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BACKGROUND: Vestibular schwannomas (VSs) remain a challenge due to their anatomical location and propensity to growth.
Macrophages are present in VS but their roles in VS pathogenesis remains unknown.
OBJECTIVES: The objective was to assess phenotypic and functional profile of macrophages in VS with single-cell RNA sequencing
(scRNAseq).
METHODS: scRNAseq was carried out in three VS samples to examine characteristics of macrophages in the tumour. RT-qPCR was
carried out on 10 VS samples for CD14, CD68 and CD163 and a panel of macrophage-associated molecules.
RESULTS: scRNAseq revealed macrophages to be a major constituent of VS microenvironment with three distinct subclusters based
on gene expression. The subclusters were also defined by expression of CD163, CD68 and IL-1β. AREG and PLAUR were expressed in
the CD68+CD163+IL-1β+ subcluster, PLCG2 and NCKAP5 were expressed in CD68+CD163+IL-1β− subcluster and AUTS2 and
SPP1 were expressed in the CD68+CD163−IL-1β+ subcluster. RT-qPCR showed expression of several macrophage markers in VS of
which CD14, ALOX15, Interleukin-1β, INHBA and Colony Stimulating Factor-1R were found to have a high correlation with tumour
volume.
CONCLUSIONS: Macrophages form an important component of VS stroma. scRNAseq reveals three distinct subsets of
macrophages in the VS tissue which may have differing roles in the pathogenesis of VS.

British Journal of Cancer; https://doi.org/10.1038/s41416-024-02646-2

INTRODUCTION
Vestibular schwannomas (VSs) are benign primary intracranial
tumours of the myelin-forming cells of the eighth cranial nerve
but can cause considerable morbidity (stroke, cranial nerve palsies
with speech and swallowing impairment, facial palsy, hearing
loss), sometimes with fatal outcomes. Surgery and/or radiotherapy
for the treatment of growing VS is associated with significant
morbidity and mortality and is therefore reserved for tumours
demonstrating growth on imaging, large (>2–3 cm) or at a size
sufficient to cause intracranial pressure symptoms. Growth of VS
and its size demonstrated by imaging is the determining criterion
in its management and prognosis. It is not clear, however, what
cellular and molecular mechanisms drive the tumour growth in VS.
Understanding these mechanisms will allow development of new
treatment modalities to arrest or reverse tumour growth.
Tumour stroma, and in particular tumour-associated macro-

phages (TAMs), play a crucial role in regulating tumour progres-
sion by supporting angiogenesis, tumour cell proliferation,
invasion, metastasis and mechanisms of resistance to treatment
[1]. Presence of macrophages in VS tissue has been shown
previously and a link between macrophage infiltration and the

size of the tumour and hearing outcomes has been suggested
[2, 3]. Macrophages are important innate immune cells that are
associated with two distinct phenotypes: a proinflammatory (or
classically activated) subset with functions such as inflammatory
cytokine production and bactericidal activity and an anti-
inflammatory (or alternatively activated) subset linked with wound
healing and tissue repair [1]. Several factors influence the
recruitment, differentiation and function of macrophages in
the tumour microenvironment, and this is a subject of active
interrogation in several cancers.
The functional profile of the macrophages in VS tissue has not

been explored in detail. This is an important facet to examine as
VS growth could be influenced not just by the number of
infiltrating macrophages but also the functional status of the
TAMs. In this study, we confirm the presence of macrophages
in situ in VS tissue using immunofluorescence. We show using RT-
qPCR that VS tissue exhibits expression of several molecules which
can impact on macrophage function. We further correlate the
expression of these macrophage related molecules with the size of
VS. Of note, we perform single-cell RNA sequencing (scRNAseq)
on VS tissue and show novel data identifying three subsets of
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macrophages in VS with distinct functional profiles. Further
understanding of macrophage subsets and their functional status
in VS will unveil newer dimensions of disease pathogenesis and
potentially reveal new therapeutic targets to improve patient
outcomes.

MATERIALS AND METHODS
Patient demographics
Ethical approval for the study was obtained from the institute’s research
ethics committee (Human Biomaterials Resource Centre HBRC 17-295) and
the tissue samples were released via HBRC. All methods were performed in
accordance with the relevant guidelines and regulations.
Patients were recruited into the study following informed consent. VS

tissue collected from 13 patients undergoing excision of the tumour has
been included in this study. Tumour size was obtained from the pre-
operative imaging (CT scan/MRI scan). Patients’ details are summarised in
Table 1.

Human tissue processing and histology
Details are presented in Supplementary Methods.

