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Multi-omics experiments at bulk or single-cell resolution facilitate the discovery of hypothesis-generating biomarkers for predicting
response to therapy, as well as aid in uncovering mechanistic insights into cellular and microenvironmental processes. Many
methods for data integration have been developed for the identification of key elements that explain or predict disease risk or
other biological outcomes. The heterogeneous graph representation of multi-omics data provides an advantage for discerning
patterns suitable for predictive/exploratory analysis, thus permitting the modeling of complex relationships. Graph-based
approaches—including graph neural networks—potentially offer a reliable methodological toolset that can provide a tangible
alternative to scientists and clinicians that seek ideas and implementation strategies in the integrated analysis of their omics sets for
biomedical research. Graph-based workflows continue to push the limits of the technological envelope, and this perspective
provides a focused literature review of research articles in which graph machine learning is utilized for integrated multi-omics data
analyses, with several examples that demonstrate the effectiveness of graph-based approaches.
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BACKGROUND
Translational bioinformatics and data-driven biomedical research
involving multi-omics profiling studies enable researchers to
obtain comprehensive insights into key biological processes in
health and disease. These studies are slowly becoming ubiquitous
in biomedical research, and typically amalgamate genomics,
epigenomics, transcriptomics, proteomics, metabolomics, meta-
genomics, and other modalities. Single-omic studies provide data
and information pertinent to different functional and molecular
layers. Single-omic approaches may lack the precision required to
establish robust associations between molecular-level changes
and phenotypic traits. Many diseases, including cancer, are the
result of multistage processes and events that incorporate
multiscale information from the genome to the proteome,
consequently interactions and synergistic effects are much better
explored through multi-omics analysis. Effectively, multi-omics
experiments at bulk or single-cell resolution facilitate the
discovery of hypothesis-generating biomarkers for predicting
response to therapy, as well as aid in uncovering mechanistic
insights into cellular and microenvironmental processes.
The primary motivation behind integrated data analysis is to

identify key factors that explain or predict disease risk or other
biological outcomes [1]. Integrated data derived from different
sources are used for computational analysis through machine
learning or biostatistics methods and eventually may lead to more
solid results and output [2]. Many methods for data integration

have been developed (concatenation-based, transformation-
based, model-based, intermediate, hierarchical), all with strengths
and weaknesses, and naturally, no single analysis approach will be
optimal for all studies [1–3]. Furthermore, numerous integration
strategies have been established involving graph-free workflows.
For instance, these approaches—primarily based on the integra-
tion of genomics, epigenomics, transcriptomics, proteomics, and
metabolomics data—have been utilized in, e.g., cancer research
for the functional identification of driver genomic alterations,
tumor classification, etc. [4]. In this paradigm, the multi-omics
datasets are in a tabular format; rows represent samples and
columns represent biological variables grouped by omics [3]. A
simple concatenation of features across the omics (early integra-
tion) is likely to generate large matrices, outliers, and highly
correlated variables [2]. A mixed integration strategy addresses
the shortcomings of early integration by transforming indepen-
dently each omics set into a simpler representation [3]. In
intermediate integration, features are jointly integrated across
the omics without prior omic-specific processing, with the
advantage of processing features based on their redundancy or
complementarity both within each omic and across the different
omics [2]. Late integration is based on machine learning methods
where a model is first trained for each omic to perform the
prediction independently, and then the predictions achieved from
each omic are combined via averaging or voting [2]. Machine
learning models are commonly employed to analyze complex

