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Cancer-associated fibroblasts expressing fibroblast activation
protein and podoplanin in non-small cell lung cancer predict
poor clinical outcome
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BACKGROUND: Cancer-associated fibroblasts (CAFs) are a dominant cell type in the stroma of non-small cell lung cancer (NSCLC).
Fibroblast heterogeneity reflects subpopulations of CAFs, which can influence prognosis and treatment efficacy. We describe the
subtypes of CAFs in NSCLC.
METHODS: Primary human NSCLC resections were assessed by flow cytometry and multiplex immunofluorescence for markers of
fibroblast activation which allowed identification of CAF subsets. Survival data were analysed for our NSCLC cohort consisting of
163 patients to understand prognostic significance of CAF subsets.
RESULTS: We identified five CAF populations, termed CAF S1-S5. CAF-S5 represents a previously undescribed population, and
express FAP and PDPN but lack the myofibroblast marker αSMA, whereas CAF-S1 populations express all three. CAF-S5 are spatially
further from tumour regions then CAF-S1 and scRNA data demonstrate an inflammatory phenotype. The presence of CAF-S1 or
CAF-S5 is correlated to worse survival outcome in NSCLC, despite curative resection, highlighting the prognostic importance of CAF
subtypes in NSCLC. TCGA data suggest the predominance of CAF-S5 has a poor prognosis across several cancer types.
CONCLUSION: This study describes the fibroblast heterogeneity in NSCLC and the prognostic importance of the novel CAF-S5
subset where its presence correlates to worse survival outcome.

British Journal of Cancer; https://doi.org/10.1038/s41416-024-02671-1

BACKGROUND
Lung cancer is the leading cause of cancer death globally [1] and
non-small cell lung cancer (NSCLC) accounts for ~85% of cases [2].
Current NSCLC therapies are often unsuccessful, with drug
resistance leading to treatment failure and disease progression
[3]. The tumour stroma plays a role in this resistance to therapy
and has emerged as an important target for therapies to combat
cancers such as NSCLC [4–7].
One of the most common cell types of the tumour stroma is the

cancer-associated fibroblast (CAF) [8]. In health, fibroblasts are a
quiescent structural component of the extracellular matrix (ECM),
which become activated in response to wound signalling. In their
activated state they produce ECM components, and engage in
crosstalk with immune cells to promote wound healing [9]. CAFs
are irreversibly activated, have an enhanced migratory phenotype
over normal activated fibroblasts, a greater proliferative ability and
an enhanced secretome [10]. CAFs also have roles in immune
evasion, metastasis, invasion, angiogenesis and resistance to drug
treatment [6, 11–15].

Several studies have shown that CAFs represent a hetero-
geneous population composed of functionally distinct subtypes
[6, 16–21]. The phenotype of these subtypes has been char-
acterised in some solid organ malignancies, including breast,
ovarian, pancreatic and lung cancers [17, 19–23]. Markers
frequently used to distinguish these subtypes include α-smooth
muscle actin (αSMA), fibroblast activation protein (FAP), podopla-
nin (PDPN), integrin β1 (CD29) and fibroblast-specific protein-1
(FSP-1). Two key subtypes of note, commonly termed CAF-S1 and
CAF-S4, have been identified in several studies, CAF-S1 display a
FAP-hi phenotype associated with adhesion, wound healing and
immunosuppression while CAF-S4 which are FAP-low/negative
and express higher levels of αSMA are more contractile and
associated with invasion and metastasis [7, 17, 20, 24–27]. Spa-
tially, CAF-S1 have been found in closer proximity to cancer cells.
The presence of these subtypes can also indicate prognosis, with
CAF-S1 and CAF-S4 being found to promote metastases, and CAF-
S1 being an indicator of distant relapse in luminal breast cancer
[20].
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Here, we investigate CAF subtypes present in NSCLC, identifying
five subtypes using commonly used CAF markers. We focus on the
novel CAF-S5 subtype, identified primarily by the expression of
FAP and PDPN but lacking expression of αSMA. We compare the
spatial location of CAF-S5 to the previously defined CAF-S1
subtype and investigate the correlation of these subtypes to
survival outcome.

