNMT3A and inhibition of KDM1A.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials. All data used in the current study are available from the corresponding author by reasonable request.

References

  1. Li Y, Zhang Y, Li X, Yi S, Xu J. Gain-of-function mutations: an emerging advantage for cancer biology. Trends Biochem Sci. 2019;44:659–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen S, Zhao Y, Liu S, Zhang J, Assaraf YG, Cui W, et al. Epigenetic enzyme mutations as mediators of anti-cancer drug resistance. Drug Resist Updat. 2022;61:100821.

    Article  CAS  PubMed  Google Scholar 

  3. Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther. 2021;6:386.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oxnard GR, Hu Y, Mileham KF, Husain H, Costa DB, Tracy P, et al. Assessment of resistance mechanisms and clinical implications in patients with egfr t790m-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 2018;4:1527–34.

    Article  PubMed  Google Scholar 

  5. Terakawa J, Serna VA, Taketo MM, Daikoku T, Suarez AA, Kurita T. Ovarian insufficiency and CTNNB1 mutations drive malignant transformation of endometrial hyperplasia with altered PTEN/PI3K activities. Proc Natl Acad Sci USA. 2019;116:4528–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gong X, Du J, Parsons SH, Merzoug FF, Webster Y, Iversen PW, et al. Aurora A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 2019;9:248–63.

    Article  CAS  PubMed  Google Scholar 

  7. Lord CJ, Tutt AN, Ashworth A. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med. 2015;66:455–70.

    Article  CAS  PubMed  Google Scholar 

  8. Menezes DL, Holt J, Tang Y, Feng J, Barsanti P, Pan Y, et al. A synthetic lethal screen reveals enhanced sensitivity to ATR inhibitor treatment in mantle cell lymphoma with ATM loss-of-function. Mol Cancer Res. 2015;13:120–9.

    Article  CAS  PubMed  Google Scholar 

  9. Mittal V. EpitheliaL mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395–412.

    Article  CAS  PubMed  Google Scholar 

  10. Shoaib M, Sorensen CS. Epigenetic deficiencies and replicative stress: driving cancer cells to an early grave. Cancer Cell. 2015;28:545–7.

    Article  CAS  PubMed  Google Scholar 

  11. Peyraud F, Italiano A. Combined PARP inhibition and immune checkpoint therapy in solid tumors. Cancers. 2020;12:1502.

  12. Ding N, Maiuri AR, O’Hagan HM. The emerging role of epigenetic modifiers in repair of DNA damage associated with chronic inflammatory diseases. Mutat Res Rev Mutat Res. 2019;780:69–81.

    Article  CAS  PubMed  Google Scholar 

  13. Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ning X, Shi Z, Liu X, Zhang A, Han L, Jiang K, et al. DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett. 2015;359:198–205.

    Article  CAS  PubMed  Google Scholar 

  15. Kalev P, Hyer ML, Gross S, Konteatis Z, Chen CC, Fletcher M, et al. MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage. Cancer Cell. 2021;39:209–24.

    Article  CAS  PubMed  Google Scholar 

  16. Kausar S, Abbas MN, Cui H. A review on the DNA methyltransferase family of insects: aspect and prospects. Int J Biol Macromol. 2021;186:289–302.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Xu J. DNA methyltransferases and their roles in tumorigenesis. Biomark Res. 2017;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pollyea DA, Pratz K, Letai A, Jonas BA, Wei AH, Pullarkat V, et al. Venetoclax with azacitidine or decitabine in patients with newly diagnosed acute myeloid leukemia: long term follow-up from a phase 1b study. Am J Hematol. 2021;96:208–17.

    Article  CAS  PubMed  Google Scholar 

  19. Liu YC, Kwon J, Fabiani E, Xiao Z, Liu YV, Follo MY, et al. Demethylation and up-regulation of an oncogene after hypomethylating therapy. N Engl J Med. 2022;386:1998–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu Y, Xia T, Chen DQ, Xiong X, Shi L, Zuo Y, et al. Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance. Drug Resist Updat. 2024;72:101016.

    Article  CAS  PubMed  Google Scholar 

  21. Alsulami AF, Torres PHM, Moghul I, Arif SM, Chaplin AK, Vedithi SC, et al. COSMIC cancer gene census 3D database: understanding the impacts of mutations on cancer targets. Brief Bioinform. 2021;22:bbab220.

