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BACKGROUND: Other than for breast cancer, endocrine therapy has not been highly effective for gynecologic cancers. Endocrine
therapy resistance in estrogen receptor positive gynecologic cancers is still poorly understood. In this retrospective study, we
examined the estrogen receptor (ER) signaling pathway activities of breast, ovarian, endometrial, and cervical cancers to identify
those that may predict endocrine therapy responsiveness.
METHODS: Clinical and genomic data of women with breast and gynecological cancers were downloaded from cBioPortal for
Cancer Genomics. Estrogen receptor alpha (ESR1) expression level and sample-level pathway enrichment scores (EERES) were
calculated to classify patients into four groups (low/high ESR1 and low/high EERES). Correlation between ESR1/EERES score and
survival was further validated with RNAseq data from low-grade serous ovarian cancer. Pathway analyses were performed among
different ESR1/EERES groups to identify genes that correlate with endocrine resistance, which are validated using Cancer Cell Line
Encyclopedia gene expression and Genomics of Drug Sensitivity in Cancer data.
RESULTS:We identified a novel combined prognostic value of ESR1 expression and the corresponding estrogen response signaling
(EERES score) for breast cancer. The combined prognostic value (ESR1/EERES) may be applicable to other gynecologic cancers. More
importantly, we discovered that ER signaling can cross-regulate MEK pathway activation. We identified downstream genes in the
MEK pathway (EPHA2, INAVA, MALL, MPZL2, PCDH1, and TNFRSF21) that are potential endocrine therapy response biomarkers.
CONCLUSION: This study demonstrated that targeting both the ER and the ER signaling activity related MEK pathway may aid the
development of endocrine therapy strategies for personalized medicine.

British Journal of Cancer; https://doi.org/10.1038/s41416-024-02668-w

INTRODUCTION
Estrogen and estrogen receptor (ER) signaling pathways are
involved in the development of female cancers [1–6]. Deregulated
ER expression and ER signaling can lead to uncontrolled cell
proliferation and cancer progression. During tumorigenesis,
normal ER signaling functions to support benign cell differentia-
tion and development are reprogrammed to support tumor cell
proliferation [7, 8]. Endocrine therapy targeting this signaling
pathway by blocking the activity of ERα has long been an option
for the treatment of female cancers [9, 10]. The three main
categories of hormonal therapeutics are selective ER modulators,
aromatase inhibitors, and selective ER degraders. These ERα-
targeting pharmaceutical agents are effective in treating ERα-
positive breast cancer. Specifically, they can slow the growth of or
shrink breast tumors and reduce the risk of recurrence after
surgery [11]. Although gynecologic cancers have long been
recognized to be caused by abnormal estrogen pathway activity,
the effectiveness of endocrine therapy for gynecologic cancers
other than breast cancer is still controversial, and biomarkers for
precision treatment of them are needed [12].
In a retrospective study, hormonal maintenance therapy

resulted in a lower risk of progression in patients with stage II-IV

low-grade ovarian serous carcinoma than in patients who
underwent observation only but did not result in a significant
difference in overall survival (OS) [13]. Letrozole has been
suggested to be valuable as a maintenance treatment of high-
grade serous ovarian cancer, especially in patients with chemore-
sistance or residual disease [14]. Another retrospective study
indicates that endocrine therapy could be a practical strategy to
postpone subsequent chemotherapy for relapsed high-grade
serous ovarian cancer [15]. From a phase II study of anastrozole
in patients with estrogen receptor-positive recurrent/metastatic
low-grade ovarian cancers and serous borderline ovarian tumors,
partial responses were only observed in 14% patients (5/36) [16].
From systematic reviews and meta-analyses of over 50 phase II
trials of endocrine therapies in epithelial ovarian cancer, a similar
response rate between 10 to 15% was determined [12, 17].
Tamoxifen alone or in combination with progestin was suggested
to be the preferred choice when selecting second-line hormonal
treatment of endometrial cancer after first-line treatment with
progestin [18]. Nevertheless, only about 10% of ovarian, endo-
metrial, and cervical cancers respond to hormonal therapy
[19–22]. Currently, hormone therapy is not routinely recom-
mended in the adjuvant setting for endometrial cancer but could
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be an alternative for selected patients with specific molecular
profiles [23]. Furthermore, tamoxifen is reported to stimulate the
growth of endometrial cancer cell lines [24]. As a standard of
practice, selection of patients for hormone therapy is based on ER/
progesterone receptor status according to immunostaining.
However, high ER expression may not always correlate with high
ER signaling activity. Therefore, looking at both ER expression and
ER signaling activity is important for improving the selection of
women who would benefit most from hormone therapy.
Endocrine therapy resistance in estrogen receptor positive

