Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational Therapeutics

FGFR4-driven plasticity in breast cancer progression and resistance to therapy

Subjects

Abstract

Breast cancer (BCa) is a complex and heterogeneous disease, with different intrinsic molecular subtypes that have distinct clinical outcomes and responses to therapy. Although intrinsic subtyping provides guidance for treatment decisions, it is now widely recognised that, in some cases, the switch of the BCa intrinsic subtype (which embodies cellular plasticity), may be responsible for therapy failure and disease progression. Aberrant FGFR4 signalling has been implicated in various cancers, including BCa, where it had been shown to be associated with aggressive subtypes, such as HER2-enriched BCa, and poor prognosis. More importantly, FGFR4 is also emerging as a potential driver of BCa intrinsic subtype switching, and an essential promoter of brain metastases, particularly in the HER2-positive BCa. Although the available data are still limited, the findings may have far-reaching clinical implications. Here, we provide an updated summary of the existing both pre- and clinical studies of the role of FGFR4 in BCa, with a special focus on its contribution to subtype switching during metastatic spread and/or induced by therapy. We also discuss a potential clinical benefit of targeting FGFR4 in the development of new treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of FGFR4 contribution to BCa progression, resistance to anti-HER2 therapies, and site-specific metastases.
Fig. 2: FGFR4 alterations and mRNA levels in breast cancer.

Similar content being viewed by others

References

  1. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci. 2001;98:10869.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perou CM, Sørlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  3. Hoon Tan P, Ellis I, Allison K, Brogi E, Fox SB, Lakhani S, et al. The 2019 WHO classification of tumours of the breast. Histopathology. 2020;77:181–5.

  4. Lüönd F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer. 2021;125:164–75.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5:2929–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen R, Goodison S, Sun Y. Molecular profiles of matched primary and metastatic tumor samples support a linear evolutionary model of breast cancer. Cancer Res. 2020;80:170–4.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Armstrong SA. Cancer: inappropriate expression of stem cell programs? Cell Stem Cell. 2008;2:297–9.

    Article  PubMed  Google Scholar 

  8. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al. The life history of 21 breast cancers. Cell. 2012;149:994–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zardavas D, Irrthum A, Swanton C, Piccart M. Clinical management of breast cancer heterogeneity. Nat Rev Clin Oncol. 2015;12:381–94.

    Article  CAS  PubMed  Google Scholar 

  10. Brasó-Maristany F, Griguolo G, Pascual T, Paré L, Nuciforo P, Llombart-Cussac A, et al. Phenotypic changes of HER2-positive breast cancer during and after dual HER2 blockade. Nat Commun. 2020;11:385.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Falato C, Schettini F, Pascual T, Brasó-Maristany F, Prat A. Clinical implications of the intrinsic molecular subtypes in hormone receptor-positive and HER2-negative metastatic breast cancer. Cancer Treat Rev. 2023;112:102496.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol. 2022;82:11–25.

    Article  CAS  PubMed  Google Scholar 

  13. Burr R, Gilles C, Thompson EW, Maheswaran S. Epithelial-mesenchymal plasticity in circulating tumor cells, the precursors of metastasis. Adv Exp Med Biol. 2020;1220:11–34.

    Article  CAS  PubMed  Google Scholar 

  14. Mao X, Jin F. The exosome and breast cancer cell plasticity. Onco Targets Ther. 2019;12:9817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang QA, Scherer PE. Remodeling of murine mammary adipose tissue during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia. 2019;24:207–12.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kong D, Hughes CJ, Ford HL. Cellular plasticity in breast cancer progression and therapy. Front Mol Biosci. 2020;7:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turner KM, Yeo SK, Holm TM, Shaughnessy E, Guan JL. Heterogeneity within molecular subtypes of breast cancer. Am J Physiol Cell Physiol. 2021;321:C343–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Place AE, Jin Huh S, Polyak K. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res. 2011;13:227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drago JZ, Formisano L, Juric D, Niemierko A, Servetto A, Wander SA, et al. FGFR1 gene amplification mediates endocrine resistance but retains TORC sensitivity in metastatic hormone receptor positive (HR+) breast cancer. Clin Cancer Res. 2019;25:6443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Formisano L, Lu Y, Servetto A, Hanker AB, Jansen VM, Bauer JA, et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat Commun. 2019;10:1–14.