METHODS
NSCLC patient sample processing
Fresh excised tumour and adjacent non-cancerous lung (NCL) tissues were
collected following surgical resection, where NCL tissues were taken from
the most distal point in the same lobe as the tumour. Samples were stored
in DMEM (Gibco) containing 100 U/L penicillin-streptomycin (Gibco) and
processed within 16 h. Tissue samples were minced with forceps and
incubated in a water bath at 37 °C for an hour in prewarmed RPMI media
(Gibco) containing collagenase I [1 mg/ml] (Gibco) and DNase [0.1 mg/ml]
(Sigma), with samples removed for vortexing every 10min within that
incubation. Samples were then centrifuged at 300 × g for 5 min and
supernatant removed, then 5ml TrypLE express (Gibco) was added.
Samples were incubated for a further 5 min at 37 °C, before being
centrifuged at 300 × g for 5 min and supernatant removed. Samples were
then resuspended in media and passed through a 70 μm cell strainer and
red blood cells were lysed from samples using RBC lysis buffer (Roche) in
5ml for 10min at room temperature. Cells were washed in plain RPMI
media and then counted in preparation for staining.

Flow cytometry sample preparation
Following tissue digest, cells were resuspended in DPBS (Gibco) for
staining by flow cytometry, with 1 million cells per condition. For all
conditions other than the unstained control, cells were stained with a live/
dead marker Zombie UV (1:1000, Biolegend) for 30min at room
temperature in DPBS (Gibco). Cells were then washed (centrifuged at
300 × g for 5 min) in DPBS supplemented with 2% FBS (FACs buffer) and
incubated with FC blocker (Biolegend) for 10min and then stained with
surface marker antibodies (EpCAM, CD45, CD31, FAP, CD29, Podoplanin
and PDGFRβ, see Supplementary Table S1 for details) or the corresponding
isotype control antibodies for 20min at 4 °C in FACs buffer. After washing
cells were fixed with Cytofix fixation buffer (BD Biosciences) for 20min at
4 °C. Cells were then washed in Perm/Wash buffer (BD Biosciences) and
centrifuged at 300 × g for 5 min. Intracellular antibodies (αSMA and FSP-1)
or the corresponding isotype controls were diluted in Perm/Wash buffer
then added to cells and incubated in the dark for 30min at 4 °C. After
washing, cells were stored in DPBS with 2% FBS overnight at 4 °C before
data acquisition on a LSR6Fortessa analyser (BD Biosciences). Compensa-
tion was carried out using single stain control UltraComp eBeads
(Invitrogen).

Flow cytometry data analysis
Flow cytometry data were analysed using FlowJo version 10.7.1. Cells
were gated to fibroblast populations defined as CD45−, EpCAM− and
CD31− cells (full gating strategy shown in Fig. S1). To reduce file sizes for
analysis, fibroblast populations were downsampled to 300 events using
the Downsample plugin. Samples containing less than 300 fibroblasts
were excluded from analysis. All sample files were then concatenated
and from this file UMaps could be generated from the data [28].
FlowSOM analysis could then be carried out to determine clusters and
was run without defining the number of clusters expected to be
unbiased [29]. MFIs calculated were the geometric fluorescence
intensity.

TMA generation
A TMA was constructed as previously described [30, 31] from tumour
resections from patients undergoing surgery for treatment of NSCLC with
curative intent. Here a total of 163 cancer cores were available for staining.