gynecologic cancers is still poorly understood. In this retrospective
study, we analyzed data in The Cancer Genome Atlas (TCGA) Pan-
Cancer Atlas for ER expression and downstream signaling activity
in breast, ovarian, endometrial, and cervical cancer patients to
elucidate the differences in ER cell signaling and survival among
these four cancers [25, 26]. Such analyses could provide insight
into endocrine resistance for therapeutic development. Research-
ers found ER signaling activity to be a prognostic factor for
endocrine therapy for breast cancer [27]. We hypothesized that ER
signaling activity would differ in other gynecologic cancers and
that alternative signaling pathways are activated to bypass ER
signaling in these cancer cells. Therefore, we analyzed ER and
other oncogenic signaling pathways to understand the differential
molecular activity among these four cancer types to discover
potential therapeutic targets to overcome endocrine therapy
resistance.

RESULTS
ER signaling is prognostic for gynecologic cancers
We downloaded gene expression data from the TCGA Pan-Cancer
Atlas data sets for breast invasive carcinoma (BRCA; n= 1095),
ovarian serous cystadenocarcinoma (OV; n= 378), uterine corpus
endometrial carcinoma (UCEC; n= 557), and cervical squamous
cell carcinoma (CESC; n= 304) from the cBioPortal for Cancer
Genomics (https://cbioportal.org). We determined the early
estrogen response enrichment scores (EERESs) for each sample
via gene set variation analysis (GSVA) [28] using the HALLMAR-
K_ESTROGEN_RESPONSE_EARLY gene set from the Molecular
Signatures Database (MSigDB). This is a set of 200 genes
upregulated in breast cancer cells after estrogen stimulation
[29–31]. The EERES for each sample of each cancer type is shown
in Supplementary Table S1.
To determine whether ER signaling activity is a prognostic

marker or a biomarker for endocrine therapy response, we first
classified samples of breast, ovarian, endometrial, and cervical
cancers in the TCGA data sets as having low or high ER signaling
activity by determining the EERESs for each sample as described in
the “Methods” section. The correlations of low or high ER activities
with disease-free survival (DFS) and disease-specific survival (DSS)
were presented in Fig. 1a, b. The EERES thresholds for classifying
BRCA, OV, UCEC, and CESC as low or high ER activities were
–0.0512, –0.184, 0.157, and –0.228, respectively. The DFS and DSS
times in the BRCA patients (DFS: hazard ratio [HR], 1.714 [95% CI,
1.170–2.512]; DSS: HR, 1.948 [95% CI, 1.251–3.020]) and UCEC
patients (DFS: HR, 1.922 [95% CI, 1.238–2.983]; DSS: HR, 3.774 [95%
CI, 2.103–6.774]) with high EERESs were markedly longer than
those in the low EERES group. On the other hand, the DFS and DSS
times in the OV patients (DFS: HR, 0.7853 [95% CI, 0.5878–1.049];
DSS: HR, 0.6058 [95% CI, 0.4458–0.8233]) and CESC patients (DFS:
HR, 0.2879 [95% CI, 0.1392–0.5954]; DSS: HR, 0.2064 [95% CI,
0.09834–0.4333]) with higher EERESs were considerably shorter
than those in the lower EERES group. Similarly, we examined ER
signaling activity in these four female cancer samples using the
HALLMARK_ESTROGEN_RESPONSE_LATE gene set via GSVA to
generate late estrogen response enrichment scores for samples of
the four cancer types to classify these samples either high or low
enrichment scores, but we found that the scores were less

prognostic then EERESs (data not shown). Therefore, we
determined that the HALLMARK_ESTROGEN_RESPONSE_EARLY
pathway is a better predictive biomarker than the HALLMARK_ES-
TROGEN_RESPONSE_LATE pathway regarding survival of these
patients with female cancers.
Next, we explored the correlation between ESR gene expression

and EERES for the four female cancers (Supplementary Fig S1). The
correlation of ESR1 expression with EERES was moderate to high in
breast (r= 0.641, P= 7.038e-128) and endometrial (r= 0.413,
P= 2.142e-24) cancer patients but low in ovarian (r= 0.226,
P= 8.776e-6) and cervical (r= 0.264, P= 3.182e-6) cancer patients.
This demonstrated that in ovarian and cervical cancer patients,
ERα expression may not activate the known early estrogen-
responsive genes expressed in ER-positive breast cancer patients.