Quantitative reverse transcription PCR
RNA was isolated from frozen tissue using the RNAeasy RNA isolation kit
(Qiagen) according to the manufacturer’s instructions. cDNA synthesis was
performed on all samples (500 ng of RNA was transcribed) using SensiFAST
cDNA Synthesis Kit (Bioline) on a Mastercycler (Eppendorf) thermal cycler
PCR machine. Reverse transcription with quantitative PCR (RT−qPCR) was
performed using a Taqman Gene Expression array and Taqman universal
Mastermix on the ABI 7900 real-time PCR detection system (both Applied
Biosystems) using the TaqMan Array Microfluidic Card. Expression levels
were normalised to an internal housekeeping gene (GAPDH) and a relative
amount of expression for genes of interest was calculated form the delta
CT to the housekeeping gene (2−ΔCT). The primers used in the arrays were
for the following genes of interest: STAT-1, ALOX15, INHBA, CCL2, CCL5,
IL8, CxCL10, CD64, SPl1, CD32, IL6, IL10, TNF, IL1b, RANK, MRC1, PTPRC,
EpCAM, ACP5, CTSK, CD68, RPL13A, MERTK, HLADRA, CD163, CD14, FN1,
Thy1, PDPN, CD80, CD16b, MCT4, MCT3, Cav1, HIF1a, CSF1R, CSF2RA and
IDO.

Single-cell RNA analysis
Enzymatic digestion of human tumour tissue. Tumour tissue samples were
disaggregated into single-cell suspension as previously described for
synovial tissue [4]. In brief small fragments (~1–2mm3) of tumour tissue
were generated by dissecting with forceps or surgical scissors. The cut
fragments were cryopreserved for subsequent disaggregation; they were

transferred to a cryovial (1.5 ml; Nalgene) containing 1ml of CryoStor®
CS10 for viable freezing. Tumour fragments were thawed, washed and
dissociated by enzymatic digestion using RPMI media with Liberase™ TL
enzyme preparations (100 μg/ml; Roche) and DNase I (100 μg/ml; Roche)
prior to single-cell analysis. Single-cell suspensions were assessed for cell
quantity and cell viability. To remove non-viable cells before library
construction, 7-AAD viability dye (#A1310, ThermoFisher) was used.

Generation and analysis of droplet-based scRNAseq data. All viable cells
(n= 3 samples, each consisted of cells isolated from VS tissue from three
different patients) were captured with the 10× Genomics Chromium
system. Sequencing libraries were generated using the 10x Genomics
Single Cell 3′ Solution (version 3.1) kit and subjected to Illumina
sequencing (NextSeq 2000). Alignment to GRCh38 was performed using
the 10× Genomics Cell Ranger pipeline (v.7.0.0). Analysis was completed
using and R (v4.1) and Seurat (v4.0.03) [5]. The following QC metrics were
used for all samples: nFeature_RNA>200 & nFeature_RNA<6000 &
mitochondrial % <10. The following Seurat functions were used to process
the data: NormalizeData(), FindVaribleFeatures(), ScaleData(), RunPCA(),
RunUMAP(), FindNeighbours(), FindClusters(). Samples were integrated
using FindIntegrationAnchors() and IntegrateData(). Macrophages were
harmonised using Harmony Package (v0.1) and HarmonyMatrix() [6].
Differential expression between clusters was calculated using FindAllMAr-
kers() and FindMarkers() in Seurat. GO term analysis was completed using
gsFisher (v0.2) package.
Data were either prepared using Microsoft PowerPoint (version 16.51) or

Adobe Photoshop (v24.6.0).

Statistical analysis
Statistical analysis was performed using GraphPad Prism software version
8.4. RT-qPCR data on VS tissue and tumour size were compared using
Spearman correlation analysis. Probability values (p) of <0.05 were
considered statistically significant.

RESULTS
Patients and tissue samples
The diagnosis of VS in the patients was made on clinical grounds.
Informed consent was obtained from all patients. VS samples from
13 patients were included into the study of which 3 were used for
the scRNAseq and 10 were used for the RT-qPCR analysis. The age
range of the patients at surgery was 31–76 years with a mean of
46.6 years; 4 of the tissue samples originated from male and 9
from female patients. Clinical data obtained included patient age
at operation, gender and volume of tumour and is summarised in
Table 1. The diagnosis of VS was confirmed on histopathology
according to WHO criteria in the Department of Pathology,
University of Birmingham Hospitals, UK. Tumours were graded
according to the WHO classification of tumours of the central
nervous system [7]. All the tumours in this study were classified as
WHO I grade. Size of the tumour was calculated as the volume
from measurements of three dimensions on the pre-operative MRI
by two clinicians.

Correlation of macrophage marker expression to VS size
We first examined expression of CD163 (a marker of M2
macrophages) in tissue sections of VS tissue using immunofluor-
escence. Macrophage infiltration was noted in the VS tissue in
keeping with previously reported findings [2] (Supplementary
Fig. 1A). We then performed RT-qPCR on fresh frozen VSs from 10
patients to study a panel of macrophage-associated molecules
(details in ‘Materials and methods’; Supplementary Fig. 1B). CD163,
the marker of M2 macrophages was expressed in VS tissue
(Supplementary Fig. 1B) on RT-qPCR in keeping with the findings
on immunofluorescence (Fig. 1a). Correlation analysis of the
molecules found to be expressed on RT-qPCR (Supplementary
Fig. 1B) was performed with the volume of the VS (Table 1) using
Spearman correlation coefficient. A strong correlation was found
between the macrophage/monocyte marker CD14 (ρ 0.71,
p= 0.027) and tumour volume (Table 2A). A moderate correlation

Table 1. Patient demographics.