    Article  CAS  Google Scholar 

  21. Giltnane JM, Hutchinson KE, Stricker TP, Formisano L, Young CD, Estrada MV, et al. Genomic profiling of ER+ breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance. Sci Transl Med. 2017;9:eaai7993.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Braun M, Piasecka D, Tomasik B, Mieczkowski K, Stawiski K, Zielinska A, et al. Hormonal receptor status determines prognostic significance of FGFR2 in invasive breast carcinoma. Cancers. 2020;12:2713.

  23. Mieczkowski K, Kitowska K, Braun M, Galikowska-Bogut B, Gorska-Arcisz M, Piasecka D, et al. FGF7/FGFR2–JunB signalling counteracts the effect of progesterone in luminal breast cancer. Mol Oncol. 2022;16:2823–42.

  24. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011–25.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Turczyk L, Kitowska K, Mieszkowska M, Mieczkowski K, Czaplinska D, Piasecka D, et al. FGFR2-driven signaling counteracts tamoxifen effect on ERalpha-positive breast cancer cells. Neoplasia. 2017;19:791–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elbauomy Elsheikh S, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 2007;9:R23.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Krishnamurti U, Silverman JF. HER2 in breast cancer: a review and update. Adv Anat Pathol. 2014;21:100–7.

    Article  CAS  PubMed  Google Scholar 

  28. Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010;70:2085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanker AB, Garrett JT, Estrada MV, Moore PD, Ericsson PG, Koch JP, et al. HER2-overexpressing breast cancers amplify FGFR signaling upon acquisition of resistance to dual therapeutic blockade of HER2. Clin Cancer Res. 2017;23:4323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaibar M, Novillo A, Romero-Lorca A, Malón D, Antón B, Moreno A, et al. FGFR1 Amplification and response to neoadjuvant Anti-HER2 treatment in early HER2-positive breast cancer. Pharmaceutics. 2022;14:242.

  31. Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4:215–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levine KM, Ding K, Chen L, Oesterreich S. FGFR4: a promising therapeutic target for breast cancer and other solid tumors. Pharmacol Ther. 2020;214:107590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kostrzewa M, Müller U. Genomic structure and complete sequence of the human FGFR4 gene. Mamm Genome. 1998;9:131–5.

    Article  CAS  PubMed  Google Scholar 

  34. Holzmann K, Grunt T, Heinzle C, Sampl S, Steinhoff H, Reichmann N, et al. Alternative splicing of fibroblast growth factor receptor IgIII Loops in cancer. J Nucleic Acids. 2012;2012:950508.

    Article  PubMed  Google Scholar 

  35. Garcia-Recio S, Thennavan A, East MP, Parker JS, Cejalvo JM, Garay JP, et al. FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. J Clin Investig. 2020;130:4871–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu R, Li J, Xie K, Zhang T, Lei Y, Chen Y, et al. FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer. Cancer Res. 2013;73:5926–35.

    Article  CAS  PubMed  Google Scholar 

  37. Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol. 2013;14:166–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.

    Article  CAS  PubMed  Google Scholar 

  39. Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282:26687–95.

    Article  CAS  PubMed  Google Scholar 

  40. Li SA, Watanabe M, Yamada H, Nagai A, Kinuta M, Takei K. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct. 2004;29:91–9.

    Article  CAS  PubMed  Google Scholar 

  41. Lin BC, Wang M, Blackmore C, Desnoyers LR. Liver-specific activities of FGF19 require Klotho beta. J Biol Chem. 2007;282:27277–84.

    Article  CAS  PubMed  Google Scholar 

  42. Chen Z, Jiang L, Liang L, Koral K, Zhang Q, Zhao L, et al. The role of fibroblast growth factor 19 in hepatocellular carcinoma. Am J Pathol. 2021;191:1180–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buhmeida A, Dallol A, Merdad A, Al-Maghrabi J, Gari MA, Abu-Elmagd MM, et al. High fibroblast growth factor 19 (FGF19) expression predicts worse prognosis in invasive ductal carcinoma of breast. Tumour Biol. 2014;35:2817–24.

    Article  CAS  PubMed  Google Scholar 

  44. Dallol A, Buhmeida A, Merdad A, Al-Maghrabi J, Gari MA, Abu-Elmagd MM, et al. Frequent methylation of the KLOTHO gene and overexpression of the FGFR4 receptor in invasive ductal carcinoma of the breast. Tumour Biol. 2015;36:9677–83.

    Article  CAS  PubMed  Google Scholar 

  45. Ligumsky H, Rubinek T, Merenbakh-Lamin K, Yeheskel A, Sertchook R, Shahmoon S, et al. Tumor suppressor activity of Klotho in breast cancer is revealed by structure-function analysis. Mol Cancer Res. 2015;13:1398–407.