Correlation between ESR1 gene expression and EERES is
important for the survival of patients given hormone therapy
for breast cancer
To show for the first time that the correlation between ESR1
expression and EERES is important for endocrine therapy
responsiveness, we analyzed the survival of ER-positive/HER2-
negative breast cancer patients (n= 436) using tumor sample data
from the TCGA Pan-Cancer Atlas and developed an algorithm to
select patients with better survival by selecting patients based on
both their ESR1 expression and EERES. The algorithm was then
applied to other gynecologic cancers. This algorithm was further
validated by using an independent tumor sample data of breast
cancer patients given hormone therapy (n= 1174) from the
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC). The EERESs for all METABRIC patient tumor samples
(n= 1904) are shown in Supplementary Table S2. We placed the
breast cancer patient tumor samples in four groups according to
their ESR1 expression (up to or higher than quantile 0.65: 199.3
transcripts per million [TPM] for the TCGA Pan-Cancer Atlas
patients and 11.3 normalized units for the METABRIC patients) and
EERES (up to or higher than quantile 0.65: 0.219 for the TCGA Pan-
Cancer Atlas patients and 0.185 for the METABRIC patients). The
threshold for the ESR1 and EERES in TCGA dataset were
determined with stepwise experiments. By examining the
significance of the PFS duration between groups ESR1_low_EER-
ES_low and ESR1_high_EERES_high with increasing threshold
(quantile 0.1–0.9, 0.05 per step), the quantile 0.65 was the most
significant with p-value= 0.031572. The quantile 0.65 was then
applied on METABRIC dataset for validation. The correlation of
ESR1 expression and EERES of the hormonal therapy-treated
samples from the TCGA Pan-Cancer Atlas and METABRIC patients
are shown in Fig. 2a, f, respectively.
We also analyzed the survival of the patients in the four groups

described above using Kaplan-Meier curves and log-rank test
statistics, the results of which are shown in Fig. 2b–e (progression-
free survival, OS, DFS, and DSS, respectively) for the TCGA data
and Fig. 2g–i (relapse-free survival) based on ESR1 expression and
EERES for the METABRIC data. The progression-free survival, DFS,
and DSS times in the high ESR1 expression/high EERES group was
the longest of the four groups in the TCGA-BRCA data set. In the
METABRIC patients, the median relapse-free survival time for the
high ESR1 expression/high EERES patients was the longest (298.88
months), and the low ESR1 expression/low EERES patients had
shorter survival than did the low ESR1 expression/high EERES and
high ESR1 expression/high EERES groups. These results demon-
strated that the correlation of ESR1 expression with EERES is
important for the responsiveness of breast cancer to endocrine
therapy.
To evaluate the association between other prognostic factors

(i.e., age and stage at diagnosis, and histotype) with the ESR1
expression/EERES groups, contingency chi-square tests were done
(Supplemental Table S3). The distribution of the clinical stages at
diagnosis was not significantly different between different ESR1/
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Fig. 1 ER signaling is prognostic for gynecologic cancers. Samples of the breast, ovarian, endometrial, and cervical cancers from TCGA were
designated as having a low EERES (blue curve, at or below threshold) or high EERES (red curve, greater than threshold) as described in the
method section. Kaplan-Meier curves with log-rank HRs (Hazard Ratio), 95% CIs, and P values for (a) DFS and (b) DSS in the two groups over
time are shown.
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EERES groups. In contrast, the distribution of age at diagnosis was
significantly different between different ESR1/EERES groups (p
value= 1.47e–6). Notably, there was a higher percentage of
patients in the group of the age 61–80 in the groups of
ESR1_high_EERES_low (44.3%) and ESR1_high_EERES_high
(61.4%) comparing with the groups of ESR1_low_EERES_high
(26.5%) and ESR1_low_EERES_low (30.0%). The distribution of
histotypes between ESR1 expression/EERES groups was also
significantly different (p value= 0.034). Particularly, the percen-
tage of patients with infiltrating lobular carcinoma was lower in
groups ESR1_high_EERES_low (13.3%) and ESR1_high_EERE-
S_high (11.4%) when comparing with the groups ESR1_low_EER-
ES_high (24.1%) and ESR1_low_EERES_low (31.0%).
To further validate the algorithm described above (Fig. 2) to

cluster the tumor patient samples based on ESR1 expression and
EERES to select hormonal therapy-treated patients with better
responsiveness, we examined 12 patients from MD Anderson with
low-grade serous ovarian cancer (LGSOC), who were treated with
standard chemotherapy followed by maintenance hormonal
therapy [32]. We examined the gene expression profiles using
RNA sequencing (RNA-seq) data for these 12 tumors for ER
signaling activity analysis by GSVA. Patients were classified
according to ESR1 expression and EERES into four subgroups as
described above. The overall survival time, ESR1 TPMs, and EERESs
for the 12 tumor samples are shown in Supplementary Table S4.
The results of the correlation of each group and survival are shown
in Fig. 3. We found that the high ESR1 expression/low EERES group
had significantly shorter OS than did the high ESR1 expression/
high EERES group (P= 0.049) (Fig. 3a, b). However, classification of
patients based on the expression of ESR1 alone did not
demonstrate any difference in survival (Fig. 3c). On the other
hand, classification of patients based on EERES alone were able to
predict the long-term survival (>5 years) of patients with low-
grade serous ovarian cancer (Fig. 3d) with high specificity and
sensitivity (the receiver operating curve [ROC], 0.9143; P= 0.0185)