Patient
number

Age Gender Vol. of
tumour
(mm3)

Surgery Type

AN001 44 F 61,440 Translab Cystic

AN002 46 M 14,812 Retrosig Solid

AN003 72 F 39,701 Translab Solid

AN004 51 F 43,000 Translab Solid

AN005 53 F 51,200 Translab Solid

AN006 76 F 28,672 Translab Solid

AN007 46 F 39,060 Translab Solid

AN010 65 M 10,560 Retrosig Cystic

AN011 52 F 13,392 Translab Cystic

AN012 68 F 65,120 Translab Cystic

AN014 31 M 20,677 Translab Solid

AN017 33 F 32,591 Translab Solid

AN018 35 M 45,954 Translab Cystic

Translab translabyrinthine approach, Retrosig retrosigmoid approach.
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(correlation factor, ρ 0.4) was noted between VS volume and
CD163 expression (M2 marker) (Table 2B). Similarly, a moderate
correlation was found between VS volume and the pan
macrophage marker CD68 expression (ρ 0.55) (Table 2B). Strong
correlation to tumour volume was also observed with ALOX15
(ρ 0.712, p= 0.02), Interleukin-1B (ρ 0.6, p= 0.07) a cytokine
produced by macrophages [8]; Inhibin A (INHBA, ρ 0.63, p= 0.07) a
member of the TGF-b family which is involved in myeloid cell

function [9]; and Colony Stimulating Factor 1R (ρ 0.61, p= 0.06)
which controls the production, differentiation and function of
macrophages [10] (Table 2A). Interleukin-6, which influences M2
polarisation of macrophages [11], had a correlation coefficient of
ρ 0.51 with tumour volume (Table 2B). No-to-low correlation was
observed between VS volume and RANK (ρ −0.04), which is
associated with osteoclasts/macrophage differentiation [12], or
Indoleamine 2,3 Dioxygenase (IDO, ρ −0.28), which associates
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Fig. 1 Single-cell RNA analysis of cellular subsets in vestibular schwannoma (VS). a The merged Uniform Manifold Approximation and
Projection (UMAP) plot of 8808 VS cells from three patients (AN014, AN017 and AN018) showing the presence of 7 subclusters of cells based
on expression of specific markers. b Expression of marker genes in the seven subclusters on scRNA analysis CD68, SOX2, CD3, PMP2, S100B,
PECAM1, MK167, Decorin (DCN). c UMAP single-cell RNA analysis of the three patients presented individually. d Stacked bar chart of seven
major cell-type composition of each patient. e Pie chart showing the composition of the VS tumour on single-cell analysis.
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with M2 macrophage [13] differentiation (Table 2C). The other
macrophage-associated molecules and epithelial markers exam-
ined and their respective correlation coefficients are as follows
(also listed in Table 2A–C): STAT1 (0.37), IL10 (0.38), TNF (0.38),
INHBA (0.6), IL8 (0.48), CCL2 (0.45), CCL5 (0.54), CD64 (0.25), MERTK
(0.37), EPCAM (0.33), PTPRC (0.32), MCT3 (0.35), CSF2RA (0.34),
Thy1 (0.14), RPL13A (0.11), RANK (−0.04), CD80 (−0.02), PDPN
(−0.2), SPl1 (0.52), IL-8 (0.52), MRC1 (0.5), CD32 (0.44), CTSK (0.44),
ACP5 (0.4), HLA-DRA (0.43), CD16b (0.43), FN-1 (0.42), MCT4 (0.53),
Cav1 (0.57), HIF1A (0.53) and CxCL10 (−0.43).