Multiplex immunofluorescence staining
Slides were deparaffinised in Xylene and rehydrated in a series of ethanol
dilutions. Using the Leica Bond automated staining robot, samples
underwent heat-induced antigen retrieval (HIER) of 30min at 100 °C. Then

tissue slides were exposed to multiple staining cycles each including a
30min incubation with a protein block (Akoya), 1 h incubation with the
respective primary antibody, 30 min incubation with the secondary
antibody (Akoya), 10 min incubation with the respective OPAL (Akoya)
followed by 20min incubation with AR6 buffer (Akoya) at 85 °C prior to the
next staining cycles and finally stained with fluorescent DAPI (Akoya) for
10min. In between each step, slides were washed with bond wash
for 5 min.
Primary antibody concentrations and OPAL pairings are shown in

Supplementary Table S2. Antibody-OPAL pairings were assigned based on
expected biomarker abundance and expected co-expression. Dilution of
antibodies was assessed by single stains.

Multiplex immunofluorescence imaging
Slides were imaged using a Vectra Polaris. The appropriate exposure time
for image acquisition was set for each fluorophore by auto exposing on
multiple (5–10) tissue areas per batch. Following fluorescence whole slide
scans, regions of interest were selected for multispectral imaging (MSI) at
×20 magnification.

Multiplex immunofluorescence image analysis
MSI images were unmixed in InForm software using representative
snapshots of spectral library slides imaged at the same magnification.
This also allowed for the isolation of auto fluorescence. Unmixed images
were exported and analysed in Qupath [32]. Cell detection was performed
using StarDist based on a watershed deep-learning algorithm and
fluorescent threshold of DAPI nuclear staining [33]. Following this,
phenotyping was performed in a non-hierarchical manner by creating a
composite classifier of single channel classifiers for each stain based on a
fluorescent threshold that applied across the whole tumour collection.
Ultimately, a machine learning algorithm was trained on multiple images
to detect tumour and stroma areas. For each image the counts of the
number of cells classified by each combination of markers was calculated
and exported for analysis using R. Using the definitions established by flow
cytometry to characterise a profile for each subset as having markers on or
off we defined subsets as: CAF-S1: FAPON αSMAON FSP1OFF CD90ON

PDPNON, CAF-S4: FAPOFF αSMAON FSP1OFF CD90ON PDPNOFF, CAF-S5: FAPON

αSMAOFF FSP1OFF CD90OFF PDPNON. This binary classification allowed for
classification of individual cells as each subtype.

Single cell RNA sequencing analysis
Open source data from Lambrechts et al. [22] and Wu et al. [34] were
analysed using R. Lambrechts et al. data (referred to as early NSCLC due to
patients being those classed as untreated, primary, non-metastatic cases
who were undergoing surgery with curative intent) were downloaded from
https://scope.aertslab.org/#/Bernard_Thienpont/Bernard_Thienpont%
2FThienpont_Fibroblast_v4_R_fixed.loom/gene and Wu et al. data (late
NSCLC) from the gene expression omnibus under GSE148071. The
fibroblast data sets were filtered for fibroblasts that could be defined as
CAF-S1 or CAF-S5 using the definitions of the subtypes established by flow
cytometry. Fibroblasts were filtered by including those with expression of
CD29, PDGFRβ, PDPN and FAP and excluding any that expressed FSP1. The
remaining fibroblasts were then determined to be CAF-S1 if they
expressed αSMA and CAF-S5 if they did not express αSMA. Differential
expression analysis was then performed in R using the DESeq2 package
[35]. The top 50 differentially expressed genes were plotted in a heat map
and volcano plots of all genes were generated to assess key differentially
regulated genes between the two subtypes.