    Article  CAS  PubMed  Google Scholar 

  46. Rubinek T, Shulman M, Israeli S, Bose S, Avraham A, Zundelevich A, et al. Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast Cancer Res Treat. 2012;133:649–57.

    Article  CAS  PubMed  Google Scholar 

  47. Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, et al. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene. 2008;27:7094–105.

    Article  CAS  PubMed  Google Scholar 

  48. Weinstein M, Xu X, Ohyama K, Deng CX. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development. 1998;125:3615–23.

    Article  CAS  PubMed  Google Scholar 

  49. Korhonen J, Partanen J, Alitalo K. Expression of FGFR-4 mRNA in developing mouse tissues. Int J Dev Biol. 1992;36:323–9.

    CAS  PubMed  Google Scholar 

  50. Liu Y, Cao M, Cai Y, Li X, Zhao C, Cui R. Dissecting the role of the FGF19-FGFR4 signaling pathway in cancer development and progression. Front Cell Dev Biol. 2020;8:95.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  PubMed  Google Scholar 

  52. Levine KM, Priedigkeit N, Basudan A, Tasdemir N, Sikora MJ, Sokol ES, et al. FGFR4 overexpression and hotspot mutations in metastatic ER+ breast cancer are enriched in the lobular subtype. NPJ Breast Cancer. 2019;5:19.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wei W, You Z, Sun S, Wang Y, Zhang X, Pang D, et al. Prognostic implications of fibroblast growth factor receptor 4 polymorphisms in primary breast cancer. Mol Carcinogen. 2018;57:988–96.

    Article  CAS  Google Scholar 

  54. Bange J, Prechtl D, Cheburkin Y, Specht K, Harbeck N, Schmitt M, et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg(388) allele. Cancer Res. 2002;62:840–7.

    CAS  PubMed  Google Scholar 

  55. Xiong SW, Ma J, Feng F, Fu W, Shu SR, Ma T, et al. Functional FGFR4 Gly388Arg polymorphism contributes to cancer susceptibility: evidence from meta-analysis. Oncotarget. 2017;8:25300–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xu W, Li Y, Wang X, Chen B, Wang Y, Liu S, et al. FGFR4 transmembrane domain polymorphism and cancer risk: a meta-analysis including 8555 subjects. Eur J Cancer. 2010;46:3332–8.

    Article  CAS  PubMed  Google Scholar 

  57. Agarwal D, Pineda S, Michailidou K, Herranz J, Pita G, Moreno LT, et al. FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium. Br J Cancer. 2014;110:1088–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jézéquel P, Campion L, Joalland MP, Millour M, Dravet F, Classe JM, et al. G388R mutation of the FGFR4 gene is not relevant to breast cancer prognosis. Br J Cancer. 2004;90:189–93.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Becker N, Nieters A, Chang-Claude J. The fibroblast growth factor receptor gene Arg388 allele is not associated with early lymph node metastasis of breast cancer. Cancer Epidemiol Biomark Prev. 2003;12:582–3.

    CAS  Google Scholar 

  60. Ulaganathan VK, Sperl B, Rapp UR, Ullrich A. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site. Nature. 2015;528:570–4.

    Article  CAS  PubMed  Google Scholar 

  61. Seitzer N, Mayr T, Streit S, Ullrich A. A single nucleotide change in the mouse genome accelerates breast cancer progression. Cancer Res. 2010;70:802–12.

    Article  CAS  PubMed  Google Scholar 

  62. Gu W, Yang J, Wang Y, Xu J, Wang X, Du F, et al. Comprehensive identification of FGFR1-4 alterations in 5 557 Chinese patients with solid tumors by next-generation sequencing. Am J Cancer Res. 2021;11:3893–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res. 2016;22:259–67.

    Article  CAS  PubMed  Google Scholar 

  64. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  65. Frullanti E, Berking C, Harbeck N, Jézéquel P, Haugen A, Mawrin C, et al. Meta and pooled analyses of FGFR4 Gly388Arg polymorphism as a cancer prognostic factor. Eur J Cancer Prev. 2011;20:340–7.

    Article  CAS  PubMed  Google Scholar 

  66. Marmé F, Werft W, Benner A, Burwinkel B, Sinn P, Sohn C, et al. FGFR4 Arg388 genotype is associated with pathological complete response to neoadjuvant chemotherapy for primary breast cancer. Ann Oncol. 2010;21:1636–42.