Identification of macrophages in VS on single-cell RNA
analysis
As macrophage function-associated molecules expressed in VS
were found to co-relate with tumour volume, we next performed
scRNAseq of VS samples from three patients to analyse the
macrophage profile of VS microenvironment at the single-cell
level. Seven cellular clusters were identified on scRNAseq in VS
tissue in the integrated UMAP (Fig. 1a). Cellular clusters in
individual patients (Fig. 1b) AN014, AN017, AN018 showed a
similar distribution as seen in the integrated UMAP with some
heterogeneity noted in the proportion of cells from each donor
(Fig. 1c, origin identity). Cellular clusters in the integrated UMAP
were examined for expression of known marker genes and
denominated accordingly (Fig. 1a, b). Cluster 0 was found to
express macrophage marker CD68 [14] and therefore nominated
as the macrophage cluster. Cluster 2 was denominated as T cells
(expression of CD3 [15]), and cluster 6 were proliferating T cells
(expression of CD3 and MK167− proliferation marker [16]). Cluster
1, 3 and 4 were all Schwann cells and possible pre-cursors. Cluster
1 was Schwann cells with strong expression of S100B [17], SOX2
[18] and PMP2 [19] (SC1). Cluster 3 was composed of Schwann
cells with strong expression of S100B and lower positivity with
SOX2 and PMP2 (SC2). Cluster 4 was composed of Schwann cells
with strong expression of S100B and PMP2 and low levels of SOX2
(SC3). Cluster 5 was composed of endothelial cells (EC) with
expression of PECAM [20] and Von Willebrand factor [21]. Cluster 7
was designated as the fibroblast cluster (expression of Collagen
markers and decorin [22]). Proportion of the cells in the clusters in
the integrated UMAP is shown in a pie chart (Fig. 1e) showing that
immune cells (macrophages and T cells) form a significant
proportion of the cells in VS. SC1 cells were noted to be
predominantly from one patient (AN14) who had very few SC2
cells indicating heterogeneity among the tumours (Fig. 1c).
We further analysed the macrophage cluster that formed 53%

(Fig. 1e) of all the cells analysed and was identified by expression
of CD68 (Fig. 2a). The macrophages were derived from all three
donors (Fig. 2b). The identity origin of the macrophage cluster
before and after batch correction is depicted in Supplementary
Fig. 2A. The macrophage cluster revealed further four subclusters
(Fig. 2c) based on the 10 highest expressing genes analysed in
these subclusters (presented as a heatmap (Subcluster 0–3,
Fig. 2d). Subcluster 3 showed high expression of T cell markers
(IL7R and CD2) indicating T cell spillover/contamination and was
therefore not analysed further. Subcluster 0 macrophages showed
high expression of Amphiregulin (AREG), PLAUR (Urokinase
plasminogen activator surface receptor) and AFF3 (AF4/FMR2
family member 3). Subcluster 1 macrophages showed high
expression of PLCG2, NCKAP5 and S100B. Subcluster 2 macro-
phages had high expression of AUTS2, SPP1 and SERPINE1.

Pathway analysis of the macrophage subgroups (GO Terms)
To understand the functions of each macrophage subcluster
better, GO Terms analysis was performed to determine the genes
that were significantly enriched in each cluster. The three
subclusters fell into three distinct functional pathways (Fig. 2e).
Subcluster 0 expressed genes involved in leucocyte chemotaxis/

migration and response to LPS which are well known functions of
macrophages. Subcluster 1 macrophages showed expression of
genes involved in potassium and voltage channel activity while
Subcluster 2 expressed genes involved in monocyte chemotaxis,
cytokine activity and heat response. A further analysis of highest
expressed genes in the pathway analysis per subcluster is shown
in Supplementary Table 1. The fourth subcluster previously
designated as T cells showed genes associated with T cell
function such as T cell differentiation and receptor signalling as
expected. Our results indicate a functionally active profile of
macrophages in Subcluster 0 and Subcluster 2. As the macro-
phage subclusters were functionally heterogenous, DoroThea

Table 2. (A) Markers with strong correlation with tumour size; (B)
markers with moderate correlation with tumour size; (C) markers with
weak correlation with tumour size.

(A) Rho p

ALOX15 0.7212 0.0234

CD14 0.7091 0.0268

INHBA 0.6333 0.076

CSF1R 0.6121 0.0667

IL1B 0.6 0.0734

(B) Rho p

CD68 0.55 0.1049

CCL5 0.54 0.1139

MCT4 0.53 0.1231

IL6 0.52 0.1334

SPI1 0.52 0.1334

IL8 0.52 0.1334

MRC1 0.5 0.144

HIF1A 0.49 0.1548

CCL2 0.45 0.1912

CD32 0.44 0.2044

CTSK 0.44 0.2044

HLA-DRA 0.43 0.2182

CD16b 0.43 0.2182

FN1 0.42 0.2325

CD163 0.41 0.2475

Cav1 0.41 0.2475

ACP5 0.4 0.2912

(C) Rho p

STAT1 0.37 0.2957

IL10 0.38 0.2788

TNF 0.38 0.2788

CD64 0.25 0.4918

MERTK 0.37 0.2957

EPCAM 0.33 0.4279

PTPRC 0.32 0.3679

MCT3 0.35 0.3586

CSF2RA 0.34 0.3304

THY1 0.14 0.7072

RPL13A 0.11 0.8397

RANK −0.04 0.9184

CD80 −0.02 0.9768

PDPN −0.2 0.5837

IDO −0.28 0.5008

CXCL10 −0.43 0.2992
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(transcription factor) analysis of the macrophage clusters was
performed next (Fig. 2f). This showed that Cluster 0 is more
transcriptionally active while Cluster 1 is least transcriptionally
active; which is in keeping with the GO Term analysis. Cluster 0
expressed several tumour-related transcription factors such as
ELK4, CREB1, cJun, JunD, KLF6, ETS-1 and ZNF217. In addition,
several transcription factors regulating inflammation were also
highly expressed in Cluster 0 such as STAT3 (which inhibits anti-
tumour immunostimulatory genes and upregulates genes crucial
for oncogenesis and cancer inflammation) [23], Smad4 that is
linked to TGF-β function [24], ATF-2 that regulates macrophage
response to LPS [25], NFκb-1 (induces expression of proinflamma-
tory genes) [26], CEBPB (regulates release of proinflammatory
cytokines from THP cells) [27], BHLHE40 that promotes