(Fig. 3e). However, because of the limited number of patient
samples, the predictive value of EERES should be further validated
with a large cohort. A phase 3 trial of endocrine therapy for
primary low-grade serous cancer of the ovary and peritoneum in a
cohort of 450 patients is ongoing (NCT04095364). This trial will
provide samples for validating our algorithm in predicting
endocrine therapy responsiveness of LGSOC soon.

ER signaling as a consequence of the development of female
cancers
Although we have shown that the correlation between ESR1
expression and EERES is important for endocrine therapy
responsiveness of breast cancer, given their correlation shown in
Fig. 1, the reason for the unresponsiveness of other gynecologic
cancers to endocrine therapy is unclear. We sought to identify the
reason for this by trying to understand the role of ER signaling
activity in the development of gynecologic cancers via examina-
tion of the difference of the ER signaling pathway activation
between normal and tumor tissues. First, we compared the fold
change in expression of the ER-related receptors ESR1, ESR2,
ESRRA, ESRRB, ESRRG, and GPER1 in the four female cancers
(Fig. 4a). ESR1 was upregulated in breast, ovarian, and endometrial
tumors but downregulated in cervical tumors. ESR2 was down-
regulated in breast, ovarian, and cervical tumors only. In addition,
ESRRA was downregulated in breast tumors but upregulated in the
other tumors, and ESRRB and ESRRG were upregulated in breast,
ovarian, and endometrial tumors. GPER1 was downregulated in all
four female cancers. The role of these receptors in activation of ER
signaling should be investigated further.
To examine the dependence of gynecologic oncogenesis on the

ER signaling pathway, we performed gene set enrichment analysis
(GSEA) of the normal tissue and tumors. The results for the
HALLMARK_ESTROGEN_RESPONSE_EARLY pathway are shown in
Fig. 4b, and the lead genes in HALLMARK_ESTROGEN_RESPON-
SE_EARLY pathway for each cancer type are shown in Fig. 4c.
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Fig. 2 Correlation between ESR1 gene expression and EERES is important for the survival of patients given hormone therapy for breast
cancer. Patients with ER-positive/HER2-negative breast cancer in the TCGA Pan-Cancer Atlas and those given hormonal therapy in the
METABRIC were placed in four groups based on low or high ESR1 expression (quantile, ≤0.65 or >0.65) and low or high EERES (quantile, ≤0.65
or >0.65). Scatter plots and cutoff lines (yellow broken lines) of ESR1 and EERES for the (a) TCGA and (f) METABRIC samples are shown.
Progression-free survival (b), OS (c), DFS (d), and DSS (e) times of the TCGA patients for the 4 groups. Relapse-free survival times of the
METABRIC patients based on (g) ESR1 expression and (h) EERES (quantile, ≤0.65 or >0.65). i The relapse-free survival times of the four patient
groups in METABRIC.

C.W. Ng et al.

4

British Journal of Cancer



Breast and endometrial cancers were enriched in the HALLMAR-
K_ESTROGEN_RESPONSE_EARLY pathway, but ovarian and cervi-
cal cancers were not. However, genes related to the
HALLMARK_ESTROGEN_RESPONSE_LATE pathway were enriched
in all cancer types (Fig. 4d). This suggests that the HALLMARK_ES-
TROGEN_RESPONSE_EARLY gene expression patterns in ovarian
and cervical tumors were like those in their respective normal
tissues. Also, enrichment of the HALLMARK_ESTROGEN_RESPON-
SE_LATE pathway in all four female cancers suggests that the
HALLMARK_ESTROGEN_RESPONSE_EARLY pathway was activated
in them, as well, as the former pathway follows the latter one.
However, the gene expression for the HALLMARK_ESTROGEN_RE-
SPONSE_EARLY pathway may have been interfered with by other
pathways.

