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BACKGROUND: Gut microbial dysbiosis is implicated in chronic liver disease and hepatocellular carcinoma (HCC), but the role of
microbiomes from various body sites remains unexplored. We assessed disease-specific alterations in the urinary microbiome in
HCC patients, investigating their potential as diagnostic biomarkers.
METHODS: We performed cross-sectional analyses of urine samples from 471 HCC patients and 397 healthy controls and validated
the results in an independent cohort of 164 HCC patients and 164 healthy controls. Urinary microbiomes were analyzed by 16S
rRNA gene sequencing. A microbial marker-based model distinguishing HCC from controls was built based on logistic regression,
and its performance was tested.
RESULTS: Microbial diversity was significantly reduced in the HCC patients compared with the controls. There were significant
differences in the abundances of various bacteria correlated with HCC, thus defining a urinary microbiome-derived signature
of HCC. We developed nine HCC-associated genera-based models with robust diagnostic accuracy (area under the curve
[AUC], 0.89; balanced accuracy, 81.2%). In the validation, this model detected HCC with an AUC of 0.94 and an accuracy
of 88.4%.
CONCLUSIONS: The urinary microbiome might be a potential biomarker for the detection of HCC. Further clinical testing and
validation of these results are needed in prospective studies.
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BACKGROUND
Hepatocellular carcinoma (HCC) is a global health problem with
increasing incidence and cancer-related mortality [1]. Recent
advances in the management of HCC, suboptimal adherence to
surveillance programs, late diagnosis, and a high recurrence rate
even after curative treatment result in poor prognosis of patients
with HCC. Enhancing early-stage diagnosis and improving
treatment outcomes are important in the management of HCC.
Accumulating evidence indicates that the microbiota plays an

important role in the progression of chronic liver disease and the
development of HCC [2]. Gut dysbiosis and enhanced bacterial
translocation into the systemic circulation increase hepatic
exposure to microbial metabolites, leading to chronic inflamma-
tion, fibrosis and eventually HCC occurrence [3, 4]. In addition to
the gut microbiota, changes in circulating microbiota are known
to be associated with hepatic fibrosis in obese subjects, alcoholic
hepatitis, and HCC [5–7]. Given the role of the urinary system in
filtration of circulating microbiota and its metabolites, the
urinary microbiota might reflect dysbiosis of the gut and
circulating system as well [8]. It is known that the urine

microbiota of breast cancer patients is significantly different
from that of controls and is characterized by increased levels of
gram-positive bacteria [9]. In addition, a recent study reported
that the microbial compositions of stool, serum, and urine in a
gastric cancer group were significantly different from those of a
control group, and the urine microbiome-based model showed
the best performance in the detection of gastric cancer when
compared to the serum microbiome-based model [10]. However,
the association of urine microbiota and HCC has not yet been
studied.
In this context, the goal of the current study is to evaluate

whether disease-specific alterations are present in the urine
microbiome from patients with HCC and their potential as
diagnostic biomarkers. A total of 1224 participants from four
medical centers in South Korea were enrolled, and a three-step
analysis, including the selection of HCC-associated markers, model
building, and validation, was performed. Our model based on nine
metagenome markers detected HCC with robust diagnostic
accuracy, suggesting its potential as a noninvasive diagnostic
tool for HCC.
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METHODS
Study population and sample collection
The model development (MD) set consisted of 471 patients newly
diagnosed with HCC at the Seoul National University Hospital (Seoul,
Korea) between February 2016 and December 2019 and 397 healthy
controls who underwent a health checkup at the Inje University Haeundae
Paik Hospital (Pusan, Korea) during the same period. The test set
comprised 164 HCC patients from the Chungbuk National University
Hospital (Cheongju, Korea) and the Chungnam National University Hospital
(Daejeon, Korea) between January 2011 and December 2020 and 164
healthy controls and 28 subjects with chronic liver disease (at-risk group)
from the Korea Association REsource (KARE) cohort [11, 12] from January
2015 to December 2016.
HCC was diagnosed according to international guidelines [13, 14].

