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BACKGROUND: More than half of mesothelioma tumours show alterations in the tumour suppressor gene BAP1. BAP1-deficient
mesothelioma is shown to be sensitive to EZH2 inhibition in preclinical settings but only showed modest efficacy in clinical trial.
Adding a second inhibitor could potentially elevate EZH2i treatment efficacy while preventing acquired resistance at the same time.
METHODS: A focused drug synergy screen consisting of 20 drugs was performed by combining EZH2 inhibition with a panel of
anti-cancer compounds in mesothelioma cell lines. The compounds used are under preclinical investigation or already used in the
clinic. The synergistic potential of the combinations was assessed by using the Bliss model. To validate our findings, in vivo
xenograft experiments were performed.
RESULTS: Combining EZH2i with ATMi was found to have synergistic potential against BAP1-deficient mesothelioma in our drug
screen, which was validated in clonogenicity assays. Tumour growth inhibition potential was significantly increased in BAP1-
deficient xenografts. In addition, we observe lower ATM levels upon depletion of BAP1 and hypothesise that this might be
mediated by E2F1.
CONCLUSIONS: We demonstrated the efficacy of the combination of ATM and EZH2 inhibition against BAP1-deficient
mesothelioma in preclinical models, indicating the potential of this combination as a novel treatment modality using BAP1 as a
biomarker.

British Journal of Cancer; https://doi.org/10.1038/s41416-024-02661-3

BACKGROUND
Malignant mesothelioma (MM) is a rare and highly aggressive
tumour arising from the lining of the pleural and thoracic cavity. The
vast majority of MM cases can be linked to occupational asbestos
exposure [1, 2]. However, due to the long latency of MM and the
absence of clear symptoms during tumour onset, patients are
diagnosed late in disease development. Together with limited
treatment options, this leads to a poor median survival ranging
between 6 and 8 months [3]. Current treatments include
chemotherapy, cisplatin + pemetrexed, or the recently approved
immune checkpoint blockade (ICB) therapy, nivolumab + ipilimu-
mab [4, 5]. This novel first-line treatment with ICBs showed a
statistically significant improvement in the overall survival (OS) of
patients compared with those who received chemotherapy in the
CHECKMATE-743 open-label trial [6, 7]. However, the median OS was
only modestly improved compared to chemotherapy treatment.
Together with the worldwide incidence of mesothelioma predicted
to increase, more effective therapies are urgently needed [8, 9].
A better understanding of the molecular characteristics of MM

has identified several molecular targets, paving the way for
potential personalised therapies. However, to date there are no

routinely used biomarkers in place for MM patients who are likely
to respond to treatment. The genomic landscape of MM shows
frequent losses of tumour suppressor genes, including frequent
inactivation of the CDKN2AB (40–50% of patients) locus encoding
for p14ARF, p15INK4B, p16INK4A proteins and Neurofibromatosis Type
2 (NF2) gene (20–50% of patients) [10–12]. In addition, the BRCA1-
associated protein 1 (BAP1) gene has been found to be mutated,
deleted or epigenetically silenced in human mesothelioma
[13, 14]. A study by Hmeljak and colleagues showed that the
overall prevalence of BAP1 alterations in malignant mesothelioma
is 57%, of which 96% were inactivating mutations [15]. The BAP1
protein is a member of the Polycomb Repressive Deubiquitinase
complex (PR-DUB), where it acts as a ubiquitin carboxy-terminal
hydrolase (UCH) removing ubiquitin from histone H2ALys119
[16, 17]. This deubiquitinating function of PR-DUB opposes the
function of Polycomb Repressive Complexes (PRC). These two
well-known complexes, PRC1 and PRC2, modify chromatin via
deposition of the mainly repressive histone marks H2AK119Ub1
and H3K27me3, respectively, and are widely implicated in a
multitude of malignancies [18, 19]. Interestingly, we and others
have shown that BAP1-deficient MM have elevated PRC2-
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mediated gene repression and are vulnerable to pharmacological
inhibition of EZH2, the catalytic subunit of PRC2 [20, 21].
In preclinical settings, it has been established that BAP1-

deficient MM is sensitive to the inhibition of EZH2. However,
results from mesothelioma mouse models show that EZH2
inhibition alone may show limited efficacy [21, 22]. In addition,
the recently completed phase II multicentre trial in MM patients
with inactivated BAP1 showed only modest activity upon
treatment with the EZH2 inhibitor Tazemetostat, corroborating
the findings from the mouse model [23]. The modest effect of
EZH2 inhibitor as a single agent could suggest that complement-
ing this treatment with an additional inhibitor could potentially
improve therapy. As MM patient tumours show both spatial and
temporal intra-tumour heterogeneity, in addition to higher
efficacy another major benefit of the addition of a rational second
drug could be the decrease in chance of developing resistance to
therapy [24, 25]. Due to the important role of EZH2 in polycomb-
regulated expression, it is highly likely that alterations in its
expression will lead to novel dependencies. In fact, in other solid
tumour types several synthetic lethal partners of EZH2 have
previously been identified [26–29].
Prompted by the limited activity as a single agent in clinical trial

and the potential benefits of combination therapy over mono-
therapy, we set out to find rational drug combinations with EZH2
inhibition. To this end, we combined the EZH2 inhibitor GSK126
with a panel of 20 existing anti-cancer compounds, that are under
preclinical investigation or are already being used in the clinic,
targeting prominent oncogenic signalling pathways. Here, we
identified a highly synergistic potential for the combination of
ATM inhibition with EZH2 inhibition in BAP1-deficient MM.