Analysis of survival data
Survival data was collected for the 163 NSCLC patients whose samples
were included in the TMA analysed by multiplex immunofluorescence,
where overall survival was defined as the number of days from diagnosis
to death and recurrence free survival defined as the number of days from
diagnosis to death or recurrence. Kaplan–Meier curves were plotted for
patients who had fibroblasts of phenotype CAF-S1 or CAF-S5 present
(determined in QuPath as described above) above and below the median
number of CAFs present in that subtype. Log-rank tests were used to
determine significance. Plots were also generated for the markers FAP,
PDPN and αSMA, showing survival when these markers are present above
or below median expression levels. Analysis was carried out using the
survival and survminer packages in R.
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Analysis of TCGA data
Data for liver hepatocellular carcinoma (TCGA-LIHC), pancreatic adenocar-
cinoma (TCGA-PAAD), invasive breast carcinoma (TCGA-BRCA) and renal
clear cell carcinoma (TCGA-KIRC) were downloaded from https://tcga-
data.nci.nih.gov. The surv_cutpoint function in R was used to determine
the most significant cut off for expression level correlated to survival for
each cancer for the markers FAP, PDPN and αSMA. Using these cut-offs
generated patients could be defined as low or high for each marker.
Patients were defined to have an overall CAF-S5 phenotype if they were
FAP and PDPN high and αSMA low. The survival of these patients was then
compared all other patients by plotting Kaplan–Meier curves as
described above.

Statistical analysis
All scatter, violin and boxplots were plotted and statistical testing
performed using GraphPad Prism version 9. Error bars represent the
standard deviation. For the flow cytometry data significance was
determined using unpaired t-tests. For the multiplex immunofluorescence
analysis Tukey’s multiple comparisons tests were performed. Significance

was considered significant when the p value was <0.05 (*p ≤ 0.05,
**p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001). All n numbers are shown in the
figure legends.

RESULTS
CAFs in NSCLC express high levels of fibroblast activation
markers
To understand the heterogeneity of CAFs in human NSCLC we first
looked at the expression levels of seven markers used to
characterise CAFs using flow cytometry (Fig. 1a(i)). Fibroblasts
were identified as being negative for EpCAM, CD45 and CD31 to
exclude epithelial, hematopoietic and endothelial cells respec-
tively (Fig. 1a(ii)). Fibroblast activation markers FAP, CD29, αSMA,
PDPN, CD90, FSP1 and PDGFRβ expression levels were determined
and compared for tumour and non-cancerous adjacent lung tissue
from NSCLC patients by looking at the percentage positivity for
each marker (Fig. 1b). αSMA expression was significantly
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comparing non-cancerous lung and tumour tissue. Individual data points shown (tumour n= 14, non-cancer n= 14) as well as mean ± SD.
Unpaired t-test carried out as not all data points paired, *p < 0.05, **p < 0.01, ***p < 0.005.
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upregulated in CAF. There was significant heterogeneity in marker
expression between patient samples (Fig. 1c). Detailed analysis
revealed differences in the levels of marker expression between
fibroblasts from tumour and non-cancerous lung (NCL) tissues
(Fig. 1d, e, representative plots shown for all individual markers in
Fig. S2). Assessing the percentage of fibroblasts highly expressing
each marker revealed significant differences between fibroblasts
isolated from NCL and tumour. FAP, CD29, αSMA, PDPN and CD90
were all upregulated in tumour fibroblasts, while FSP1 was more
highly expressed in NCL fibroblasts.

Five subsets of CAFs were identified in NSCLC
To describe CAF heterogeneity within the tumour fibroblasts
FlowSOM [29] was used to determine phenotypic clusters of CAFs
in an unbiased manner. This identified five subsets of CAFs across
the samples (Fig. 2a), named CAF-S1 (pink), CAF-S2 (red), CAF-S3
(green), CAF-S4 (blue) following conventions set by previous
studies in breast and ovarian cancers [20, 21, 36] as well as a
previously unreported CAF-S5 (orange). CAF subtypes were
defined by multiple markers (Fig. 2b). Mapping the distribution
of CAF subsets across tumour samples (Fig. 2c), we see that the
subsets are not patient specific, rather that CAF heterogeneity
exists within patients. This is not driven by NSCLC subtype or
stage, as the subset distribution shows no patterns evident of this
when comparing to patient sample information (Fig. 2d, full
patient information shown in Supplementary Table S3).
The relative expression of each marker was visualised, across

subsets (Fig. 2e) and within patients (Fig. 2f). These (along with the
expression profiles in Fig. S3) were used to classify the subsets as
having the following expression levels:
CAF-S1: FAPHigh CD29Med-High αSMAHigh PDPNHigh CD90Med-High