Subjects with a history of chronic viral hepatitis or cirrhosis were defined as
the at-risk group. The healthy group comprised subjects who had no
known liver or kidney diseases and normal laboratory results. Midstream
urine specimens were collected from participants before any treatment
using standard protocols and stored at −80 °C until processing [15].

Cell-free DNA extraction from urine samples
Urine samples were centrifuged at 10,000 × g for 10 min at 4 °C, and the
supernatant was passed through a 0.22 μm membrane filter to remove
foreign particles. Then, the samples were boiled at 100 °C for 40min, and
the supernatant was collected by centrifugation at 13,000 rpm for 30min.
DNA was extracted using a DNA extraction kit (PowerSoil DNA Isolation Kit,
MO BIO, USA) and quantified by using the QIAxpert system (QIAGEN,
Germany) following the manufacturer’s instructions.

Metagenomic sequencing and data processing
The primers targeting the V3-V4 hypervariable regions of 16S rDNA (16S_V3_F
5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′
and 16S_V4_R 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC-
TACHVGGGTATCTAATCC-3′) were used to amplify the bacterial genomic
DNA. The libraries were constructed using the polymerase chain reaction
products according to the MiSeq System guide (Illumina, USA), quantified
using a QIAxpert (QIAGEN, Germany), and then sequencing was performed on
a MiSeq (Illumina, USA) according to the manufacturer’s recommendations.
Demultiplexed paired-end reads obtained from the sequencer were

processed using the QIIME2-2021.2 pipeline [16] with the following steps:
(a) the removal of adapter and primer sequences using the Cutadapt
plugin [17]; (b) quality control including denoising, dereplication, chimera
removal with the DADA2 plugin [18], and merging of paired-end reads; (c)
taxonomy assignment using the sklearn plugin [19] against the Silva
database v.138.1 [20]; and (d) collapsing through the sum of the
frequencies of the reads that have the same taxonomic assignment at
the genus level. The final table at the genus level was used for downstream
analysis.
Quality control was performed on a total of 786 genera identified in

868 samples of the MD set. To focus on the markers that were both
prevalent and abundant, we used two criteria. First, the markers with a
number of sequences exceeding 0.005% of the total sequences of all
genera were retained. Second, markers with a zero proportion higher than
95% were excluded. We applied these filtering criteria to the MD set,
leaving 121 genera.
To check the batch effect between the MD and test sets, nonmetric

multidimensional scaling (NMDS) analyses using Bray‒Curtis distance were
performed with the metaMDS function [21]. ComBat-Seq was used for
batch effect adjustment [22]. For normalization, the datasets were
transformed using the centered log ratio (CLR) transformation. To avoid
the geometric mean becoming zero during log transformation, we used
pseudo count 1. Unless otherwise specified, the rest of the statistical
analysis was performed in R (version 4.1.0).

Statistical analysis
To select a set of markers that were differentially abundant between HCC
and control, single marker selection and multiple marker selection were
performed. As single marker selection approaches, eight popular statistical
methods were considered: methods developed for microbiome data, such
as MetagenomeSeq [23], ANCOM [24], Metastats [25], CLR Perm [26] and
ZIBSeq [27], and methods designed for bulk RNA-seq data, such as DESeq2
[28], edgeR [29], and the Wilcoxon rank sum test. P values were adjusted
for multiple testing by the Benjamini‒Hochberg method [30]. Markers with

q values < 0.05 in all eight methods were selected as candidates because
the list of significant markers found from each method is quite different,
and we can expect that the markers that were significant in many methods
are reliable. Then, we examined the performance of the logistic regression
model for all possible combinations of the selected markers. The model
with the highest mean validation area under the curve (AUC) obtained
through fivefold cross-validation (CV) was selected as the model with the
best combination of markers. The AUC was computed using the pROC R
package [31]. For multiple marker selection approaches, we used the least
absolute shrinkage and selection operator (LASSO) and forward stepwise
selection based on logistic regression. For LASSO, we found the set of
markers by fitting the LASSO with optimal lambda based on the validation
AUC obtained from fivefold CV. To fit the LASSO, the glmnet package was
used [32]. In forward stepwise analysis, if the validation AUC obtained from
fivefold CV did not increase by 0.01 or more when the marker was added
to each step, we set that point as the optimal set of markers [33].
After marker selection, we built the prediction model with the selected