    Article  PubMed  Google Scholar 

  67. Cejalvo JM, Martínez de Dueñas E, Galván P, García-Recio S, Burgués Gasión O, Paré L, et al. Intrinsic subtypes and gene expression profiles in primary and metastatic breast cancer. Cancer Res. 2017;77:2213–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nguyen B, Fong C, Luthra A, Smith SA, DiNatale RG, Nandakumar S, et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 2022;185:563–75.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Freitag CE, Mei P, Wei L, Parwani AV, Li Z. Genetic alterations and their association with clinicopathologic characteristics in advanced breast carcinomas: focusing on clinically actionable genetic alterations. Hum Pathol. 2020;102:94–103.

    Article  CAS  PubMed  Google Scholar 

  71. Zou Y, Zheng S, Xie X, Ye F, Hu X, Tian Z, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 2022;13:2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Varešlija D, Priedigkeit N, Fagan A, Purcell S, Cosgrove N, O’Halloran PJ, et al. Transcriptome Characterization of matched primary breast and brain metastatic tumors to detect novel actionable targets. J Natl Cancer Inst. 2019;111:388–98.

    Article  PubMed  Google Scholar 

  73. Aftimos P, Oliveira M, Irrthum A, Fumagalli D, Sotiriou C, Gal-Yam EN, et al. Genomic and transcriptomic analyses of breast cancer primaries and matched metastases in AURORA, the Breast International Group (BIG) molecular screening initiative. Cancer Discov. 2021;11:2796–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537:102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dai LJ, Ma D, Xu YZ, Li M, Li YW, Xiao Y, et al. Molecular features and clinical implications of the heterogeneity in Chinese patients with HER2-low breast cancer. Nat Commun. 2023;14:5112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Priedigkeit N, Hartmaier RJ, Chen Y, Vareslija D, Basudan A, Watters RJ, et al. Intrinsic subtype switching and acquired ERBB2/HER2 amplifications and mutations in breast cancer brain metastases. JAMA Oncol. 2017;3:666–71.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhao X, Xu F, Dominguez NP, Xiong Y, Xiong Z, Peng H, et al. FGFR4 provides the conduit to facilitate FGF19 signaling in breast cancer progression. Mol Carcinog. 2018;57:1616–25.

    Article  CAS  PubMed  Google Scholar 

  78. Luo Y, Yang C, Ye M, Jin C, Abbruzzese JL, Lee MH, et al. Deficiency of metabolic regulator FGFR4 delays breast cancer progression through systemic and microenvironmental metabolic alterations. Cancer Metab. 2013;1:21.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Turunen SP, von Nandelstadh P, Öhman T, Gucciardo E, Seashore-Ludlow B, Martins B, et al. FGFR4 phosphorylates MST1 to confer breast cancer cells resistance to MST1/2-dependent apoptosis. Cell Death Differ. 2019;26:2577–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tiong KH, Tan BS, Choo HL, Chung FF, Hii LW, Tan SH, et al. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival. Oncotarget. 2016;7:57633–50.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Roidl A, Berger HJ, Kumar S, Bange J, Knyazev P, Ullrich A. Resistance to chemotherapy is associated with fibroblast growth factor receptor 4 up-regulation. Clin Cancer Res. 2009;15:2058–66.

    Article  CAS  PubMed  Google Scholar 

  82. Xu M, Chen S, Yang W, Cheng X, Ye Y, Mao J, et al. FGFR4 links glucose metabolism and chemotherapy resistance in breast cancer. Cell Physiol Biochem. 2018;47:151–60.

    Article  CAS  PubMed  Google Scholar 

  83. Boise LH, González-García M, Postema CE, Ding L, Lindsten T, Turka LA, et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993;74:597–608.

    Article  CAS  PubMed  Google Scholar 

  84. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tomasich E, Steindl A, Paiato C, Hatziioannou T, Kleinberger M, Berchtold L, et al. Frequent overexpression of HER3 in brain metastases from breast and lung cancer. Clin Cancer Res. 2023;29:3225–36.