MATERIALS AND METHODS
Cell culture
Early passage murine mesothelioma cell lines were previously derived in our
laboratory from autochthonous compound mesothelioma mouse models.
Cells were cultured in Dulbecco’s Modified Eagle Medium/Nutrient Mixture
F-12 (DMEM/F-12+Glutamax; Gibco), supplemented with 4 μg/ml Hydro-
cortisone (Sigma), 5 ng/ml murine EFG (Sigma), insulin-transferrin-selenium
solution (ITS; Gibco), 10% foetal calf serum (FCS; Capricorn) and 1% penicillin
and streptomycin (Gibco) [21, 30]. All mesothelioma cell lines derived from
humans were obtained from the American Type Culture Collection (ATCC).
The NCI-H226 cell line with re-expressed BAP1 was a kind gift from Prof. Sam
Janes. Cell lines were cultured in mammalian cell culture medium as
specified above. Uveal melanoma cell lines, also obtained from ATCC, were
cultured in either Roswell Park Memorial Institute 1640 (RPMI-1640; Gibco) or
Dulbecco’s Modified Eagle Medium (DMEM; Gibco) supplemented with 10%
or 20% FCS and 1% penicillin/streptomycin. All cell lines were maintained at
37 °C in a humidified atmosphere containing 5% carbon dioxide (CO2) and
were tested for mycoplasma contamination using MycoAlert Mycoplasma
detection kit (Lonza). The human cell lines were authenticated using short
tandem repeat STR DNA profiling.
BAP1 knock-down and knock-out cell lines were generated in our lab as

previously described in Pandey and Landman et al. [22] ATM Cas9-induced
knock-out cell lines were made using Alt-R CRISPR Guide RNAs (IDT DNA). A
final duplex concentration of 3 μM was created by mixing crRNA and
tracrRNA in equimolar concentrations. The RNP complex was formed by
mixing the duplex with an equimolar amount of Alt-R spCas9 enzyme.
Reverse transfection of the RNP complex was done using Lipofectamine
RNAiMax (Invitrogen, product #13778075).

Western blot analysis
Whole-cell pellets were lysed in RIPA buffer (50 mM Tris, pH 8.0, 50 mM
NaCl, 1.0% NP-40, 0.5% sodium deoxycholate, and 0.1% SDS) containing
protease inhibitor cocktail (Complete; Roche) and phosphate inhibitors
(10mM NaF final concentration, 1 mM Na3VO4 final concentration, 25 mM
β-Glycerophosphate final concentration, 1 mM PMSF, and 1mM Na4P2O7

final concentration), and 20mM DTT. Protein concentrations were
measured on a Nanodrop 2000c spectrophotometer (ThermoFisher) using
Protein Assay Dye reagent (Bio-rad). Protein was loaded in equal amounts
onto 4–12% Bis-Tris gels (NuPage-Novex, Invitrogen) and transferred onto

nitrocellulose membranes (0.2 μm; Whatman). Membranes were blocked in
5% BSA in phosphate-buffered saline (PBS) with 0.1% Tween-20 (PBST) for
1 h, incubated with primary antibodies in PBST 1% BSA overnight at 4 °C,
and incubated with secondary antibodies coupled to HRP for 45min in
PBST 1% BSA at room temperature. Amersham ECL detection reagent was
used for antibody detection (GE Healthcare). Imaging of the membranes
was done on a Bio-Rad ChemiDoc XRS+ . The following antibodies were
used for western blot analyses: BAP1 D7W70 (Cell Signalling, 13271S),
p-ATM (Ser1981) (BioLegend, 651201), Tri-Methyl-Histone H3 (Lys27)
C36B11 (Cell Signalling, 9733S), anti-Tubulin (Sigma, T9026).