  22. Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA, et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell. 2014;25:442–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buettner R, Yim SO, Hong YS, Boncinelli E, Tainsky MA. Alteration of homeobox gene expression by N-ras transformation of PA-1 human teratocarcinoma cells. Mol Cell Biol. 1991;11:3573–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Santini V. Novel therapeutic strategies: hypomethylating agents and beyond. Hematology Am Soc Hematol Educ Program. 2012;2012:65–73.

    Article  PubMed  Google Scholar 

  25. Gao Q, Steine EJ, Barrasa MI, Hockemeyer D, Pawlak M, Fu D, et al. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci USA. 2011;108:18061–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishiguro K, Kitajima H, Niinuma T, Maruyama R, Nishiyama N, Ohtani H, et al. Dual EZH2 and G9a inhibition suppresses multiple myeloma cell proliferation by regulating the interferon signal and IRF4-MYC axis. Cell Death Discov. 2021;7:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. San José-Enériz E, Agirre X, Rabal O, Vilas-Zornoza A, Sanchez-Arias JA, Miranda E, et al. Discovery of first-in-class reversible dual small molecule inhibitors against G9aand DNMTs in hematological malignancies. Nat Commun. 2017;8:15424.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moufarrij S, Srivastava A, Gomez S, Hadley M, Palmer E, Austin PT, et al. Combining DNMT and HDAC6 inhibitors increases anti-tumor immune signaling and decreases tumor burden in ovarian cancer. Sci Rep. 2020;10:3470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi HJ, Park JH, Park M, Won HY, Joo HS, Lee CH. et al.UTX inhibits EMT-induced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1.EMBO Rep.2015;16:1288–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ebeid K, Meng X, Thiel KW, Do AV, Geary SM, Morris AS, et al. Synthetically lethal nanoparticles for treatment of endometrial cancer. Nat Nanotechnol. 2018;13:72–81.

    Article  CAS  PubMed  Google Scholar 

  32. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–53.

    Article  CAS  PubMed  Google Scholar 

  33. Qin Y, Zhu W, Xu W, Zhang B, Shi S, Ji S, et al. LSD1 sustains pancreatic cancer growth via maintaining HIF1alpha-dependent glycolytic process. Cancer Lett. 2014;347:225–32.

    Article  CAS  PubMed  Google Scholar 

  34. Lv S, Zhao X, Zhang E, Yan Y, Ma X, Li N, et al. Lysine demethylase KDM1A promotes cell growth via FKBP8-BCL2 axis in hepatocellular carcinoma. J Biol Chem. 2022;298:102374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li N, Yang L, Zuo H. Arborinine suppresses ovarian cancer development through inhibition of LSD1. J]. Life Sci. 2022;291:120275.

    Article  CAS  Google Scholar 

  36. Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenet Chromatin. 2018;11:33.

    Article  Google Scholar 

  37. Tao DL, Tassi Yunga S, Williams CD, McCarty OJT. Aspirin and antiplatelet treatments in cancer. Blood. 2021;137:3201–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (82272725 to CW, 82073320 to LW), “Xingliao Talents” Programme of Liaoning Province (nos. XLYC1902008 to LW) and Natural Science Foundation of Shenyang (22-315-6-11 to LW).

Author information

Authors and Affiliations

Authors

Contributions

Yingxi Zhao: Conceptualisation; Writing-Original Draft; Formal analysis; Investigation; Visualisation, Data Curation. Yonghao Zheng: Data Curation; Methodology; Investigation; Formal analysis; Validation; Visualisation. Jinjiang Fu: Data Curation; Methodology; Investigation; Formal analysis. Jiayu Zhang: Data Curation. Hui Shao: Investigation. Shougeng Liu: Visualisation. Jiacheng Lai: Investigation; Xue Zhou: Data Curation; Methodology. Ruijuan Liang: Data Curation. Lina Jia: Resources; Project administration. Wei Cui: Resources; Supervision. Jingyu Yang: Resources; Project administration. Chunfu Wu: Resources; Supervision. Lihui Wang: Conceptualisation; Writing-Review & Editing; Funding acquisition; Supervision; Funding acquisition.

Corresponding author

Correspondence to Lihui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zheng, Y., Fu, J. et al. KDM1A, a potent and selective target, for the treatment of DNMT3A-deficient non-small cell lung cancer. Br J Cancer 131, 655–667 (2024). https://doi.org/10.1038/s41416-024-02772-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-024-02772-x

Search

Quick links