MEK pathway activity is associated with ER signaling in
patients with the gynecologic cancers
We have shown that the ER expression of ovarian, endometrial,
and cervical cancers is correlated with EERES (Fig. 2), and the
cancers are dependent on the ER signaling pathway oncogenesis
(Fig. 4). This suggests that the gynecologic cancers should be
responding to hormonal therapy like breast cancer but not in
reality. We further investigated the insensitivity of gynecologic
cancers to hormonal therapy by analyzing MSigDB oncogenic
pathway enrichment using GSEA in the gynecologic tumor
samples with low and high EERESs as shown in Fig. 1a, b. This
demonstrated the cross-talks of other pathways enriched in ER
signaling–enriched samples for the four female cancers we tested.
The most notable results are that the MEK_UP.V1_DN pathway
was significantly enriched in breast tumors, whereas the
MEK_UP.V1_UP pathway was enriched in ovarian, endometrial,
and cervical tumors (Fig. 5a, b). Genes in MEK_UP.V1_DN pathway
are down-regulated when MEK is activated. However, several of
the genes in the MEK_UP.V1_DN pathway were up-regulated in

breast tumors. This means that the MEK pathway was down-
regulated in breast tumors with high EERESs but activated in
ovarian, endometrial, and cervical tumors together with ER
signaling. More interestingly, the top five most significantly
upregulated genes of the MEK_UP.V1_DN pathway in breast
tumors overlapped the significantly upregulated genes in breast
tumors shown in Fig. 4c (GREB1, TCC39A, ANXA9, MYB, and PGR).
This suggests that upregulation of ER signaling partly suppresses
MEK pathway activity (30/200 genes [15%] in the HALLMARK_ES-
TROGEN_RESPONSE_EARLY pathway overlap genes in the
MEK_UP.V1_DN pathway) but that MEK activation in tumors other
than breast tumors might interfere with the activation of the ER-
mediated HALLMARK_ESTROGEN_RESPONSE_EARLY pathway by
downregulating gene expression in the MEK_UP.V1_DN pathway,
thus affecting the EERES enrichment and reducing the correlation
of ESR1 expression with EERES.
To delineate the targets that are involved in the MEK pathway

activation and affect endocrine therapy sensitivity of gynecologic
cancers, we selected the top five most significantly differentially
expressed MEK_UP.V1_UP target genes in the ovarian, endome-
trial, and cervical tumors combined (NT5C2, CDC42BPB, MYOSA,
PRKCH, PCDH1, TNFRSF21, SCAMP4, MPZL2, TTC9, MALL, INAVA, and
EPHA2 [three genes overlapped in the three tumor types]) (Fig. 5c)
for further investigation. Using data from the Cancer Cell Line
Encyclopedia and Genomics of Drug Sensitivity in Cancer
databases [33, 34], we analyzed the correlation of the individual
expression of these genes in Cancer Cell Line Encyclopedia cell
lines with the sensitivity of these cell lines to treatment with
tamoxifen, fulvestrant, and trametinib. From the 12 selected
genes, we performed correlative analysis to identify genes with
expression that was significantly positively correlated with both
tamoxifen and fulvestrant sensitivity but significantly negatively
correlated with trametinib sensitivity. Six genes were identified
(MALL, TNFRSF21, EPHA2, PCDH1, MPZL2, and INAVA) (Fig. 5d, e).
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The Spearman r values of the correlations for the six genes for
fulvestrant ranged from 0.220 to 0.455, and the P values ranged
from 6.673e–09 to 4.236e–36. In comparison, the Spearman r
values of the correlations for the six genes for trametinib ranged
from -0.099 to -0.211, and the P values ranged from 9.475e–03 to
2.644e–08.
Given the expression of the six genes shown to be associated with

endocrine therapy resistance and MEK inhibitor sensitivity in cancer
cell lines (Fig. 5d), we further confirmed the expression fold changes
in the tumor samples with high EERES comparing to low EERES with
R package DESeq2 for breast, ovarian, endometrial, and cervical
cancers. It is because the expression level changes for the six genes
comparing samples with low and high EERES in breast cancer is not
known from the previous results and the results of ovarian,
endometrial, and cervical cancers can also be confirmed by DESeq2.
As shown in Fig. 6, five of the genes were significantly down-
regulated in breast cancer, whereas all six were significantly
upregulated in the other three cancers. The downregulation of the
five genes in breast cancer further suggests that these genes are the
determining factors for hormone therapy responsiveness. This means
that the expression of these MEK-associated genes was related to the
ER signaling pathway level in patients with gynecologic cancers and
may explain the limited responsiveness to endocrine therapy of
ovarian, endometrial, and cervical cancer. These genes may be used
together with ESR1 expression and EERES to select patients with high
ESR1 expression and EERES and low MEK activity for endocrine
therapy. This possibility warrants further investigation.