Drug dose response
Cell seeding densities were determined prior to dose–response experi-
ments. Cells were counted using HyClone Trypan Blue (Cytiva) on an
automated cell counter (Bio-Rad, TC20), and live cells were seeded in
triplicate into 384-well plates in 50 μl of culture medium. Drug compounds,
DMSO-negative control, or phenylarsine oxide (PAO) positive control were
added after 24 h using the D300e digital dispenser (TECAN), and cells were
grown for 72 h. Subsequently, cells were incubated for 4 h with Resazurin
(Sigma), and plates were read using an Infinite M1000 pro plate reader
(TECAN) with the following parameters: fluorescence, 570-nm excitation,
600-nm emission, three flashes. Results were normalised against DMSO-
treated cells. Drug dose–response curves were generated with GraphPad
Prism v.9 using the Nonlinear regression curve fit function using
constraints for the bottom (= 0) and top (= 100) values.

Synergy screen and analysis
Prior to drug synergy assays optimal seeding density of cell lines was
derived from growth curves. Cells were counted with HyClone Trypan Blue
(Cytiva) using a TC20 automated cell counter (Bio-Rad) and live cells were
seeded into 384-well plates in 50 μl of culture medium.
Drug compounds (20 drugs in total), DMSO-negative control or PAO

positive control were added after 24 h using the D300e digital dispenser
(TECAN) in a 6 × 6 matrix, and cells were grown for 72 h. Drug
concentrations were determined beforehand by titrating to the most
sensitive cell line based on dose–response curves, exact concentration
ranges used per drug are available upon request. Subsequently, cells were
incubated for 4 h with Resazurin (Sigma), and plates were read using an
Infinite M1000 pro plate reader (TECAN) with the following parameters:
fluorescence, 570-nm excitation, 600-nm emission, three flashes. Results
were normalised against DMSO-treated cells. Plate read-outs were
analysed using the SynergyFinder v.2 web-based application as described
by Ianevski et al. [31, 32] 3D plots, inhibition matrices and synergy scores
were generated using default parameters for calculating BLISS Indepen-
dence scores [33]. Heatmaps with BLISS synergy scores were generated
using the geom_tile function from ggplot2 package in R.

Colony-formation assays
Again, prior to colony-formation assay, optimal seeding densities were
determined. The appropriate number of cells were seeded in 6-well culture
plates and allowed to adhere overnight. Drug compound(s) or DMSO were
added to cells the next day and refreshed every other day to retain stable
drug concentrations. Plates were fixed after 10 days using 4% Paraformal-
dehyde (Merck) and stained with 0.1% crystal violet solution (Sigma) in PBS
with 10% EtOH. Plates were digitised using the ChemiDoc XRS+ (Bio-Rad)
and analysed using the ImageJ plugin ‘ColonyArea’ as published by
Guzman et al. [34]. Representative images of three independent
experiments are shown.

Annexin V-FITC apoptotic assay
Cells were seeded in six-well culture plates and allowed to adhere
overnight. Drug compounds were added the next day and incubated for
48 h. Cells were collected by centrifugation, washed once with cell culture
media, centrifuged again, and resuspended in 500 μl of Annexin V binding
buffer (Abcam, ab14085). In total, 5 μl Annexin V-FITC and Propidium
Iodide were added and incubated in the dark for 5 min. Cells were then
quantified on the Flow Cytometer (AttuneNxT, ThermoFisher) and analysed
with FlowJo v10.

RNA sequencing, analysis and GSEA
Cells were lysed in RLT buffer (Qiagen). RNA extraction, library preparation,
sequencing and reads processing were performed by the Genomics Core
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Facility at the Netherlands Cancer Institute. Sequencing was performed
using the Illumina HiSeq 2500 platform according to the standard
procedures. RNA sequencing reads from mouse material were aligned to
the mm10 genome with hisat2, transcript quantification was performed
with HTSeq. Human samples were aligned to GRCh38 and read counts per
gene using gensum. Genes were annotated using Ensembl GRCh38.102.
Subsequent data analyses were performed using R and Bioconductor.
DESeq2 package was used for the analysis of differential gene expression
in RNA sequencing samples of both mouse and human experiments. Gene
set enrichment analysis (GSEA) was performed on the differentially
expressed genes using the H (hallmark) dataset from the MsigDB. The
metric for ranking genes was set to Signal2Noise, all other parameters
were as standard. Plots were generated using the Normalised Enrichment
Score and the nominal P value.

RNA isolation and RT-qPCR
Total RNA was extracted from cells using ReliaPrep (Promega). Reverse
transcription was performed with the Tetro cDNA synthesis kit (Meridian)
using Random Hexamers. qPCR was performed with Power SYBR green
master mix (Applied Biosystems) in triplicates using the QuantStudio 5
Real-Time PCR System (ThermoFisher). Data were normalised against
loading control. Primers used: BAP1-FW 5‘-CGATCCATTTGAACAGGAAGA-3’,
BAP1-REV 5‘-CTCGTGGAAGATTTCGGTGT-3’, ATM-FW 5’-CCGAGTGCAGTGA-
CAGTGAT-3’, ATM-REV 5’-TTGACGGCAGCAGATAAGCA-3’, E2F1-FW 5’-CATCAG-
TACCTGGCCGAGAG-3’, E2F1-REV 5’-CCCGGGGATTTCACACCTTT-3’, GAPDH-FW
5’-GTCTCCTCTGACTTCAACAGCG-3’, GAPDH-REV 5’-ACCACCCTGTTGCTGTAGC-
CAA-3’, HPRT-FW 5’-GACACTGGCAAAACAATGCAGAC-3’, HPRT-REV 5’-
TGGCTTATATCCAACACTTCGTGG-3’.