FSP1Low PDGFRβMed,
CAF-S2: FAPNeg CD29Neg-Low αSMANeg PDPNNeg CD90Neg

FSP1Neg PDGFRβNeg,
CAF-S3: FAPLow CD29Med αSMANeg-Low PDPNLow CD90Low

FSP1High PDGFRβLow,
CAF-S4: FAPNeg-Low CD29High αSMAMed PDPNNeg CD90Med-High

FSP1Neg PDGFRβMed-High and
CAF-S5: FAPMed CD29Med αSMANeg-Low PDPNMed CD90Low

FSP1Low PDGFRβMed .
Dimensionality reduction by uniform manifold approximation

and projection (UMAP), showed that while there is some overlap
between CAFs and NCL fibroblasts, there was a distinct distribu-
tion of subpopulations (Fig. 2g). CAF-S3 was significantly more
prevalent in NCL samples and CAF-S2 was found in both NCL and
tumour (Fig. 2h). In contrast CAF-S1, CAF-S4 and CAF-S5 were
significantly enriched in tumour samples (Fig. 2h).
To determine the relevance of these three subsets we

investigated the spatial location and distribution of CAF subsets
in NSCLC by multiplex immunofluorescent (MIF) staining of a
microarray of 163 tumours using a tissue microarray (TMA) and
spectral imaging (Fig. 3a). Tumour cores were stained with PanCK
to identify tumour regions and the fibroblast markers FAP, PDPN,
αSMA, FSP1 and CD90 were used to identify the key CAF subsets
predominant in tumour tissue: CAF-S1, CAF-S4 and CAF-S5.
The MIF results showed clear staining of the fibroblasts markers

in only the stromal regions, with the tumour regions stained by
PanCK (Fig. 3b). As this was a diverse cohort, containing samples
from multiple NSCLC subtypes (demographics of cohort shown in
Fig. 3c), trends in marker expression were compared between
subtypes (Fig. 3d, f) following segmentation and classification of
cells (Fig. 3e). This revealed the level of heterogeneity between
patients across subtypes, with the greatest range in expression
levels shown in FAP and PDPN expression. PDPN expression also
showed significant difference in expression levels between
adenocarcinoma and squamous cell carcinoma, showing higher
percentage positivity of PDPN in squamous cell carcinoma
patients (Fig. 3f). CD90 staining was low, with very few cells

classed as CD90+ across different classes of NSCLC. Consequently,
CD90 was not be used to classify the CAF subsets in the MIF
analysis. CAF-S1, CAF-S4 and CAF-S5 could still be identified
independently of CD90 expression levels. The final definitions
used for the MIF analysis were therefore: CAF-S1: FAPON αSMAON

FSP1OFF PDPNON, CAF-S4: FAPOFF αSMAON FSP1OFF PDPNOFF, CAF-
S5: FAPON αSMAOFF FSP1OFF PDPNON.
CAFs were categorised into subsets depending on the markers they

expressed (Fig. 4a) where the key markers used to distinguish each
subset were FAP, αSMA and PDPN (Fig. 4b). We investigated whether
distinct subsets dominated in different types of NSCLC by calculating
the percentage of total CAFs (defined as those stained by any
combination of the CAF markers investigated) of each CAF subset for
adenocarcinoma, squamous cell carcinoma and other NSCLC subtypes
(Fig. 4c). CAF-S1 and CAF-S5 were both upregulated in squamous cell
carcinoma compared to adenocarcinoma, whereas CAF-S4 was
upregulated in adenocarcinoma. We first considered whether there
was a spatial difference between the subtypes, as we had previously
observed visually that αSMA staining was dominant near tumour
regions (Fig. 3b), and the key difference between the two subtypes is
the lack of αSMA expression on CAF-S5 compared to CAF-S1. The
spatial distribution was quantified by calculating the distance from
each CAF to the nearest tumour region (Fig. 4d). This showed that
CAF-S5 were more likely to be found further from tumour regions than
CAF-S1, while CAF-S4 were found closest to tumour regions (Fig. 4e).