macrophage proinflammatory gene expression [28] and FOXO3
that influences macrophage function by negative regulation of IL-
10 [29]. These results suggest that macrophages play an important
role in tumourigenesis and inflammatory milieu in VS.

A phenotypic and functional analysis of macrophage subsets
in VS based on CD68, CD163 and IL-1β expression
We next evaluated the subclusters for the expression of M2
macrophage marker CD163 (Fig. 3). Of note while CD163 was
expressed in subclusters 0 and 1, it was absent in cluster 2. We next
examined the expression of the markers identified previously
(Table 2A) that showed good correlation with tumour volume
-ALOX15, IL-1β, CSFR1, CD14 and INHBA - to their expression at the
single-cell level in the macrophage subclusters. CSFR1 and CD14
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expression were present in all three macrophage subclusters (Fig. 3a).
INHBA expressing cells were noted in subclusters 0 and 2 while
ALOX15 expression could not be ascertained at a single-cell level,
potentially due to limitations of the scRNA analysis (Fig. 3b).
Interestingly, IL-1β was found to be well expressed in subclusters 0
and 2 (Fig. 3b). Of note, we found that the three subclusters of VS
macrophages identified via the scRNA analysis could also be classified
based on the expression of CD68, CD163 and IL-1β (Subcluster
0= CD68+CD163+IL-1β+, Subcluster 1= CD68+CD163+IL-1β−
and Subcluster 2= CD68+CD163−IL-1β+).
The three macrophage subsets identified above based on CD68,

CD163 and IL-1β expression were further interrogated for a range
of phenotypic and functional macrophage markers on the scRNA
analysis—these included Tumour necrosis factor-alpha (TNF-α),
Interleukin 10 (IL-10), Interferon-gamma (IFN-γ), Vascular endothe-
lial growth factor A (VEGF-A), MER proto-oncogene tyrosine kinase
(MERTK), S100 calcium binding protein A4 (S100A4), Glial Fibrillary
acidic protein (GFAP), Marker of Proliferation Ki-67 (MK167), Tyro3
(protein tyrosine kinase, Axl (tyrosine kinase), CCL2(MCP-1), CCL3,
CCL4, CCL5, P2RY12, Siglec15, and signal regulatory protein alpha
(SIRPα). Further differences were noted in the cytokine profile of
the macrophage subclusters. CD68+CD163+IL-1β+ macrophages

expressed TNF-a and IL-10. CD68+CD163−IL-1β+ macrophages
and CD68+CD163-IL-1β− macrophages expressed TNF-a but not
IL-10 (Fig. 3c, d). Of note, VEGF-A expression was primarily noted
in the CD68+CD163+IL-1β+ macrophages (Fig. 3c). S100A4,
CCL3, CCL4, and MERTK expression was found in all three subsets
of macrophages (Fig. 3d and Supplementary Table 2). Expression
of the above and additional macrophage related markers in the
three subclusters is summarised in Supplementary Table 2. The
expression of these markers in the whole UMAP for comparison to
the expression in the macrophage cluster is shown in Supple-
mentary Fig. 3A. In addition, we analysed Iba1 (ionised calcium
binding adaptor molecule 1, macrophage/microglial marker)
which was found to be expressed in the macrophage subcluster
while expression of CD206 and CD80 was low (Supplementary
Fig. 3B–D).
We next examined the expression of IL-1β in VS tissue on