Animal studies
All animal procedures were performed in accordance with Dutch law and
the institutional committees (Animal experimental committee and Animal
welfare body) overseeing animal experiments at the Netherlands Cancer

Institute, Amsterdam. Mice were housed under standard feeding, light
cycles, and temperature with ad libitum access to food and water. All mice
were housed in disposable cages in the laboratory animal centre (LAC) of
the NKI, minimising the risk of cross-infection, improving ergonomics and
obviating the need for a robotics infrastructure for cage-washing. The mice
were kept under specific pathogen-free (SPF) conditions.
To establish xenografts, 5 × 106 human mesothelioma cells in 100 μl PBS

with 50% Matrigel (Corning) were subcutaneously implanted into the flank
of 6–10-week-old NOD-Scid IL2Rγnull (NSG) male and female mice
(Jackson Laboratory). Tumour growth was monitored by slide calliper 3
times a week (volume= length × width2/2). Tumours were allowed to
grow to ~220mm3 in size before randomisation into control and treatment
groups, mice with tumours smaller than 220mm3 2 months after injection
were excluded from the experiment. Randomisation was done by random
distribution of experimental groups across multiple cages. Blinding was
achieved as the experiment was performed by two independent persons
from the in-house Intervention Unit. The person measuring the tumour
volume and administering the drugs did not know the cage label and
received the mice from the person recording mice weight. Mice were
treated for 28 days and sacrificed after this time period. AZD1390 was
administered intraperitoneally every day at 15mg/kg, vehicle for this drug
was Cremophor:DMSO:Water (1:1:8). GSK126 was administered once daily
intraperitoneally at 30mg/kg, vehicle for this drug was Captisol 20%.
Mouse body weight was monitored every day. Mice were excluded from
analysis if they were found dead in cage during the experiment.

Quantification and statistical analysis
All statistical tests were performed using GraphPad Prism v.9 and R. Statistical
significance was denoted as *P< 0.05, **P < 0.01, ***P < 0.001, and
****P< 0.0001. The number of independent experiments, samples, and type
of statistical test are indicated in the figure legends. No statistical method was
used to predetermine the sample size. In vivo data were compared bymultiple
unpaired two-sided Student’s t test when data were normally distributed.

Table 1. List of drugs and their clinical status used in the focused drug synergy screen.

Drug name Target Clinical stage Indication Targeted pathway or
process

Palbociclib CDK4/6 Clinically
available

HR+HER2- breast cancer Cell cycle checkpoint

MK-1775 WEE-1 Phase II Trials running in multiple cancers G2 DNA damage

NSC663284 CDC25 Pre-clinical – Cell cycle checkpoint

THZ1 CDK7 Pre-clinical – Cell cycle checkpoint

VE-822 ATR Phase II Trials running in multiple cancers Genome integrity

AZD1390 ATM Phase I Brain cancer, solid tumours, non-small cell lung cancer Genome integrity

Sonidegib Hedgehog Clinically
available

Advanced Basal Cell Carcinoma Hedgehog signalling

PF477736 CHK1 Phase I Advanced solid tumours, terminated Genome integrity

JQ1 BRD4 Pre-clinical – Chromatin

Nutlin3a P53/MDM2 Phase I Haematologic neoplasia P53 pathway

Venetoclax BCL2 Clinically
available

Chronic Lymphocytic Leukaemia / Acute Myeloid
Leukaemia

Apoptosis

Verteporfin TEAD/YAP Clinically
available

Macular degeneration Hippo signalling

Crizotinib ALK/C-MET Clinically
available

Metastatic non-small cell lung cancer, anaplastic large cell
lymphoma, inflammatory myofibroblastic tumour

RTK signalling

Panobinostat HDAC Clinically
available

Multiple Myeloma Chromatin

BI-2536 PLK1,2,3 Phase II Metastatic carcinoma, uveal melanoma Mitosis

SGI-1027 DNMT Pre-clinical – Chromatin

TH287 MTH1 Pre-clinical – Cytoskeleton

Docetaxel Microtubule Clinically
available

Approved for a wide range of cancers Cytoskeleton

Cisplatin DNA synthesis Clinically
available

Approved for a wide range of cancers DNA replication
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RESULTS
A focused drug synergy screen reveals potential synergistic
partners with EZH2 inhibition
There is an extensive repertoire of inhibitors under preclinical
investigation and a wide range of compounds that have been or
are being used in clinical trials. To evaluate whether any of these
compounds harbour combinatorial potential, we performed a
focused drug synergy screen using EZH2 inhibition as an anchor. A
panel of 20 drugs targeting key oncogenic pathways was tested
(Table 1). We determined whether we could identify any
synergistic effects according to the Bliss independence model [33].
Previously in our lab, we derived cell lines from our