set of markers based on logistic regression and evaluated the performance
of the model with the test AUC. Sensitivity and specificity were determined
with each model’s maximum balanced accuracy. Marker selection and
model building were performed using the MD set, and age and sex were
used as covariates. In the analysis of basic characteristics, the Wilcoxon
rank-sum test or Kruskal‒Wallis test was used to compare continuous
variables. Fisher’s exact test was used for categorical variables. Alpha
diversity was presented as the Shannon index and the Simpson index, and
the Wilcoxon rank sum test was used for comparison between the two
groups. NMDS and Bray‒Curtis distance were used for beta diversity.
Permutational multivariate analysis of variance (PERMANOVA) was used to
test the difference in beta diversity between the three groups. All diversity
work was conducted by the R package vegan [21].

RESULTS
Baseline characteristics and outcomes
The baseline characteristics of subjects in the MD and test sets are
presented in Table 1. There was no significant difference in sex or
age between the HCC group and control group in either set.

Comparisons of microbial diversity between HCC patients and
controls
To assess the differences in microbial diversity between groups,
we evaluated the abundance of taxa. Alpha diversity, estimated by
the Shannon index and Simpson index, was significantly
decreased in the HCC group compared to the healthy control
group (p= 2.70 × 10−13 and 1.67 × 10−5, respectively; shown in
Fig. 1a, b). Similarly, there was a significant difference between the
HCC and at-risk control groups (p= 2.12 × 10−10 and 1.34 × 10−7,
respectively, shown in Fig. 1a, b). To display microbiome space
between samples, beta diversity was assessed with an NMDS plot
and the Bray‒Curtis distance at the genus level. The results
showed a significantly different distribution among groups, which
suggested the presence of genus-level markers distinguishing the
HCC group from the other groups (p= 1.00 × 10−3; shown in
Fig. 1c).

Differentially abundant markers between HCC patients and
healthy controls in the MD set
To identify the genus-level markers differentiating HCC from
controls, we applied eight statistical methods and identified
significant markers. Of the 121 tested genera, we identified 13
markers that were significant in all eight methods (Supplementary
Table 1). Then, we searched exhaustively to select the optimal
marker set based on fivefold CV [34]. The model comprised of 9
HCC-associated genera (i.e., Neisseria, Cutibacterium, Fusobacter-
ium, Akkermansia, Bacteroides, Streptococcus, Prevotella_9, Cap-
nocytophaga, and Bradyrhizobium) showed the highest validation
AUC of 0.8869 in fivefold CV (Supplementary Table 2).
We additionally performed multiple marker selection

approaches using LASSO and forward stepwise selection based
on fivefold CV for all 121 genera. In the LASSO and forward
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stepwise analyses, 14 markers and 5 markers were selected,
respectively (Supplementary Table 3). Finally, we trained a logistic
regression model consisting of a set of markers selected from each
of the three approaches, single marker selection, LASSO, and
forward stepwise selection, using the entire MD set.

Performance of models in the test set
Next, we evaluated the performance of the models in the test set
consisting of 164 HCC patients and 164 healthy controls. The
model based on single marker selection showed the highest
performance (AUC= 0.9399, sensitivity= 0.8902, specificity=
0.878, and accuracy= 0.8841), suggesting the possibility for the
urine microbiome-based signature to accurately distinguish HCC
patients from healthy controls (Supplementary Table 3). All nine
taxa (i.e., Neisseria, Cutibacterium, Fusobacterium, Akkermansia,
Bacteroides, Streptococcus, Prevotella_9, Capnocytophaga, and

Bradyrhizobium) included in this model showed similar increasing
or decreasing trends in abundance between groups in both the
MD and test sets (shown in Fig. 2). The models based on multiple
marker selection using LASSO and forward stepwise selection also
showed good performance (AUCs, 0.8415 and 0.7293, respec-
tively) with the test set (Supplementary Table 3). In addition, to
investigate whether the models could also distinguish HCC
patients from patients with chronic liver disease, the performance
of the models was assessed in 164 HCC patients and 28 subjects
with chronic liver disease. The model based on single marker
selection showed an AUC of 0.9386 in the detection of HCC
patients versus at-risk subjects, which was comparable to the
model’s performance in distinguishing HCC patients from healthy
controls. The models based on LASSO and forward stepwise
selection also showed high performances of 0.8406 and 0.7152,
respectively.