Received: 15 November 2023 Revised: 25 April 2024 Accepted: 26 April 2024

1Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120
Heidelberg, Germany. 2Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg,
Germany. 3Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. 4Department of Medical
Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
✉email: nek.valous@nct-heidelberg.de

www.nature.com/bjcBritish Journal of Cancer

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-024-02706-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-024-02706-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-024-02706-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-024-02706-7&domain=pdf
http://orcid.org/0000-0002-4014-2404
http://orcid.org/0000-0002-4014-2404
http://orcid.org/0000-0002-4014-2404
http://orcid.org/0000-0002-4014-2404
http://orcid.org/0000-0002-4014-2404
https://doi.org/10.1038/s41416-024-02706-7
mailto:nek.valous@nct-heidelberg.de
www.nature.com/bjc


real-world data. In this context, unsupervised learning (e.g.,
dimensionality reduction) discovers patterns in multi-omics
datasets without mapping input to output data [5, 6]. For
example, variational autoencoders construct meaningful latent
representations of integrated data, in an unsupervised way, by
learning a compressed representation of the data and additionally
by learning the underlying distribution parameters of the input
data [7]. On the other hand, supervised learning, given input data
and output labels, finds a function that maps the input to the label
information (phenotypes of interest) [6]. Namely, Koh et al.
developed a supervised learning method for integrating multi-
omic profiles over genome-scale biological networks, and
extracted network signatures predictive of pre-specified pheno-
typic groups [8]. Furthermore, mixed workflow approaches can be
utilized for, e.g., modeling patient survival by processing multi-
omics data via a combination of autoencoder and supervised
machine learning algorithms [9].
In principle, all approaches aim to provide solutions for

enhancing performance in a learning task, while mitigating, as
much as possible, an array of challenges pertinent to data and
methods. Methodologies commonly engage with incomplete,
sparse, high-dimensional data, and obtain optimized representa-
tions and/or fuse information from multiple modalities. In this
setting, some methods may tend to focus on a subset of
modalities that are most helpful during model training while
ignoring modalities that could be informative for model
implementation, and because different modalities may lead to
intricate relational dependencies, modality fusion may not fully
leverage multimodal datasets [10]. In contrast, graph machine
learning can model such datasets by connecting different
modalities in optimally defined (but more realistically in context-
defined) graphs, and by building learning systems for a wide
range of tasks [10]. In this perspective, the authors are discussing
the current trend of integrated multi-omics data analysis using
graph machine learning approaches in the context of data-driven
biomedical research.

GRAPH MODELING AND MACHINE LEARNING
It is widely acknowledged that machine learning and especially
deep learning systems have been very successful in analyzing
complex biomedical datasets from a variety of domains and
sources. Commonly, these datasets are defined in the Euclidean
domain (modeled in an n-dimensional linear space, e.g., grid data)
with existing deep learning methodologies developed to capture
hidden patterns in such data, e.g., for large-scale image
classification. Deep learning approaches using multi-omics data-
sets typically transform the high-dimensional features into high-
level semantic embeddings, then learn a unified representation
from the embeddings, and finally apply the learned representa-
tion for downstream tasks [11]. Hence, conventional deep learning
approaches are rather limited in modeling the interrelationships/
interactions among different omics, coupled with the incapacity to
incorporate graph-based prior knowledge (e.g., protein-protein
interaction networks) as input.
A different strategy for omics datasets would be to model them

mathematically as graph-structured data, so that the relevant
entities can be connected based on their intrinsic relationships,
biological properties/significance, and empirical biomedical
knowledge. All interactions within and across different omics sets
form an interlinked graph (network) composed of vertices (nodes
or entities) and edges (links or relationships). Effectively, omics
information is no longer embodied as elements in data tables but
rather as entities that are linked to one another by edges with
properties/attributes that define the associations between the
nodes. This heterogeneous graph representation of multi-omics
(multiple types of nodes with diverse types of edges among them)
provides an advantage for identifying patterns suitable for

predictive or exploratory analysis, thus permitting the modeling
of complex relationships and interactions.
Geometric deep learning encompasses emerging techniques

that attempt to generalize structured deep neural models to
graphs and manifolds [12]. Especially, graph machine learning
methods have been developed to process data represented in the
form of graphs, i.e., with an underlying structure that is a non-
Euclidean space [13]. Graph neural networks (convolutional,
attentional, message-passing) are performing inference over data
embedded in a graph structure, consequently allowing for the
learning process to consider the explicit relations of the data
within and across different omics. Over the past few years, graph
neural networks have become powerful and functional tools for
machine learning tasks in the graph domain; this progress owes to
advances in expressive power, model flexibility, and training
algorithms [14]. On a practical note, there are several software
libraries and tools that are regularly utilized for graph machine
learning tasks; some of the more popular ones include: PyTorch
Geometric (PyG) [15], Deep Graph Library (DGL) [16], Graph Nets
[17], and Spektral [18]. Table 1 presents a broad categorization of
graph machine learning techniques for multi-omics data. The
table was adapted—from the general grouping of graph machine
learning methods found in Xia et al. [19]—to reflect the multi-
omics setting.
Pertaining to the workings of a graph learning approach, a brief