autochthonous mesothelioma mouse model with genetically
defined BNC (Bap1−/−, Nf2−/−, Cdkn2ab−/−) or NC (Nf2−/−,
Cdkn2ab−/−) background [21]. These mouse cell lines can serve

as an excellent drug discovery platform based on BAP1 status as
these cell lines have a similar genetic background. Determining
the dose–response curves for EZH2 inhibition with GSK126 in
these cell lines, shows a clear Bap1-status-specific shift in
sensitivity (Fig. 1a). Target inhibition of the EZH2 methyltransfer-
ase activity was assessed, showing reduced levels of H3K27me3
level by western blot in both Bap1-proficient as well as Bap1-
deficient cell lines (Fig. 1b). Using these mouse mesothelioma cell
lines, we performed a 72h viability screen using 20 drugs and the
EZH2 inhibitor GSK126 as anchor drug. Based on cell viability after
treatment with single compounds, combinations with EZH2i, or
controls a synergy score was calculated using SynergyFinder
[31, 32]. Drug combination effect was assessed using the Bliss
independence model. According to this model, if the effect of the
combination is greater than the additive effect of the single drugs
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Fig. 1 A small focused drug synergy screen reveals potential synergistic partners with EZH2 inhibition. a IC50 curves of Bap1-deficient
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the response can be classified as synergistic (Bliss Score >10),
antagonism is indicated if the combined effect is less than the
expected effect (Bliss Score <−10), any scores in between these
values are considered non-interactive. All the calculated scores
were incorporated in a heatmap and ordered by highest synergy
score (Fig. 1c).
To increase the clinical relevance and to validate the findings

from our mouse cell lines, we performed a similar screen in 8
human malignant mesothelioma cell lines (4 BAP1 mutant, 4 BAP1
wild-type) (Supplementary Fig. 1a). Results were again assessed
using the Bliss independence model and the scores were put in a
heatmap and ordered for highest synergy score and cell line
sensitivity (Fig. 1d). Interestingly, we see that the included ATM
inhibitor AZD1390, shows high synergistic scores in Bap1-deficient
mouse mesothelioma cell lines and in human cell lines almost
exclusively in BAP1-deficient cells (Fig. 1d, e). Remarkably, VE- 822,
an ATR inhibitor, showed potential synergy in Bap1-deficient but
not in Bap1-proficient mouse cells. Notably, it showed high
synergy scores in all human cell lines. However, we were not able
to validate these results in clonogenicity assays, which might be
due to the high efficacy of single VE-822 treatment potentially
indicating toxicity (Supplementary Fig. 1b). Furthermore, we also
observe synergistic potential for combinations with Palbociclib, an
CDK4/6 inhibitor, and Crizotinib, an inhibitor of c-MET and ALK.

As these were not as pronounced as observed with the ATM
inhibitor, AZD1390, and given the published evidence for the
potential involvement of BAP1 in double-strand break (DSB) repair
we focus on this combination [35, 36].

Combining EZH2 and ATM inhibition shows high synergistic
potential in BAP1-deficient mesothelioma
First, target inhibition of ATM activity was assessed, showing
reduced levels of p-ATM by western blot in both BAP1-proficient as
BAP1-deficient cell lines (Fig. 2a). We determined dose–response
curves of ATM inhibition for the tested human mesothelioma cell
lines showing that there is no clear difference in sensitivity between
Bap1-deficient and proficient cell lines for ATM inhibition only
(Fig. 2b). To further explore the potential synergy of the combined
inhibition of EZH2 and ATM, we zoomed in on the obtained synergy
scores. Heatmaps visualised by SynergyFinder web application tool
clearly show that for BAP1-deficient cell lines (NCI-H2731 and NCI-
H2804) low dosages of drug combination (lower-left corner of
heatmap) exert a big increase in inhibition as compared to single
drug dosage. Conversely, the results for BAP1-proficient cell lines
(NCI-H2810 and NCI-H2818) show very little effect even at high
concentrations (Fig. 2c and Supplementary Fig. 2a). Visualising the
synergistic effects of these compounds in 3D plots show a strong
image of synergy over a robust concentration range in BAP1-
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deficient cell lines only (Fig. 2d and Supplementary Fig. 2b). To ratify
our findings, similar experiments were done with another ATM
inhibitor, KU-60019. Experiments using this inhibitor also showed a
clear BAP1-status-specific synergistic effect (Supplementary
Fig. 3a–d).