    Article  CAS  PubMed  Google Scholar 

  86. Hong CS, Sun EG, Choi JN, Kim DH, Kim JH, Ryu KH, et al. Fibroblast growth factor receptor 4 increases epidermal growth factor receptor (EGFR) signaling by inducing amphiregulin expression and attenuates response to EGFR inhibitors in colon cancer. Cancer Sci. 2020;111:3268–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chew NJ, Lim Kam Sian TCC, Nguyen EV, Shin S-Y, Yang J, Hui MN, et al. Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models. Breast Cancer Res. 2021;23:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim JH, Jeong SY, Jang HJ, Park ST, Kim HS. FGFR4 Gly388Arg polymorphism reveals a poor prognosis, especially in asian cancer patients: a meta-analysis. Front Oncol. 2021;11:762528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thussbas C, Nahrig J, Streit S, Bange J, Kriner M, Kates R, et al. FGFR4 Arg388 allele is associated with resistance to adjuvant therapy in primary breast cancer. J Clin Oncol. 2006;24:3747–55.

    Article  CAS  PubMed  Google Scholar 

  90. Meijer D, Sieuwerts AM, Look MP, van Agthoven T, Foekens JA, Dorssers LC. Fibroblast growth factor receptor 4 predicts failure on tamoxifen therapy in patients with recurrent breast cancer. Endocr Relat Cancer. 2008;15:101–11.

    Article  CAS  PubMed  Google Scholar 

  91. Joensuu H, Bono P, Kataja V, Alanko T, Kokko R, Asola R, et al. Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: final results of the FinHer Trial. J Clin Oncol. 2009;27:5685–92.

    Article  CAS  PubMed  Google Scholar 

  92. Dieci MV, Prat A, Tagliafico E, Paré L, Ficarra G, Bisagni G, et al. Integrated evaluation of PAM50 subtypes and immune modulation of pCR in HER2-positive breast cancer patients treated with chemotherapy and HER2-targeted agents in the CherLOB trial. Ann Oncol. 2016;27:1867–73.

    Article  CAS  PubMed  Google Scholar 

  93. Chen X, Huang Y, Chen B, Liu H, Cai Y, Yang Y. Insight into the design of FGFR4 selective inhibitors in cancer therapy: prospects and challenges. Eur J Med Chem. 2024;263:115947.

    Article  CAS  PubMed  Google Scholar 

  94. Facchinetti F, Hollebecque A, Bahleda R, Loriot Y, Olaussen KA, Massard C, et al. Facts and new hopes on selective FGFR Inhibitors in Solid Tumors. Clin Cancer Res. 2020;26:764–74.

    Article  CAS  PubMed  Google Scholar 

  95. Sung-Young S, Nicole JC, Milad G, Anderly CC, Lan KN, Roger JD. Integrative modelling of signalling network dynamics identifies cell type-selective therapeutic strategies for FGFR4-driven Cancers. bioRxiv. 2021:2021.11.03.467180.

  96. De Luca A, Esposito Abate R, Rachiglio AM, Maiello MR, Esposito C, Schettino C, et al. FGFR fusions in cancer: from diagnostic approaches to therapeutic intervention. Int J Mol Sci. 2020;21:6856

  97. Krook MA, Reeser JW, Ernst G, Barker H, Wilberding M, Li G, et al. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br J Cancer. 2021;124:880–92.

    Article  CAS  PubMed  Google Scholar 

  98. Tao Z, Cui Y, Xu X, Han T. FGFR redundancy limits the efficacy of FGFR4-selective inhibitors in hepatocellular carcinoma. Proc Natl Acad Sci USA. 2022;119:e2208844119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wei W, Cao S, Liu J, Wang Y, Song Q, A L, et al. Fibroblast growth factor receptor 4 as a prognostic indicator in triple-negative breast cancer. Transl Cancer. Res. 2020;9:6881–8.

Download references

Acknowledgements

Figure 1 was created with BioRender.com.

Funding

This research was funded by the Polish National Science Centre grant OPUS no. 2020/39/B/NZ4/02696 (to HMR), PRELUDIUM no. 2018/29/N/NZ4/02384, LIDER no. 0188/L-13/2022 (to MB), Sonata Bis no. UMO-2018/30/E/NZ3/00222 (to RS).

Author information

Authors and Affiliations

Authors

Contributions

MB and DP reviewed literature, drafted the manuscript and prepared the figures. MB, DP, RS and HMR conceived the study. RS and HMR supervised the study and revised the manuscript. All Authors read and approved the final version of manuscript.

Corresponding authors

Correspondence to Rafal Sadej or Hanna M. Romanska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, M., Piasecka, D., Sadej, R. et al. FGFR4-driven plasticity in breast cancer progression and resistance to therapy. Br J Cancer 131, 11–22 (2024). https://doi.org/10.1038/s41416-024-02658-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-024-02658-y

Search

Quick links