outline of the general framework of graph neural networks for node
classification (supervised) is presented [20]. Let G ¼ ðV ; EÞ denote a
graph where V is the set of vertices or nodes and E the set of the
edges connecting the nodes [20]. Then, A 2 RN ´N represents the
adjacency matrix where N is the total number of nodes and X 2 RN ´ C

represents the node attribute matrix (C is the number of features for
each node) [20]. The objective is to learn effective node representa-
tions (denoted by H 2 RN ´ F where F is the dimension of node
representations) by combining the graph structure information and
the node attributes which are further used for node classification [20].
The essential idea of graph neural networks is to iteratively update the
node representations by combining the representations of their
neighbors and their own representations [20]. Starting from the initial
node representation, H0 ¼ X , in each layer there are two main
functions: (1) AGGREGATE which aggregates information from the
neighbors of each node, and (2) COMBINE which updates the node
representations by combining the aggregated information from
neighbors with the current node representations [20]. Therefore, the
general framework of graph neural networks is defined by: Initialize:
H0 ¼ X ; For k ¼ 1; 2; ¼ ; K ; akv ¼ AGGREGATEk Hk�1

u : u 2 N vð Þ� �
;

Hk
v ¼ COMBINEk Hk�1

u ; akv
� �

, with N vð Þ being the set of neighbors for

Table 1. Broad categorization of graph machine learning techniques
for multi-omics data (adapted from Xia et al. [19]) with literature
examples.

References

Methods based on random walks

They are useful for node classification and graph
clustering. They simulate a process where a walker
moves from one node to another in the graph by
following edges randomly.

[43]

Methods based on matrix factorization

They involve decomposing matrices associated with
graphs into the product of two or more matrices,
and are employed in miscellaneous graph-based
learning tasks.

[44]

Methods based on deep learning

They can learn representations and features from
graph-structured data, e.g., graph autoencoders,
graph convolutional networks, graph attention
networks, and temporal graph networks.

[45–48]
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the v-th node [20]. The node representations HK in the last layer can
be treated as the final node representations [20]. The computed node
representations can be utilized for downstream tasks, e.g., node
classification in which the label of node v (denoted by ŷv ) can be
predicted through the Softmax function: ŷv ¼ Softmax WHT

v

� �
where

HT
v is the transpose of Hv andW 2 R Lj j ´ F with Lj j being the number

of labels in the output space [20]. Given a set of labeled nodes, the
model can be trained by minimizing the loss function: O ¼
1=nlð ÞPnl

i¼1loss ŷi; yið Þ where yi is the ground truth label of node i,
nl is the number of labeled nodes, and loss �; �ð Þ is a loss function such
as cross-entropy [20]. The whole model can be optimized by
minimizing the objective function O with backpropagation [20].

INTEGRATIVE ANALYSIS METHODOLOGIES
Multi-omics profiling technologies dive deeply into molecular
landscapes and reveal multiple facets of complex research
problems, e.g., shedding light on exciting novel aspects of cancer
biology; these cutting-edge technologies produce large and
intricate datasets, presenting researchers and clinicians with the
considerable task of distilling complex information into clinical
insights [21]. For instance, pan-cancer multi-omics analysis has
revealed driver gene regulation via DNA methylation, offering
insights into methylation-based stratification of cancer patients
[22]. Accordingly, it is broadly acknowledged that there is a need