DISCUSSION
Intrinsic endocrine therapy resistance is a challenge in treating
gynecologic cancers other than breast cancer [35–37]. In this
study, we analyzed the genomic and clinical data on four female
cancers (BRCA, OV, UCEC, and CESC) from the TCGA Pan-Cancer
Atlas [26] to better understand the correlation of ER expression, ER
pathway activation, and alternative pathway activation in patients
with these cancers. The use of endocrine therapy for gynecologic
cancers is usually based on ER expression according to
immunohistochemistry. However, the intrinsic differences in these
cancers with different ER expression and ER signaling activity
levels remain unknown. This is the first study to decipher the
relationship among ESR1 expression, ER signaling activity, and
other activated pathways in ovarian, endometrial, and cervical
cancers. We found that the MEK pathway activation is correlated
with ER signaling pathway activation in ovarian, endometrial, and
cervical cancers.
The prognostic effects of the EERES score (high vs low EERESs)

in the breast /endometrium, versus ovary/cervix cohorts are found
to be opposite. This could be attributed to their differences in
pathological and molecular characteristics. For endometrial
cancer, ESR1 expression has been associated with lower grade
and stage of the cancer [38]. For ovarian cancer, ESR1 expression
has been found to be associated with the loss of chromosome 1p
and 16q [39]. Estrogen signaling has also been found to induce
genome instability in HPV-induced cervix and promote carcino-
genesis in ovarian cancer [40]. Loss of ESR1 expression has been

OVBRCA
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Fig. 5 MEK pathway activity is associated with ER signaling in patients with gynecologic cancers. The GSEA pathway enrichment analyses
were done using the 189 MSigDB oncogenic pathway gene sets with tumor samples with low and high EERESs identified as described above
(Fig. 1a, b). a The 10 most significantly enriched oncogenic pathways in gynecologic cancers. The MEK pathways (highlighted) among these
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0.5

0.0

-0.5

-1.0

-1.5

P adj:
6.93e–53

P adj:
4.14e–60

P adj:
1.70e–37 P adj:

8.13e–41

P adj:
1.61e–34

P adj:
6.12e–03

P adj:
5.46e–07

P adj:
4.08e–03

P adj:
1.98e–12

P adj:
4.23e–07

P adj:
2.65e–05

P adj:
1.06e–08

P adj:
3.57e–04

P adj:
1.01e–06

P adj:
3.91e–08

P adj:
6.66e–05

P adj:
5.85e–27

P adj:
3.24e–02

P adj:
2.82e–16

P adj:
2.33e–11

P adj:
1.37e–04

P adj:
7.21e–18

P adj:
2.04e–31

P adj:
1.38e–35

2.0

1.5

1.0

0.5

0.0

2.0

2.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.5

1.0

0.5

0.0

MALL

TNFRSF21

BRCA

UCEC CESC

OV

EPHA2

PCDH1

MPZL2

IN
AVA

MALL

TNFRSF21

EPHA2

PCDH1

MPZL2

IN
AVA

MALL

TNFRSF21

EPHA2

PCDH1

MPZL2

IN
AVA

MALL

TNFRSF21

EPHA2

PCDH1

MPZL2

IN
AVA

L
o

g
2F

o
ld

C
h

an
g

e
L

o
g

2F
o

ld
C

h
an

g
e

L
o

g
2F

o
ld

C
h

an
g

e
L

o
g

2F
o

ld
C

h
an

g
e

Fig. 6 MEK-associated genes are differentially expressed together with ER signaling activity in the female cancers confirmed by DESeq2.
The six genes associated with endocrine therapy resistance and MEK inhibitor sensitivity as shown in Fig. 5d were analyzed with their
expression level in the four female cancers to confirm their MEK activity between low and high EERES patient tumor samples using DESeq2 as
described in methods section. Bar charts of the DESeq2-determined logarithm2 fold change (±SE) (presented as log2FoldChange) and
Benjamini-Hochberg adjusted P values (padj) for the EPHA2, INAVA, MALL, MPZL2, PCDH1, and TNFRSF21 genes comparing the female cancer
patients with low and high EERES are shown above.
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shown to enhance cervical cancer invasion [41] but how HPV
(Human papillomavirus) might dysregulate the expression ER
signaling genes will need further investigation [42]. Further
studies such as genome stability, mutational profiling, and
pathway analysis could be done to identify the molecular
aberrancies in different groups. Nevertheless, the activation of
the ER signaling pathway and its association with other activated
pathways in different female cancers gives us insight about the
mechanisms of the carcinogenesis involving ER signaling pathway.
Another explanation for the opposite prognostic effect of EERES
scores is the difference in the standard of treatment for these
patients. For ER+ breast/endometrium, they were treated with
endocrine therapies. However, ovary/cervix cancer patients were
primarily treated with chemotherapy after surgical resection. It is
possible that ESR1/ER signaling could provide certain growth
advantages for some of the ovary/cervix cohorts, but endocrine
therapies are not commonly used [3].
As described herein, we first used the combination of ER