CAF-S1 and CAF-S5 are functionally distinct
To characterise the differences in gene expression between FAP+

and PDPN+ subsets CAF-S1 and CAF-S5, single cell RNA sequencing
data for early and late NSCLC, available from Lambrechts et al. [22]
and Wu et al. [34] respectively was analysed. A heat map of the top
50 differentially expressed genes, showed CAF-S1 and CAF-S5
clustered separately for early NSCLC (Fig. 5a) and the majority
cluster in late NSCLC (Fig. 5c). The most downregulated genes in
CAF-S5 versus CAF-S1 in early NSCLC included TAGLN (transgelin),
TPM2 (tropomyosin 2), SPARC (secreted protein acidic and cysteine
rich) and MYL9 (myosin light chain 9) (Fig. 5b, normalised counts
shown in Fig. S6). Genes upregulated in CAF-S5 included C3
(complement C3), SEPP1 (selenoprotein P), C7 (complement C7) and
CLU (clusterin). In the case of late NSCLC, we see less significantly
downregulated genes, but matrix metalloproteinases (MMP) genes
for MMP1 and MMP9 were upregulated (Fig. 5d, normalised counts
shown in Fig. S7). We also compared transcriptional differences
between these subsets and the CAF-S4 subset (shown in Fig. S9)
demonstrating distinct transcriptional differences between them.

Presence of CAF-S1 or CAF-S5 correlates with worse 5 year
survival in NSCLC
To understand if these subsets have prognostic significance, we
performed survival analysis on our results from 163 NSCLC tumours,
looking at whether the presence of CAF-S1 and CAF-S5 correlated
with survival using the cell classifications from the TMA cohort
(Fig. 6a). Analysis of the CAF markers alone did not reveal any
significant effects on survival probability (Fig. 6b), although presence
of FAP above median levels did demonstrate a trend towards poorer
recurrence free survival. However, presence of either CAF-S1 or CAF-
S5 was correlated with worse 5-year overall survival (Fig. 5c, d, cox
regression analysis for survival shown in Supplementary Fig. S4).
Presence of the CAF-S4 subset demonstrated a non-significant trend
towards improved overall survival (Fig. S8).

CAF-S5 signature indicates poorer survival in other cancers
Using the TCGA dataset we analysed the survival of patients who
we expect to have greater prevalence of the novel CAF-S5 (based
on bulk high expression of FAP and PDPN in the patient and low
αSMA) across four solid organ cancers: liver hepatocellular,
pancreatic adenocarcinoma, breast invasive carcinoma and renal
clear cell carcinoma (Fig. 6e, cox regression analysis shown in
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Supplementary Fig. 4C). This revealed that the presence of these
markers indicating CAF-S5 correlated with poor survival prob-
ability across these cancers, demonstrating conserved prognostic
relevance of the CAF-S5 subset.