The observed synergy of the combination can be validated in
in vitro models
To further corroborate on our finding of the possible synergistic
interaction between EZH2i with ATMi, we performed long-term
clonogenicity assays. First, we used our human mesothelioma cell
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line panel to validate the BAP1-status-specific efficacy of the drug
combination on cell survival. Cells were treated with GSK126
(7.25 μM), AZD1390 (1 μM), or the combination of both. In BAP1-
mutant cells the treatment with the combination showed high
efficacy in all four BAP1 negative lines, whereas single compound
treatment had no or limited effect on these cells. In contrast,
single or combinatorial compound treatment had no or little
effect on the BAP1-proficient cell lines (Fig. 3a). A similar
observation was made for mouse mesothelioma cell lines (Fig. 3b).
Experiments performed with the alternative ATM inhibitor KU-
60019 gave similar results showing a sensitivity exclusively in
BAP1-deficient cells (Supplementary Fig. 4a, b). Similarly, inter-
changing the EZH2 inhibitor GSK126 with Tazemetostat showed
efficacy against BAP1-deficient cells (Supplementary Fig. 4c). In
addition, apoptosis assays were performed 48 h after drug
treatment. In line with our expectations, we observed a significant
increase in apoptotic cells upon combination treatment in BAP1-
deficient cell lines but not in BAP1-proficient cell lines (Fig. 3c).
Target inhibition was validated by western blot (Fig. 3d). In order
to verify whether the efficacy of our combination can be truly
attributed to the absence or presence of BAP1 protein expression
we used the isogenic mesothelioma cell line NCI-H226. NCI-H226
cells are homozygously deleted for BAP1 and have a complete loss
of BAP1 expression, in its isogenic counterpart a wild-type BAP1
vector is stably expressed (Fig. 3e). Upon treatment with EZH2i
combined with a concentration range of ATM inhibitor we
observed a decrease in synergy score of the combination in the
BAP1 WT expressing variant confirming the BAP1-status-specific
sensitivity of the combination (Fig. 3f). In addition, we performed
clonogenicity assays in a BAP1-proficient cell line with an
inducible shBAP1 construct and observe that upon induction of
this construct these cells become more sensitive to the combina-
tion (Fig. 3g). Collectively, our data shows that the combinatorial
strategy of EZH2i and ATMi is a highly efficacious treatment
against BAP1-deficient mesothelioma in vitro.

The combination of ATM inhibition and EZH2 inhibition limits
tumour growth in BAP1-deficient human xenografts
To test the efficacy of our drug combination in vivo, we
transplanted the human mesothelioma cell lines NCI-H226 and
its isogenic counterpart NCI-H226+ BAP1 WT into NOD-Scid
IL2Rγnull mice. Tumours were allowed to form, and mice
(n= 5–7) bearing tumours of ~220 mm3 were treated for 28 days
with the EZH2 inhibitor, GSK126, and the ATM inhibitor,
AZD1390, or the combination of both drugs (Fig. 4a). Tumour
volume was monitored over time and tumour weights were
analysed at the end of the experiment. We observed that, in
contrast to single-agent treatment, the combination of GSK126
and AZD1390 resulted in significant growth inhibition of the
BAP1-deficient NCI-H226 xenografts compared to its BAP1-
proficient counterpart (Fig. 4b, c). In addition, tumour weight of
BAP1-deficient xenografts treated with the combination were
also lower as compared to single-agent-treated xenografts.

In BAP1-proficient xenografts no statistically significant differ-
ences were observed (Fig. 4d). These in vivo results thus show
the therapeutic potential of the proposed combination for BAP1-
deficient mesothelioma.