expression and ER signaling (EERES) to predict survival of breast
cancer. We chose breast cancer patients given endocrine therapy
to determine whether high ER expression and/or high EERES
predict improved survival. Improved survival is correlated with
improved response to endocrine therapy for breast cancer. Using
a small cohort of patients with low-grade serous ovarian
carcinoma, we can demonstrate that high EERES could also
predict better survival. We asked if any other signaling activity
could affect ER signaling in all four female cancers to identify any
major factors that contribute to endocrine therapy resistance. Our
analyses identified six genes associated with both ER and MEK
signaling pathways: five were downregulated in breast cancer,
whereas all six were upregulated in ovarian, endometrial, and
cervical cancers. More importantly, upregulation of these genes
correlated with poor sensitivity to endocrine therapy (tamoxifen
and fulvestrant) but good response to treatment with the MEK
inhibitor trametinib in cancer cell lines (n= 1019). Expression of
EPHA2 had the highest Spearman’s correlation (r= 0.455) with
fulvestrant resistance (Fig. 5d) and good correlation with
tamoxifen resistance (r= 0.339, P= 1.127e–19). This agrees with
results of a previous study demonstrating that overexpression of
EPHA2 can decrease estrogen dependence and tamoxifen
sensitivity of the breast cancer cell line MCF7 [43]. Dual targeting
of both EPHA2 and ER has also been proposed for restoring
tamoxifen sensitivity in ER/EPHA2-positive breast cancer [44].
Considering the dual activation of both MEK and ER signaling

pathways in gynecologic cancers, inhibition of the MEK pathway is
a potential approach to sensitizing gynecologic cancers to
endocrine therapy. Several MEK inhibitors are approved by the
U.S. Food and Drug Administration for treatment of cancers with
MEK pathway gene aberrancies, such as melanoma, thyroid
cancer, and non-small cell lung cancer. Combination therapies
involving MEK inhibitors for cancer treatment are also under
development [45–48]. However, as shown in our results, many
pathways in addition to the MEK pathway are also upregulated in
ovarian, endometrial, and cervical cancers with high ER signaling
activity (Fig. 5a), so targeting of more than two pathways may be
needed for cancer cell proliferation inhibition.
Previous studies have demonstrated the relationship between

estrogen or MEK pathway signaling and prognosis in endometrial
and ovarian cancers. The use of MEK inhibitor could reverse
antiestrogen resistance in ER+ high grade serous ovarian cancer
[49], and estrogen receptor pathway activity is associated with
outcome in endometrial cancer [50]. Nevertheless, this is the first
study to demonstrate a mechanism of how MEK pathway
activation is associated with endocrine therapy resistance of
gynecologic cancers by comparing with breast cancers to show the
differences in the signaling pathway activation between breast
cancers and the gynecologic cancers. The result is also supported
by analyzing the EERES signaling, MEK pathway activity and

endocrine therapy responses of cell lines used in the Cancer Cell
Line Encyclopedia (CCLE). Even though ESR1 expression might be
silenced in many gynecologic cancer cell lines used in the Cancer
Cell Line Encyclopedia (CCLE), correlation of genes involved in
EERES signaling (which can be dependent or independent of the
ESR1 expression) and MEK Pathway activity with endocrine
response supports our tissue analysis. In addition, we demon-
strated that combined ESR1 expression and EERES is a good
predictor for better survival for hormonal therapy-treated breast
cancer patients. This will be helpful in stratifying patients for future
endocrine therapy and analysis of response to it. These results
provide insight into the development of endocrine therapy and
other therapeutic development strategies for gynecologic cancers.
There are limitations regarding the analysis. One of the

limitations is the lack of patient risk factor and treatment data.
For example, certain risk factors could be associated with EERES.
Also, other treatments in the endocrine therapy-treated patients
could also complicated the patient outcomes. Another limitation
includes the uncertainty in the amount of cancer cells in the
tissue. As the estimation of EERES and ESR1 expression relies on
bulk tumor tissue, the proportion of cancer cell and stroma would
affect the accuracy of the estimation. With the advancement of
spatial transcriptomics, EERES estimation could be further
investigated to improve accuracy. For the correlation analysis of
anti-estrogen IC50s and gene expression in cell lines, there could
also be drawbacks. ESR1 expressions are commonly down-
regulated in cell line cultures due to mechanisms such as
epigenetic changes and mutations, especially in ovarian cancer
cell lines [51, 52]. The correlation analysis might not reflect the
situation in the gynecologic cancers.
In conclusion, increased ER expression and ER signaling are

both associated with improved hormone therapy responsiveness
of breast cancer. MEK pathway activity may co-activate with the ER
signaling activity in ovarian, endometrial, and cervical cancers,
leading to endocrine therapy resistance.