for robust integrative analysis methodologies—for advancing
precision medicine—that combine multiple data modalities
effectively, hence taking into consideration the multilayered
characteristics and interaction information of multi-omics data-
sets. Graph-based approaches—including graph neural networks
—potentially offer a reliable methodological toolset that can
provide a tangible alternative to scientists and clinicians that seek
ideas and implementation strategies in the integrated analysis of
their omics datasets for biomedical research. For example, graph
convolutional networks can classify unlabeled nodes in a graph
based on both their associated feature vectors as well as the
network’s topology, making it possible to integrate graph-based
data with feature vectors in a natural way [23]. Figure 1 shows a
conceptual workflow for integrated multi-omics analysis using
graph machine learning in the context of precision medicine, i.e.,
translating the output of these approaches into biomedical
outcome.
A common approach when investigating graph-based meth-

odologies is to model each omics dataset into a separate graph
before analysis. Combining the separate graphs into a single
homogeneous graph (through fusion) as the input of machine
learning models allows for carrying out clustering, subtype
discovery/classification, or survival prediction [3]. Furthermore,
building a multilayered network with inter-layer connections
(where each layer represents an omics set and interactions

Collect different omics and pre-
process them to ensure quality

Analyze and extract patterns from
graph-structured data

Validate models to assess their
generalizability and evaluate them
using suitable metrics

Contextualize findings and
interpret results in a biomedically
meaningful way

Refine the analysis by including
additional omics or tweaking the
graph based on performance and
biological insights

Discover clusters of nodes that
share similar omics profiles

Learn graph embeddings that
capture omics similarities

Predict the class labels of samples
based on their multi-omics
features

OMICS

Utilize methods for data
integration considering also batch
effects and biases

Utilize biomedical knowledge to
construct context-relevant graphs
of molecular entities as nodes with
their relationships or interactions
denoted as edges

MULTI

PPI

a

MN

GRN CNN

AE VAE KM

BM

CL

b c

Fig. 1 Conceptual workflow for integrated multi-omics analysis using graph machine learning approaches as a reliable methodological
toolset in the context of precision medicine. Multiple modalities (a) such as genomics (somatic mutations, copy number variants, rare
variants, genomic rearrangements, etc.), epigenomics (DNA methylation, chromatin accessibility, histone modifications, etc.), transcriptomics
(mRNA expression, non-coding RNAs, etc.), proteomics (abundances and post-translational modifications), metabolomics (amino acids,
organic acids, sugars, lipids, nucleotides, drugs, steroids, etc.), metagenomics (microbial enrichment, phylogeny, evolutionary profiles, etc.) and
others are modeled as graph-structured data [2] along with prior knowledge such as, e.g., protein-protein interaction (PPI) networks, gene
regulatory networks (GRN), and metabolic networks (MN). Graph machine learning methods [13] (b) are developed/applied for unsupervised,
semi-supervised, and supervised learning [5, 6, 24] at the node, edge, or graph level for integrated analysis within and across different omics
sets; these methods may include graph autoencoders (AE, upper left part), graph variational autoencoders (VAE, upper right part), and graph
convolutional neural networks (CNN, lower part). The diagrams in (b) are generic architectural representations of the aforementioned neural
networks. The overall objective is to translate the output into biomedical outcome (c): perform classification (e.g., tumor grade and subtype),
form groups (patient clustering; CL), predict patient survival (KM), and identify potential biomarker (BM) candidates. The augmented
information below each conceptual step of the workflow provides complementary details that correspond to general descriptions or actions
that may fit different approaches. [Attribution: DNA/chemical formula vectors were adapted from vecteezy.com].
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between omics sets are either inferred or retrieved from
databases) allows for several methods to explore the network’s
topology including shortest paths and random walks [3]. Graph
embedding methods learn low-dimensional representations of
nodes and their surroundings from each graph; the new graph-
based features are then fed to machine learning models for
prediction or classification [3]. This paradigm—graph representa-
tion learning—has emerged as a prominent machine-learning
strategy for graphs, where the learned embeddings of graph
elements are generated such that they capture the structure and
semantics of the graph along with any downstream supervised
task [24]. Graph representation learning includes methods for
shallow graph embeddings that are utilized for node- and edge-
property prediction, as well as graph neural networks that can
generate representations for any graph element by capturing
structure, attributes, and node metadata, thus utilized for node-,
edge-, and graph-property prediction [24].