DISCUSSION
We have identified that in NSCLC, CAFs present as a hetero-
geneous population which can be divided into subsets depending
on their expression levels of fibroblast activation markers. This
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Fig. 3 Multiplex immunofluorescence staining of CAFs in NSCLC. a Schematic showing the workflow of preparation of the TMA from NSCLC
resections followed by immunofluorescent staining using a Leica Bond RX and then spectral imaging of slides; b Representative images
showing the expression pattern of CAF markers FAP, αSMA, PDPN, FSP1 and CD90 relative to cancer cells identified by PanCK staining in a
NSCLC tumour sample, scale bar 100 um; c Patient demographics of all patients in the TMA cohort; d Representative images of NSCLC
subtypes adenocarcinoma, squamous cell carcinoma, large cell carcinoma and neuroendocrine carcinoma demonstrating heterogeneity
between subtypes; e Images demonstrating the segmentation completed for each TMA core defining tumour and stromal regions by tissue
segmentation and individual classification of cells by cell segmentation; f The percentage of stromal cells positive for CAF markers in different
categories of NSCLC. Stats show Tukey’s multiple comparisons test results, *p ≤ 0.05.
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heterogeneity of CAFs is found both between and within patient
samples. Two of the subsets, CAF-S2 and CAF-S3, express low
levels of markers used to identify activated fibroblasts. This, and
the finding that there are more CAF-S3 in NCL and an equal
presence of CAF-S2 in NCL and tumour, suggests that these
subsets are representative of more quiescent lung fibroblasts
found in health. Conversely, CAF-S1, CAF-S4 and CAF-S5 are more
prevalent in tumour tissue. CAF-S5 is a novel subset, identified
here as expressing FAPMed CD29Med αSMANeg-Low PDPNMed

CD90Low FSP1Low and PDGFRβMed. These subsets express different
levels of fibroblast activation markers, demonstrating that no
single fibroblast marker can be used to isolate CAFs in NSCLC. This
suggests that studies targeting single markers to deplete CAFs are

targeting limited subsets, and our work demonstrates that they
need to be considered together.
These fibroblast markers can also be used to identify CAF

subsets through multiplex immunofluorescence imaging when
the definitions outlined from the flow cytometry analysis are
converted to binary definitions. Although binary definitions
limited the ability to classify as thoroughly as the flow cytometry
analysis, they allowed for confident assigning of CAFs to their
respective subsets as described. The three subsets identified as
more prevalent in the tumour (CAF-S1, CAF-S4 and CAF-S5) were
investigated by staining for CAF markers FAP, αSMA, PDPN, CD90
and FSP1 in a cohort of 163 patients that were part of a TMA. A
limitation of the study is the use of a TMA. We assessed 1mm
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cores of tissue from each patient and others have demonstrated
this method can successfully predict patient outcome post
surgical resection in lung adenocarcinoma [37]. Assessing the
distribution of each marker across different tissue classes revealed
differences between adenocarcinoma and squamous cell carci-
noma, notably the expression of PDPN being higher in squamous
cell carcinoma. The expression of PDPN has been linked to poor
prognosis in cancer, and is hypothesised to play roles in invasion,
epithelial to mesenchymal transition (EMT) and metastasis [38, 39].
PDPN positivity correlates with greater invasiveness in lung
adenocarcinomas [40] and functionally CAFs expressing PDPN
and FAP have previously been identified to suppress T cell

proliferation in a nitric oxide dependent manner in breast cancer
[41]. It would therefore be expected PDPN+ CAF subsets (CAF-S1
and CAF-S5) would be associated with poorer long-term survival,
and this was confirmed in our study.
Comparing the proportions of CAF subsets between NSCLC

subtypes, we observed a higher proportion of CAF-S1 and CAF-S5
in squamous cell carcinoma, and a higher proportion of CAF-S4 in
adenocarcinoma. This distribution is likely due to the expression of
PDPN in CAF-S1 and CAF-S5 as previously discussed. This finding is
supported by studies in other cancers, as CAF subsets in breast
cancer have been shown to be dependent on histology
classification, with different tumour classes presenting enrichment
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with different CAF subsets [42]. Recent studies suggest that this
may be due to a reservoir of fibroblasts in healthy tissues, which
are capable of activation to various phenotypes dependent on
disease state [43].
Other groups have investigated FAP and αSMA in NSCLC, often