METHODS
Data sources
Patient sample data were obtained from the TCGA Pan-Cancer Atlas.
Patient survival, reverse-phase protein array, mutation, clinical, and copy
number alteration data were downloaded from cBioPortal for Cancer
Genomics. For analysis of the Pan-Cancer Atlas patient tumor RNA-seq
data, raw gene counts and TPM values were retrieved from the National
Cancer Institute Genomic Data Commons Data Portal (https://
portal.gdc.cancer.gov). Some data sets may have had missing data;
therefore, missing data was assumed to be random, which would not
affect the analysis. For analyses of normal tissue RNA-seq data, data
generated by the Developmental Genotype-Tissue Expression (dGTEx)
project were used. GTEx data release V8 raw gene counts and TPM values
for the RNA-seq data were downloaded from the GTEx portal (https://
gtexportal.org). Clinical and level 3 gene expression data for the BRCA data
set were obtained from cBioPortal. Cancer Cell Line Encyclopedia gene
expression TPM data and cell line metadata were downloaded from the
DepMap portal (https://depmap.org/portal/download/all/; Public 22Q4
data set). Cell line half-maximal inhibitory concentration data (GDSC2 data
set) were downloaded from the website of Genomics of Drug Sensitivity in
Cancer (https://www.cancerrxgene.org/downloads/bulk_download).

RNA-seq of low-grade ovarian tumor samples
All low-grade serous ovarian tumor samples were retrieved from the
archives of the Department of Pathology at MD Anderson. Samples were
collected, archived, and managed under research protocols approved by
the MD Anderson Institutional Review Board. Total RNA was extracted from
12 frozen samples using a QIAGEN RNeasy Mini Kit, and sequencing
libraries of the 12 samples were prepared using a KAPA Stranded RNA-Seq
Kit (Roche Diagnostics). RNA-seq was performed using an Illumina HiSeq
4000 system. The sequences were aligned to the human reference genome
GRCh38, and gene expression was estimated using CLC Genomics
Workbench (version 20; QIAGEN).
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Differential gene expression analysis and statistics
Differential gene expression was analyzed using DESeq2 in R [53]. The gene
count matrix and labels for two groups aimed for analysis were loaded into
DESeq2, and the statistical differences in gene expression between the two
groups of patient tumor samples were calculated using the Wald test in
DESeq2. The results were presented as log2(fold change) ± SE between the
two groups compared.

RNA expression–based pathway enrichment between-group
analysis and statistics
Pathway enrichment analysis was performed using the RNA expression
profiles of the two groups patient tumor samples via GSEA with the Python
package GSEApy [31, 54]. The raw gene count matrix of the tumor samples
was normalized to the trimmed mean of M-values, which is recommended
for GSEA analysis by the Broad Institute (https://
software.broadinstitute.org/cancer/software/gsea/wiki/index.php/
Using_RNA-seq_Datasets_with_GSEA; accessed on May 1, 2023). The
trimmed mean of M-values matrix and label data were then loaded into
GSEApy. Pathway enrichment analysis of the two groups was performed
using gene sets downloaded from MSigDB [30]. The significantly
differentially expressed genes between the two groups for the pathway
gene sets tested were identified by GSEApy and they were ranked and
plotted as heatmap. P value lower than 0.05 was considered statistically
significant for the pathways tested between the two groups of patient
tumor sample compared.

RNA expression–based single-sample pathway enrichment
analysis and statistics
The sample-level pathway enrichment score for the samples of each
cancer tumor data set was calculated using R package GSVA [28]. In a
pathway-centric manner, a new matrix of GSVA enrichment scores allows
for the evaluation of pathway enrichment for each sample as well as
application of standard analytical methods such as survival analysis,
clustering, functional enrichment, and cross-tissue pathway analysis. To
elaborate, a gene expression (log2[TPM+ 1]) matrix of the samples and the
gene list of the Hallmark gene signature from MSigDb (https://www.gsea-
msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H) for analysis
were loaded into the R package GSVA for enrichment score estimation
for each sample. The enrichment scores with gaussian distribution for the
tested pathways for each sample were then determined by GSVA.

Survival statistics
The survival data for the study patients with their labels were loaded into
the Python package kaplanmeier to plot Kaplan-Meier survival curves
unless otherwise specified. The statistics of survival time between two
groups of patients were determined by a log-rank test. The optimal
threshold for survival was determined by finding the threshold with the
lowest average log-rank P value for DFS and DSS for the two groups of
patients. P value lower than 0.05 was considered statistically significant for
the survival time of the two groups of patients compared.

Correlation statistics
The correlation between values such as gene expression, drug IC50, and
pathway enrichment score was analyzed using the Spearman correlation
test [55]. The correlation was determined using r values, and the
significance was determined according to P values which are smaller than
0.05.
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