immunohistochemistry. A strong cellular expression of IL-1β was
noted in all VS tissue examined (Fig. 4a). Further co-staining with
CD163 or CD68 along with IL-1β confirmed that macrophages in
VS tissue express IL-1β (Fig. 4b, c). A higher background was
observed with the double staining experiments than with IL-1β
alone and is likely to be non-specific.
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Fig. 3 Expression of CD163 and IL-1β in macrophage subsets in vestibular schwannoma (VS) on scRNA analysis. Single-cell RNA analysis of
the macrophage subsets in three vestibular schwannoma tissue samples from different patients. a Expression of CD163, CD14 and CSFR1 in
the macrophage subsets. b Expression of INHB-A, ALOX-15 and IL-1β in the macrophage subsets. c Expression of VEGF-A, TNF-α and IL-10 in
the macrophage subsets. d Expression of TMEM119, CCL3 and CCL4 in the macrophage subsets.
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Comparison of VS macrophages with macrophages in
glioblastoma multiforme (GM)
We next compared the macrophage clusters in VS to the
macrophage clusters described in GM by Cui et al. [30]. The
macrophages in GM were identified via the expression of CD68 as
we did in VS. TMEM119 was used to distinguish between microglia
(brain tissue-derived macrophages), which express TMEM119,
versus bone marrow-derived macrophages which do not. In GM,
the percentage of tumour associated macrophages was 36.39%,
with microglia versus macrophages components being 16.10%
versus 20.29% respectively [30]. In VS, the macrophage cluster
comprised 53% of the entire cellular population (Fig. 1e). Within
the VS macrophage cluster, the expression of TMEM119 was low
and noted mainly in Cluster 2 (CD68+CD163−IL-1β+macrophage
subcluster) (Supplementary Fig. 2). The gene profile analysis of
macrophages in GM indicated the presence of priming macro-
phages: defined by the expression of cell cycle-associated genes
[aurora kinase B (AURKB), cell division cycle associated 3 (CDCA3),
and assembly factor for spindle microtubules (ASPM). HLA-positive
macrophages were classified as primed macrophages [30]. HLA-
negative macrophages were categorised as repressed, due to the
expression of Metallothionein (MT1G) and ankyrin repeat domain
28 (ANKRD28). We therefore examined the expression of the
above genes in the VS macrophage clusters. The cell-cycle
associated genes AURKB, CDCA3 and ASPM were all very low in
the VS macrophage subclusters. HLA-DQA2 was expressed in all
three VS macrophage cluster with the maximum expression in

Cluster 1 and lowest in Cluster 2. HLA-DQB2 was expressed at low
levels in all three macrophage subclusters as was MT1G. In
contrast, the highest expression of ANKRD28 was in Cluster 0
macrophages with negligible expression in the other macrophage
clusters.

DISCUSSION
This study presents the functional profile of macrophages in
stromal microenvironment in VS and in-depth analysis of
macrophages in the VS tissue using scRNAseq. We show that
expression of classical macrophage-related molecules such as
CD14, CD163, CD68 and several molecules involved in the
function, differentiation and recruitment of macrophages in VS
tissue using RT-qPCR, many of which show a correlation to VS
tumour volume. We also present novel findings from the scRNA
sequencing of three distinct macrophage subpopulations in the
VS microenvironment with distinct functional and activation
profiles.
Macrophages act as immunoregulators in tumour progression

and within the tumour microenvironment undergo phenotypic
polarisation. M1 or classically activated macrophages have
phagocytic and anti-tumour inflammatory reactions. In contrast,
M2 (alternatively) activated macrophages have tumour-promoting
abilities, such as immunosuppression and angiogenesis [31]. While
macrophage presence and their roles in pathogenesis of
malignant tumours has been extensively studied, this is not the
case with pathologically benign tumours such as VS. We and
others confirm the presence of CD163 expressing macrophages in
VS tissue [2]. Previous reports also indicate that infiltration with
CD163 expressing macrophages correlates with tumour size in VS
[2]. We show that macrophage markers CD68, CD163 and CD14
are expressed in VS on RT-qPCR. Of these, CD14 correlated
strongly with the volume of VS while CD163 (a marker for M2
differentiation of macrophages) and CD68 (a pan macrophage
marker), both showed moderate correlation with VS volume. Our
results are in keeping with previous studies indicating that
macrophage infiltration links to tumour size [2, 32] Some studies
suggest that macrophage infiltration can also associate with
tumour growth [21] while others indicate that while macrophages
and lymphocytes are linked to tumour volume they do not
necessarily link to tumour growth [33] (also summarised in
Hannan et al. [34]).
The above discrepancy in reported literature suggests that the