Acute BAP1 loss leads to a consequent reduction in ATM levels
Upon drug target validation with western blot in cells with an
inducible shBAP1 construct, we observed that upon induction of
the shRNA construct with doxycycline, the phospho-ATM levels
were reduced in comparison to cells with the control construct
(Fig. 5a). In addition, total ATM protein levels were also low in
these acute BAP1 depleted cells. In contrast we do not observe
consistently lower (p-)ATM levels in the BAP1-deficient tumour cell
lines (Fig. 5b and Supplementary Fig. 5a). To see whether this
correlated with mRNA levels we performed RT-qPCR on these
BAP1 knock-down cells and observe that in addition to protein
levels, mRNA levels of ATM are also lower (Fig. 5c). A similar effect
was seen in other cell lines with the same construct (Supplemen-
tary Fig. 5b). To validate our findings, we repeated these
experiments using a synthetic guide against BAP1 and observed
lower ATM mRNA levels upon BAP1 deletion (Fig. 5d and
Supplementary Fig. 5c). In contrast, knocking-out ATM with a
similar method had no effect on BAP1 mRNA levels suggesting
that while BAP1 is able to regulate ATM levels, the reverse is not
true (Fig. 5e and Supplementary Fig. 5d). Using the previously
described NCI-H226 cell line we observe that re-expressing BAP1
protein leads to subsequent upregulation of ATM expression,
further corroborating our findings in the shBAP1 cell lines (Fig. 5f).
To get more insight in the potential link between BAP1 loss and
reduction in ATM levels, we performed RNA sequencing on the
mesothelioma cell lines with an inducible shBAP1 construct and
compared these lines to cells transduced with an inducible
shRANDOM construct. shRNA constructs were induced with
doxycycline for 48 h and harvested for RNA sequencing (Fig. 5g).
Initial gene set enrichment analysis (GSEA) for Hallmark genesets
on our data shows enrichment for the DNA repair hallmark, in line
with published literature linking BAP1 to DNA damage pathways
(Fig. 5h and Supplementary Fig. 5e). In addition, we find gene set
enrichment for both the G2M checkpoint hallmark as well as for
E2F target hallmark gene set. Further, we analysed the genes
(n= 15) that are possibly involved in this process and are linked to
transcriptional regulation of ATM. We filtered this gene list from
our RNA sequencing dataset. Only genes were considered that
have an adjusted P value < 0.05 and a Log2FoldChange of > |0.5 | .
Surprisingly, only E2F1 and CCND1 are significantly differentially
expressed in both our cell lines upon knock-down of BAP1 (Fig. 5i
and Supplementary Fig. 5f). Validation of the change in expression
of these genes by RT-qPCR showed a significant upregulation of
E2F1 expression only, additionally, western blots show a similar
trend for E2F1 levels (Fig. 5j and Supplementary Fig. 5g). E2F1 has
known links to both ATM and BAP1 [37–39]. These data suggest
that there might be indirect regulation of ATM expression by BAP1
via E2F1.

Fig. 3 Observed synergy of the combination can be validated in in vitro models. a Colony-formation assays and quantifications showing
sensitivity of BAP1-deficient human mesothelioma cell lines to combination treatment with 1 μM AZD1390 (ATMi) and 7.25 μM GSK126 (EZH2i)
and insensitivity of BAP1-proficient cell lines; deficient cell lines are indicated in green, proficient cell lines in red, representative data shown
from three independent experiments. Quantification data are mean ± SEM, n= 3 independent experiments. b Likewise for mouse
mesothelioma cell lines. c Apoptosis assays using Annexin V-FITC-PI staining shows increased amounts of apoptotic cells in BAP1-mutant cell
lines upon combination treatment. Conversely, this is not seen for BAP1 wild-type cell lines; 3 μM AZD1390, 6.25 μM GSK126, data shown is
mean ± SEM, n= 3 independent experiments. d Western blots showing target inhibition for single and combination treatment after 48 h.
e Western blot showing successful re-expression of BAP1 protein in NCI-H226 cells. As control NCI-H2810, a known BAP1 wild-type line, was
used. f 3D plots generated by the SynergyFinder tool, showing synergy scores of BAP1-deficient NCI-H226 and its BAP1-proficient counterpart
for the combination treatments with GSK126 and AZD1390. The Bliss independence score (δ) is indicated on the y axis and drug
concentrations on x and z axis. g Clonogenicity assay showing the increased sensitivity to the combination treatment with 1 μM AZD1390
(ATMi) and 7.25 μM GSK126 (EZH2i) upon depletion of BAP1 via inducible shBAP1 construct. Representative data shown from three
independent experiments.
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DISCUSSION
Treatment options for malignant mesothelioma are limited and
inevitably all unresected or recurrent patients die of this disease.
Over the past years multiple studies and clinical trials have been
executed, with the recently approved immune checkpoint
blockade therapy as the most successful one [6, 24, 40]. However,
there is still a big fraction of patients that do not respond to this
treatment. Where other cancers largely benefit from precision
targeting this field is not widely explored in mesothelioma [41].
Adding to the difficulty of developing novel treatments is that the
most common alterations in mesothelioma are the inactivation of
tumour suppressor genes [42, 43]. In this study, by performing
combination drug screens we exploit BAP1 as a potential
stratification biomarker for a highly synergistic combination
targeting ATM and EZH2 simultaneously.
BAP1 is one of the most frequently altered genes in mesothe-

lioma patients. Our findings demonstrate that these BAP1 altera-
tions can serve as an interesting target to base novel treatment
modalities on. Previously it has been shown that cells deficient for
BAP1 are sensitive to EZH2 inhibition [20]. However, recently
published clinical trial data show that the efficacy of EZH2 inhibition
as a single agent is very limited [23]. Besides the limited observed
efficacy, tumours are also well-known to acquire resistance overtime
to monotherapies paving the way for combination strategies
[44, 45]. Studies in other malignancies adding a second compound
on top of EZH2 inhibition show that inhibiting EZH2 can lead to
novel sensitivities [27–29, 46–48]. Therefore, using EZH2 inhibition
as an anchor and complementing it with a second inhibitor could
lead to improved treatment strategies.
ATM plays a major role in normal cells protecting the genome