GRAPH-BASED INTEGRATED MULTI-OMICS ANALYSIS
Graph-based workflows—including graph machine learning pipe-
lines—continue to push the limits of the technological envelope,
facilitating new investigations by combining patient information
and biomedical knowledge. Several research articles showcase the
potential of graph-based methodologies for integrated multi-
omics analysis, hence offering scientists and clinicians inspiration
and hints for tackling their elaborate research problems.

Multi-omics integration with no network-based prior
knowledge
Pai et al. presented a patient similarity graph-based approach for
supervised patient classification using data (clinical; mRNA,
miRNA, and protein expression; DNA methylation; and somatic
copy number alteration) [25] from The Cancer Genome Atlas
(TCGA) [26]. The authors demonstrated parity or superiority,
comparing to other machine learning approaches (e.g., diagonal
discriminant analysis, k-nearest neighbors, logistic regression,
nearest centroid, partial least squares, random forests, and support
vector machines) in predicting survival across four different tumor
types, while visualizing the decision boundary in the context of
patient similarity space thus making the results more interpretable
[25]. As a further example, the authors compared their approach
to another multi-omic patient classifier (e.g., DIABLO) showing that
both tools provide complementary views of predictive multi-omic
features that could be useful when applied in tandem [25]. A
comparable approach showed that integrative modeling using
genomics and electronic health record data has clinical utility [27].
Fang et al. showcased the effectiveness of a marginalized graph
autoencoder for learning patient similarity feature representations
followed by graph spectral clustering, in order to stratify non-small
cell lung cancer patients into subgroups with distinct immu-
notherapy outcomes [27]. The authors explored differences in
biological insight comparing their approach to the conventional
log-rank test using clinico-genomic features, and indicated the
potential of their method to inform insight on patient stratification
as a complement to the traditional approach [27]. Wang et al.
utilized labeled omics datasets (TCGA) and proposed a supervised
multi-omics (mRNA and miRNA expression; and DNA methylation)
integration approach based on deep multi-view learning (each
omics data type as a particular view of the samples) [28]. The
authors utilized graph convolutional networks for omics-specific
learning, and a view-correlation discovery network to explore
cross-omics correlations at the label space for effective multi-
omics integration [28]. The authors compared the classification
performance of their approach with other supervised multi-omics
integration algorithms (e.g., k-nearest neighbors, support vector
machines, lasso, random forests, gradient boosted trees, shallow
and deep fully connected neural networks, adaptive group-

regularized ridge regression, and two partial least squares
discriminant analysis variants); their method outperformed the
other methods in most classification tasks. Further ablation studies
showed that their approach outperformed its variations in various
classification tasks, and comparisons using their method on
different omics sets showed that models trained with multi-omics
data achieved better performance compared to single-omics
models [28]. Overall, the authors successfully demonstrated their
approach on tumor grade classification in low-grade glioma,
kidney cancer type classification, and breast invasive carcinoma
subtype classification, as well as biomarker identification related to
breast cancer [28]. Likewise, Li et al. also developed a multi-omics
integration model based on graph convolutional networks using
copy number variation (exome-seq), transcriptomics (RNA-seq),
proteomics (reverse-phase protein array), and clinical data from
patients (TCGA) for cancer subtype analysis [29]. The authors
applied a multi-modal autoencoder model to extract features and
employed a similarity network fusion model to construct a patient
similarity network; they compared their autoencoder with
conventional methods such as principal component analysis,
factor analysis, independent component analysis, and singular
value decomposition [29]. Next, the authors utilized a graph
convolutional network to integrate these two types of hetero-
geneous features and train the subtype classification model; they
compared their graph convolutional network with methods such
as decision trees, k-nearest neighbors, Gaussian naïve Bayes,
random forests, support vector machines, a deep neural network
with four layers, Grassmann clustering, and high-order path
elucidated similarity [29]. Their method performed well for
heterogeneous data integration, while addressing the issue of
clinical interpretability [29]. Focusing on the interpretability aspect
of graph convolutional neural networks explaining individualized
predictions, Chereda et al. generated explanations in the form of
relevant subgraphs for each data point, consequently providing
interpretable molecular sub-networks that were individual for
each patient [30].