using single makers in IHC, and have found various prognostic
features. This includes FAP+ CAFs to be an indicator of positive
outcome in squamous cell carcinoma [44] and the same group
also suggested in a subsequent study that this was due to high
infiltration of CD8 and CD3 positive T cells in the tumours [45].
Conversely another study identified FAP+ CAFs and associated
them with poor prognosis in adenocarcinoma, particularly in the
presence of low CD8 T cell infiltration in the stroma [46]. In this
study we found that using a single marker may not determine
prognostic significance, but rather there are CAF phenotypes
which can be identified using a combination of markers. This
approach was also used by another group which utilised multiplex
staining of FAP, αSMA, PDGFRα and PDGFRβ by immunofluores-
cence, identifying CAFs of each combination of the markers used
[47]. Although a direct comparison cannot be made as the same
makers were not used, here a poor prognosis subset (CAF7)
broadly aligns with our CAF-S1 subset and favourable prognosis
(CAF13) broadly with CAF-S4 subset (Supplementary Fig. S8). A
recent study identified CAF subsets in NSCLC by utilising
multiplexed imaging mass cytometry and included the key
markers we used [48]. Although their analysis does not allow
direct comparison to our study to identify CAF-S1 or CAF-S5, they
did identify a favourable outcome with SMA CAFs which align with
our CAF-S4. These studies further highlight the novelty of the CAF-
S5 subset identified here.
To further characterise differences between CAF-S1 and CAF-S5

we analysed two single cell RNA sequencing datasets for NSCLC,
published by Lambrechts et al. [22] and Wu et al. [34]. We
primarily focussed on these subsets due to their association with
poor prognosis. Subsets of fibroblasts defined as CAF-S1 or CAF-S5
by our established criteria were compared. As the defining
difference between the two subsets is the expression of αSMA, the
main predicted difference was that CAF-S5 would not be a
contractile phenotype. This was further confirmed by the finding
that genes such as TAGLN and TPM2 were downregulated in CAF-
S5 in early NSCLC, as they would contribute to contractility also,
and that contractile pathways were suppressed (Fig. S5). The
upregulation of complement genes C3 and C7 suggests that CAF-
S5 are an inflammatory subset. The upregulation of C3 in
immunomodulatory stromal cells has previously been identified
in mouse and human studies, showing that these cells are capable
of influencing the tumour immune response [49]. Previously
described immunomodulatory subsets have demonstrated high
levels of chemokines such as CXCL12, further indicating their role
in the influence of the immune system and inflammatory response
[50]. In late NSCLC downregulation of contractile genes such as
TAGLN were also observed, but others such as MMP1, MMP9 and
SPP1 were found to be upregulated, which have functions in
matrix remodelling and invasion and are linked to poor prognosis
in lung cancer [51, 52]. This suggested that the CAF-S5 subset
could promote disease proliferation, metastasis and resistance to
therapy, which would contribute to worse overall survival.
These findings in NSCLC suggest an alignment with the CAF

breakdown previously reported in pancreatic cancer of iCAF and
myCAF, where iCAF represent an inflammatory subset and myCAF
a myofibroblastic one [17]. In pancreatic cancer myCAF were
found in close proximity to cancer cells compared to the more
distally located iCAF. We find in NSCLC, CAF-S5 were also located
more distally from tumour cells, suggesting they are more likely
induced by secreted factors rather than requiring cell contact for
interactions. This is supported by a separate study in NSCLC where
CAFs expressing FAP and αSMA were also shown to be located
closer to tumour nests than those only FAP+ [23]. Therefore, our

work supports these findings in NSCLC, but also we demonstrate
both subsets contribute to poor survival outcome.
To further understand the influence of the CAF-S5 subset on

survival in other cancers we analysed the TCGA dataset for multiple
solid organ cancers (liver, pancreatic, breast and renal clear cell). For
these cancers investigated, this showed decreased survival prob-
ability when CAF-S5 was dominant, compared to all other patients
in the cohort. It has previously been shown that patients expressing
the CAF-S1 phenotype in breast cancer have increased survival
probability compared to other groups [20]. Our analysis suggests
the presence and prevalence of the CAF-S5 subset in breast cancer
warrants further investigation. By not considering the CAF-S5 subset
in patients, and only considering the CAF-S1, patient outcome may
be incorrectly predicted. This highlights the importance of the novel
CAF-S5 subset as a predictor of poor outcome.
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