against DNA damage by responding to DNA double-strand breaks
and other lesions minimising mutations risks potentially leading to
cancerous cells. In cancerous cells the same function of ATM might
favour tumour growth and cancer cell survival. Therefore, in recent
years multiple specific inhibitors have been developed to target
ATM of which some are currently in Phase I clinical trials. One such

compound is AZD1390 that has been tested preclinically in
combination with Olaparib against glioblastoma [49]. Our
extensive testing in preclinical models of BAP1-deficient mesothe-
lioma show that inhibiting ATM in combination with EZH2 is
highly synergistic, showing the potential therapeutic application
of this combination. In addition, our clonogenicity assays
demonstrate that lower drug dosages are needed in combination
to limit cell proliferation compared to single-agent treatment,
likely limiting toxicity risks for patients. Strengthening our
observations is a previous publication showing synthetic lethality
of this combination in BRCA1-deficient breast cancer [26].
Besides the extensively described combination of EZH2

inhibitor with ATM inhibitors we also observed other potentially
synergistic hits that are worthy of further investigation. For
example, verteporfin, an inhibitor of YAP/TAZ-TEAD, showed
synergy in both our Bap1-deficient and Bap1-proficient mouse
cell lines. This seems logical as these cell lines are derived from
mice that are Nf2 negative and NF2 mutations have been shown
to promote sensitivity to inhibition of YAP [50]. It will be
interesting to further investigate this combination in the context
of NF2 mutations. Another compound showing high synergy
scores was Nutlin3a which inhibits the interaction between p53/
MDM2. Disruption of this interaction leads to the release of p53
and transcription of its target genes engaging in remaining DNA
integrity. It is therefore not surprising that we see efficacy of this
compound in our mouse cell lines that are p53 wild- type [51]. As
the TP53 gene is mutated in only 8–19% of mesothelioma patients
it will be interesting to further investigate this combination in
TP53 wild-type tumours [52]. Further, we observe some incon-
sistencies in synergy scores between mouse and human cell lines.
These variations can be explained by the fact that our mouse
mesothelioma cell lines are genetically similar except for their
Bap1 status whereas the human tumour-derived cell lines have co-
mutations which might affect the efficacy of the combinations.
This may be why some combinations that are synergistic in mouse
cell lines are not necessarily synergistic in human cell lines.
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BAP1, was originally identified as a nuclear protein shown to
bind the RING finger domain of BRCA1, consecutive studies
suggested that instead of BRCA1 BAP1 binds to BARD1 [53, 54].
Additional studies have shown that catalytic BAP1 activity is
important for DSB DNA repair (DDR) by homologous recombina-
tion however the way in which BAP1 does this remains largely
unknown [35, 36]. As reports suggest that BAP1 is able to regulate
the expression of DDR protein encoding genes, indirect regulation
of DSB repair proteins like ATM by BAP1 via gene expression
regulation could be an explanation [13, 55]. In line with that
hypothesis, in the current study we show that the acute loss of
BAP1 in mesothelioma cells leads to the subsequent loss of ATM
expression at both mRNA and protein level. Notably, such
differences in ATM levels were not seen between BAP1-
proficient and deficient cell lines, suggesting a possible

compensatory mechanism to circumvent ATM repression in
in vitro culture; however, this needs further investigation. RNA
sequencing performed on cell lines with an inducible shRNA
against BAP1 showed that the well-known transcription factor
E2F1 was upregulated upon acute depletion of BAP1. BAP1 and
E2F1 might be linked via the p16/Rb, a known negative regulator
of E2F proteins, it has previously been shown that Polycomb
complexes PRC1 and PRC2 are able to repress p16 [56, 57].
Therefore, it is likely that in case of mesothelioma E2F1 expression
gets activated by genetic deletion of p16 or by PRC2-mediated
repression. The observed upregulation of E2F1 might influence
the levels of ATM as its promoter region, shared with NPAT, has up
to five E2F protein binding sites [38]. Furthermore, a study in
prostate cancer demonstrated that upon exposure to doxorubicin
E2F1 was recruited to the promoter region of ATM and repressed
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its expression [39]. Together with our data, this suggests that
lower ATM expression upon the loss of BAP1 might be, at least
partially, due to transcriptional repression via E2F1.

CONCLUSIONS
In summary, we demonstrate that the simultaneous inhibition of
EZH2 and ATM is a highly synergistic regimen against preclinical
models of BAP1-deficient mesothelioma. In addition, we show that
expression of the major protein kinase ATM gets lowered upon the
loss of BAP1, potentially due to transcriptional repression via E2F1.
Taken together, all this data warrants further research into the
indirect link between BAP1 and ATM and how this might affect DSB
repair, and facilitates the investigation for clinical possibilities of this
combination strategy against BAP1-deficient mesothelioma.
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