functional profile of infiltrating macrophages in VS and factors
driving recruitment of macrophages into VS may also be the
drivers of tumour growth rather than the number of infiltrating
macrophages alone. However, the functional profile of macro-
phages in VS is yet to be completely elucidated. Our RT-qPCR data
in VS tissue shows the expression of several macrophage markers
in VS tissue, including cytokines that influence macrophage
function such as IL-1β and IL-6. IL-1β in particular, showed a strong
correlation to VS volume. IL-1β is produced by macrophages and
in tumour microenvironment dominated by tumour associated
macrophages has been shown to promote tumour growth and
metastasis in breast cancer [35] and may have implications in VS
growth as well. Of note, a meta-analysis of VS microarray data
showed a correlation between NLRP3 inflammasome and hearing
loss in VS irrespective of tumour size [36]. This paper also observed
that increased IL-1β expression in VS tissue trended towards
poorer hearing. This is of interest as NLRP3 inflammasome
activates pro-IL-1β to activate IL-1β (reviewed in Blevins et al.
[37]) and therefore both may represent interesting therapeutic
targets. IL-6 expression showed moderate correlation with tumour
size. IL-6 is a pleiotropic cytokine and can promote M2 polarisation
of macrophages in sites of inflammation and tumour microenvir-
onment [11, 38] and could have a role in the M2 skewed profile of
macrophage infiltration in VS. An interesting finding in our work
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Fig. 4 Expression of CD68, CD163 and IL-1β in vestibular
schwannoma (VS) tissue on immunohistochemistry. Immunohis-
tochemistry images of VS tissue (representative of n= 8 VS patient
samples). a IL-1β is in brown, nuclei are blue (middle and right
panels), left-hand side tissue section depicts control staining.
b CD163 is in pink and IL-1β is in brown. Middle and right panels
are enlarged images taken from the areas indicated by the arrow/
arrowhead on the left-hand side tissue section showing CD163/IL-1β
double co-expressing macrophage (arrow) and IL-1β expressing but
CD163 negative cell (arrowhead), respectively. c CD68 is in pink and
IL-1β is in brown. Right side panel is image is taken from the area
indicated by the black box on the left-hand side tissue section
showing CD68 and IL-1β expressing macrophages.
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was the expression of ALOX15 and its strong correlation to VN
tumour size. Lipoxygenases (LOXs) are non-haem iron-containing
dioxygenases that catalyse the stereo-specific peroxidation of
polyunsaturated fatty acids to hydroperoxy derivatives. Resolution
phase macrophages are highlighted by the strong up-regulation
of arachidonate 15- lipoxygenase (ALOX15), a key enzyme
involved in the synthesis of specialised pro-resolving mediators
including lipoxins (LXs), resolvins (Rvs), protectins, and maresins
that facilitate inflammation resolution [39]. Future work may reveal
interesting facets about ALOX15 in VS pathogenesis. The
scRNAseq did not elicit ALOX15 expression which may be within
the technical limitations of the sequencing process.
Inhibin beta A (INHBA) also showed a strong correlation to VS

size. It belongs to the transforming growth factor beta family and
is highly expressed in several cancers and associated with poor
survival [40, 41]. INHBA expression is suggested to correlate with
macrophage infiltration in cervical cancer [42] and breast cancer
[43]. CSFR1 (Colony stimulating receptor 1) showed a strong
correlation to VS size. CSF1R is a type III receptor tyrosine kinase
(RTK) that is involved in the proliferation, differentiation, survival,
motility, and function of myeloid cells and in promoting disease
progression in various conditions ranging from inflammation to
cancer [44, 45]. The role of INHBA and CSFR1 in the pathophysiol-
ogy of VS will be another area of future research.
There is limited information available in literature on the cellular

profile of VS using single-cell analysis. Previous work has focused
on single-cell analysis of Schwann cells and the interactions
between Schwann cells and fibroblasts [46, 47]. Our scRNAseq
data further confirms the presence of several cellular subsets in VS
including Schwann cells, fibroblasts and immune cells, such as
macrophages and T cells. In this work we have focused on
macrophages on scRNAseq and show a distinct cluster of
macrophages on scRNAseq among the cell types identified and
confirm the expression of CD14, CSFR1, INHBA and IL-1β in the
macrophages at the single-cell level in addition to the tissue on
RT-qPCR. We also found that the macrophages could be grouped
into easily identifiable three subclusters based on expression of
CD68, CD163 and IL-1β. Of note, IL-1β is a key inflammatory
cytokine and has recognised roles in tumour pathogenesis [48]. IL-
1β expressing macrophages were found in abundance in VS tissue
on immunohistochemistry indicating an important role of IL-1β
expressing macrophages in the VS microenvironment.
CD68+CD163+IL-1β+ macrophages showed high expression

of Amphiregulin (AREG), PLAUR (Urokinase plasminogen activator
surface receptor) and AFF3 (AF4/FMR2 family member 3). AREG is
a ligand of the epidermal growth factor receptor (EGFR) [49] and is
known to be significantly expressed in M1 macrophages [50].
AREG is an autocrine growth factor as well as a mitogen for a
broad range of target cells including astrocytes, Schwann cells and
fibroblasts [51]. Its expression primarily in IL-1β producing
CD68+CD163+ macrophages makes it an attractive potential
target for modulating macrophage behaviour. This group of
macrophages also expressed higher levels of PLAUR (Plasminogen
Activator Urokinase Receptor) which links with increased macro-
phage infiltration and poor prognosis in gliomas [52]. Its role in VS
behaviour is not yet known and will be an important facet for
future research. IL-1β-producing CD68+CD163+ macrophages
also expressed AFF3 (AF4/FMR2 family member 3, or LAF4), which
encodes a tissue‐restricted nuclear transcriptional activator that is
possibly involved in lymphoid cell development [53] and has been
identified as an important player in the onset and development of
cancers including glioblastoma [54]. The CD68+CD163+IL-1β+
subset also expresses VEGF. This is of interest as in a model of
peripheral arterial disease, autocrine IL-1β signalling promoted
transcription of pro-angiogenic VEGF via activation of STAT3 and
NF-kB [55].
In contrast to the CD68+CD163+IL-1β+ macrophages,