Multi-omics integration with network-based prior knowledge
In the context of integrating different multi-omics data and
network-based prior knowledge [31], Kim et al. presented a graph-
based semi-supervised framework for integrating multi-omics
TCGA data (mRNA and miRNA expression; DNA methylation; and
somatic copy number alteration) and genomic knowledge (path-
way, gene ontology, motif, and chromosomal position gene sets),
in an intermediate fashion, to predict outcomes according to
survival, stage, and grade [32]. Data-driven graphs were generated
from the multi-omics data and knowledge-driven graphs were
generated from the genomic knowledge sets [32]. Their results
suggested that the use of genomic knowledge improved the
predictive power in explaining cancer phenotypes due to the
synergies between genomic processes in the pathways involved in
cancer [32]. The strengths of graph-based integration include its
high computational efficiency (due to its sparseness properties)
combined with an accuracy that is comparable to those of other
methods such as kernel-based integration [32]. In a more recent
approach [33], Ma and Zhang employed a multi-view factorization
autoencoder to integrate multi-omics data (mRNA, miRNA, and
protein expression; and DNA methylation) and protein-protein
interaction (PPI) networks (STRING database [34]), learning feature
and patient embeddings simultaneously. Their model can be used
for unsupervised learning, but with available labeled data then
supervised learning is possible by modifying the objective
function [33]. The authors performed experiments on TCGA data
for predicting the progression-free interval, and compared their
model with other methods such as support vector machines,
decision trees, naïve Bayes, random forests, AdaBoost, a variational
autoencoder, and an adversarial autoencoder [33]. Inherently, the
authors demonstrated that multi-omics data significantly
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outperformed single-omics, and additionally they showed that
incorporating domain knowledge (e.g., biological interaction
networks) in their model improves its generalizability and reduces
the risk of overfitting [33]. In an analogous work, Schulte-Sasse
et al. developed an interpretable graph deep learning approach to
predict cancer genes from large datasets (pan-cancer data from
the TCGA) by combining multi-omics data (mutations, copy
number changes, DNA methylation, and mRNA expression)
together with protein-protein interaction networks [23]. Identifica-
tion of cancer genes plays a crucial role in the development of
precision oncology and cancer therapeutics [23]. Furthermore,
interpretability is valuable for assessing the molecular origin of a
gene to be associated with cancer, detecting potential artifacts,
and increasing trust in the modeling approach [23]. Their
methodology used multi-dimensional multi-omics node features
as well as topological features of the protein-protein interaction
network in the learning process [23]. The authors compared their
approach with methods grouped into different categories: omics
only (methods that use only omics features for training, e.g.,
random forests), network only (methods that use only the PPI
network, e.g., DeepWalk with support vector machines, graph
convolutional network, and PageRank), network and omics
(methods that use both data types, e.g., DeepWalk with random
forest features, and HotNet2 diffusion), and cancer specific
(methods specifically tailored to the prediction of cancer genes,
e.g., MutSigCV, and 20/20+) [23]. The authors successfully
recognized highly mutated cancer genes and genes harboring
other kinds of alterations (aberrant DNA methylation, differential
expression), consistently outperforming previous methods [23].

Single-cell multi-omics integration
Single-cell multi-omics permits the quantification of multiple
modalities for fully capturing the perplexity of complex molecular
mechanisms and cellular heterogeneity [35]. Current methods for
integrating single-cell multi-omics data typically consider the cells
relationship between the reference and query datasets but ignore
the relationship among cells within each dataset [36]. In addition,
multiple datasets of the same or different omics often have
unpaired cells (due to single-cell sequencing techniques being still
cell destructive) [36]. In this setting, Cao and Gao developed a
method for triple-omics integration, integrative regulatory infer-
ence, and multi-omics human cell atlas construction over millions
of cells [37]. The authors utilized public datasets (transcriptome
through single-cell RNA sequencing; chromatin accessibility
through single-cell ATAC sequencing; and DNA methylation
through single-nucleus methylome sequencing and single-cell
combinatorial indexing for methylation analysis assay), and they
systematically benchmarked their approach with multiple popular
unpaired multi-omics integration methods, e.g., Online iNMF,
LIGER, Harmony, bindSC, Seurat, UnionCom, Pamona, and MMD-
MA [37]. By combining omics-specific autoencoders with graph-
based coupling and adversarial alignment, the authors presented
a modular framework (graph-linked unified embedding) for
integrating unpaired heterogeneous single-cell multi-omics data
and inferring regulatory interactions simultaneously; benchmarks
showed that their approach was robust, scalable, and extendable
[37]. Gao et al. presented a model, using public datasets, for
integrating single-cell multi-omics data (transcriptome through
single-cell RNA sequencing; chromatin accessibility through
single-cell ATAC sequencing; and protein expression through
CITE-seq–cellular indexing of transcriptomes and epitopes by
sequencing) based on graph convolutional networks [36]. The
authors compared their approach with four integration algo-
rithms, e.g., Seurat, LIGER, GLUER, and Pamona [36]. Their results,
by applying the method on six datasets, showed that data can be
integrated from multiple single-cell sequencing technologies,
species, or different omics, outperforming other methods [36]. Ma
et al. developed a heterogeneous graph transformer model, using

public datasets, for cell-type-specific biological network inference
from single-cell multi-omics data (modalities: single-cell RNA
sequencing, CITE-seq, and single-cell ATAC sequencing) [35]; their
model was hypothesis-free and did not rely on the constraints of
gene co-expressions. The authors compared their approach to
other tools such as the graph-based method of Cao and Gao [37],
Seurat, MOFA+, Harmony, and TotalVI [35]. For each benchmark-
ing tool, grid-search tests were applied to a combination of
parameters such as the number of dimensions for cell clustering
and clustering resolution [35]. Their approach learnt relations
among cells and genes within both local and global contexts, and
performed better than existing tools in cell clustering and
biological network construction [35].

CHALLENGES AND OPPORTUNITIES
Graph-based multi-omics data integration may enable the
formation of context-relevant networks that can capture the
relations and interactions between different entities, e.g., genes,
proteins, metabolites, etc., hence potentially offering a systems-
level understanding of cellular and microenvironmental processes.
Integration may aid in comprehending the function of genes and
proteins more thoroughly (functional setting) and as a result
deliver useful insights into biological processes. There might be
possibilities in unraveling the mechanisms underlying diseases by
studying the relationships between different biological compo-
nents. In this context, subtyping diseases based on multi-omics
profiles may offer perspectives into etiology and progression.
Integration may allow for a more personalized approach to
biomedicine by taking into account individual variations in omics
profiles, as well as contributing to the identification of predictive
biomarker candidates pertinent to the effect of a therapeutic
intervention, thus aiding in the optimization of targeted therapies.
On the other hand, integrating multi-omics data involves the
coalescence of information from different molecular levels and
this may pose challenges. In general, assembling omics data
together into a more complete story is challenging mainly due to
the diversity in dataset size, the patterns of missing data and noise
across different data types, and the correspondences among
measurements from different technologies [1]. More specifically,
challenges may include: an imbalance at the class or feature level,
missing values during data acquisition resulting in datasets with
partial information, a larger number of features compared to a
smaller number of patients, data with different distributions or
types due to utilizing different technologies, and noise manifested
as mislabeled samples.
Graph machine learning may offer a robust framework for