CD68+CD163+IL-1β− macrophage subcluster expressed PLCG2

(phospholipase C gamma 2) which is predominantly expressed in
hematopoietic cells in the periphery [56] and microglia in the
central nervous system (CNS) [57, 58] and NCKAP5 (NCK
associated protein 5). NCKAP5 is predicted to be involved in
microtubule bundle formation and microtubule depolymerisation
but its role in macrophage function specifically is not yet known.
Interestingly, this subcluster of macrophages was also found to
express S100B which is glial-specific and is expressed primarily by
astrocytes, and in the developing CNS it acts as a neurotrophic
factor and neuronal survival protein [59].
S100 is also known to be produced by other cell types such as

monocytes, macrophages, microglia and T cells [60]. Its production
by macrophages in VS microenvironment could promote tumour
cell survival. Of interest, in a mouse model of uveoretinitis S100B
was seen to increase the expression of IL-1β by macrophages [61];
thus the S100B expression by the subcluster of macrophages and
Schwann cells could result in a paracrine effect and IL-1β
production by macrophages in the VS microenvironment.
Subcluster 2 of macrophages expressed CD68 but not

CD163 suggesting a M1 phenotype. They also expressed IL-1β
and showed high expression of AUTS2 (Autism susceptibility
candidate 2), SPP1 (secreted phosphoprotein 1 or osteopontin)
and Serpine 1 (Plasminogen activator inhibitor-1). AUTS2 is a
crucial gene associated with neuropsychological disorders such as
epilepsy [62] though its role in macrophage function is yet to be
defined. Osteopontin is a secreted glycoprotein that can generate
macrophage accumulation [63] and enhance tumour invasion [64].
Serpine 1 promotes the recruitment and polarisation of macro-
phages in cancer [65]. In gliomas, Serpine 1 is closely associated
with infiltrations of immune cells in the tumour microenvironment
and acts synergistically with PD1, PD-L1, PD-L2 [66]. The presence
of three identifiable subsets of macrophages in VS microenviron-
ment is interesting as it demonstrates the heterogeneity of the
tumour-infiltrating macrophages and raises the possibility of
complex roles of macrophage subsets in VS behaviour. We also
show that the VS macrophage subsets are functionally different on
GO pathway analysis with Cluster 0 involving pathways in
leucocyte migration and response to LPS while Cluster 2 involves
pathways in heat response and cytokine activity. Interestingly,
Cluster 1 involved predominantly potassium and voltage gated
channels pathway. Potassium channels and other voltage gated
channels have recently been shown to have important roles in
macrophage function such as iNOS production, phagocytosis and
intracellular signalling [67]. Transcriptional activity (DoroThea)
promoting tumourigenesis and regulation of inflammation was
also different between the three clusters of macrophages
suggesting that they could influence tumour growth and
tumoural inflammation. The VS macrophages were compared
with tumour associated macrophages in GM described by Cui
et al. [30]. Very few macrophages were noted to be of microglial
origin in VS (as assessed by TMEM119 expression) compared to
GM. This may be because VS is derived from cranial nerve tissue
and is anatomically outside the brain, though intracranial in
location; while GM is derived from brain tissue and is a malignant
tumour based on pathology while VS is not. Expression of MHCII
(marker of activation in macrophages) was present on all clusters
of the VS macrophages with highest expression on Cluster 1
(representing the most activated VS macrophage subcluster) and
expression of ANKRD28 (marker of repressed macrophages in GM)
only in Cluster 0 (representing a potential repressed state). This is
in contrast to GM macrophages, where repressed macrophages
exhibited absence of both MHCII and ANKRD28 [30]. This shows
qualitative differences in the activation/repression status of VS
macrophages compared to GM macrophages which may poten-
tially link to different tumour behaviours.
A potential limitation of our study is that while sporadic VS can

present between the ages of 30 and 70 years, the scRNAseq
reported in this study has been performed in three patients in the
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younger age group compared to the average age at presentation.
IL-1β-positive macrophages were, however, found in tumours
from older patients as well. It will be interesting to explore in
future studies if age of the patient has an impact on the
macrophage profile in VS. There is currently no evidence in
literature that sporadic VS tumours have a different clinical course
in younger versus older patients though it is possible that surgical
intervention is likely to be favoured in the younger patient group
compared to the older cohort due to better tolerance to
anaesthesia and prolonged surgery in the younger patients.
In summary, our results show that VS tissue express several

molecules involved in macrophage recruitment and function that
correlate to the tumour volume. We also show using scRNAseq
that three separate macrophage subtypes in the VS environment
can be identified with distinct profiles and differential expression
of CD68, CD163 and IL-1β. This opens the possibility of selectively
targeting macrophage populations that contribute to VS tumour
growth and avoiding non-specific effects on potentially ‘beneficial’
macrophage populations. Further understanding of the roles of
these individual molecules and macrophage subtypes in VS
pathogenesis could reveal novel targets to block tumour growth
and bring about a step change in the treatment of VS.
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