integrating and analyzing multi-omics data by: (1) incorporating
omics sets into a unified model, (2) scaling relatively well (up to a
limit) in relation to growing data complexity, (3) providing more
interpretable model predictions, (4) taking into account the
complex interrelationships among the different molecular entities,
(5) allowing for prior network-based knowledge integration, (6)
leveraging the topology of the graph thus inferring potential
associations that may not be apparent with conventional
methods, (7) handling data heterogeneity related to scale and
distribution quite well, (8) learning embeddings that describe the
structure and relationships of the data, and (9) analyzing patterns
of connectivity among multi-omics sets. The challenges in utilizing
graph machine learning models on omics sets need to be
acknowledged as well when developing such algorithms for
analyzing biological data. A common challenge is the effort and
domain expertise required for the construction of the graph which
needs to be adapted to the problem at hand, but also relevant so
that it reflects the inherent biological relationships. Data related
problems such as increased heterogeneity (formats and scales),
noise, and incomplete information can complexify the develop-
ment of graph learning models. Often, the size of multi-omics
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datasets can be very large thus developing scalable models can be
quite challenging as well. In this context, the large omics sets can
make model training computationally expensive, ergo efficiency is
paramount given that computational resources are finite. In this
regard, Table 2 shows the general advantages and disadvantages
of graph neural networks.

THE WAY FORWARD
Integrated multi-omics analysis possesses considerable promise
for resolving the inherent complexities of biological systems. New
toolsets are supporting the research community [38] to, e.g.,
represent biomedical knowledge in a user-friendly manner by
building task-specific knowledge graphs that facilitate the
navigation and analysis of complex information [39]. Further
research in the field of graph machine learning for integrated
multi-omics analysis may assist in unraveling the intricate
molecular interactions across diverse biological systems, which
can pave the way for a more comprehensive understanding of
disease and personalized therapeutic interventions. An increas-
ingly popular and powerful self-supervised learning approach, for
alleviating the reliance on labeled data, is contrastive learning [40].
This technique aims to learn salient features using raw input as the
learning signal and usually leverages multiple positive and
negative pairs of input samples in one batch, while substantial
data augmentation is normally required for learning good and
generalizable embedding features [40]. Extending contrastive
learning to graph-structured data may improve performance for
downstream analysis by, e.g., utilizing it for the pre-training of
multi-omic graphical models. Furthermore, the spatial context in
biological studies has profound biomedical/clinical relevance and
implications. For instance, Hu et al. presented a graph convolu-
tional network approach that integrated gene expression, spatial
location, and histology to model the spatial dependency of gene
expression for the identification of spatial domains and domain
enriched spatially variable genes [41]. Going further, in order to
develop a basic understanding of the molecular hierarchy from
genome to phenome in individual cells, single-cell and spatial
multi-omics methodologies (multimodal omics) are required [42].
In this paradigm, by leveraging the spatial information linking a
cellular state to its respective micro- and macro-environments,
through the use of graph neural networks, more fine-grained
multimodal representations of cellular state should be obtainable
[42].

CONCLUSIONS
This perspective is focused on highlighting the significance of
data-driven biomedical research, particularly within the context of
integrating multiple omics. Integrated multi-omics analyses are
crucial for exploring complex diseases, e.g., cancer, where multiple
factors contribute to the disease’s development. Here, the use of
machine learning is particularly emphasized for integrating and
analyzing multi-omics datasets. Graph machine learning on

heterogeneous omics sets has proven quite powerful as
evidenced by previously published research in precision medicine,
cancer biology, and other biomedical applications. Essentially,
computational graph-based frameworks for bulk and single-cell
integrated multi-omics analysis have indicated their capacity to
clarify complex interrelationships and derive valuable insights
from highly connected data. The different models presented have
demonstrated that the enhanced capacity for analyzing omics
interactions and the data integration with network-based prior
knowledge are major advantages of graph-based approaches,
with additional improvements in model generalizability. Certainly,
there are issues on the data level as well as on the methodological
level making integration a complicated endeavor when both are
coupled for analyzing and in the end understanding complex
biological systems. Nevertheless, factoring in the opportunities as
well as the challenges of graph machine learning approaches on
multi-omics data ensures for more sophisticated, adaptable, and
refined models. These approaches will continue to provide
demonstrable benefits to scientists and clinicians in terms of a
more coherent and quantitative understanding of cell biology, but
also more practically for improving the prediction of clinical
outcome as well as assisting in the discovery of potential disease-
related biomarker candidates.
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