Table 1. Baseline characteristics of the model development and test sets.

Clinical
characteristics

Model development set Test set

HCC (n= 471) Healthy controls
(n= 397)

P HCC (n= 164) At-risk group
(n= 28)

Healthy controls
(n= 164)

P

Age (years) 62 (19–88) 62 (33–85) 0.94 61 (35–86) 58 (53–69) 60 (53–79) 0.37

Male, No. (%) 365 (77.5) 304 (76.6) 0.75 123 (75.0) 24 (85.71) 123 (75.0) 0.49

Etiology, No. (%)

HBV 356 (75.58) 88 (53.66)

HCV 30 (6.37) 9 (5.49)

HBV and HCV
coinfection

6 (1.27) 3 (1.83)

Alcohol 36 (7.64) 16 (9.76)

NASH 13 (2.76) 1 (0.61)

Others 30 (6.37) 47 (28.66)

Child‒Pugh class, No. (%)

A/B/C 445 (94.68)/25
(5.32)/0 (0)

68 (73.91)/21
(22.83)/3 (3.26)

Creatinine
(mg/dL)

0.86 (0.42–5.11) 0.84 (0.30–6.89) 1.04
(0.63–1.62)

1.00 (0.64–2.33) 4.07 × 10–8

MDRD GFR 87.83
(11.21–186.97)

92.78 (7.85–218.68) 72.42
(42.46–126.27)

72.29
(29.23–96.34)

1.94 × 10–10

BCLC stage, No. (%)

0-A/B/C/D 94 (19.96)/247
(52.44)/57 (12.10)/
73 (15.50)

85 (71.43)/5 (4.20)/
29 (24.37)/0

Not available - 45

AFP (ng/mL) 11 (1–261,635) 6.94 (1.07–200,000)

PIVKA-II
(mAU/mL)

52 (1.01–75,000) 27 (11–12,758)

Treatment, No. (%)

Resection 282 (59.87) 136 (82.92)

Liver
transplantation

3 (0.63) 0

RFA 27 (5.73) 2 (1.21)

TACE 143 (30.36) 18 (10.97)

Systemic
chemotherapy

16 (3.39) 1 (0.60)

Supportive care 0 7 (4.26)

Data are presented as medians with minimum and maximum or numbers (%).
AFP alpha-fetoprotein, BCLC Barcelona clinic liver cancer, HBV hepatitis B virus, HCC hepatocellular carcinoma, HCV hepatitis C virus, MDRD GFR modification of
diet in renal disease glomerular filtration rate, NASH non-alcoholic steatohepatitis, PIVKA-II protein induced by vitamin K absence or antagonist II, RFA
radiofrequency ablation, TACE transarterial chemoembolization.
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DISCUSSION
This study evaluated the association between urine microbiota
and HCC for the first time. HCC was associated with altered urinary
microbial composition and a significantly lower level of diversity
compared to controls. Furthermore, we showed the diagnostic
performance of the urine microbiota-based signature to differ-
entiate HCC and suggested its potential as a noninvasive
diagnostic tool for HCC.

Urine contains several metabolites, proteins, and circulating
DNA originating from the whole body that may have diagnostic or
prognostic potential for various nonurological cancers [35].
Several metabolomic studies have shown that urine metabolite
biomarkers can distinguish HCC patients from controls, although
the lack of specificity related to global cancer-associated
metabolic alterations limits their clinical application [35]. Another
study reported that seven urinary protein signatures yield good
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performance in discriminating HCC from chronic hepatitis B
patients [36]. Furthermore, urine circulating tumor DNA markers
(i.e., mutated TP53, methylated RASSF1a, and GSTP1) were able to
detect early-stage HCC patients, especially those with low AFP
levels [37]. These findings suggest the potential of urine
biomarkers to facilitate HCC surveillance and diagnosis via
noninvasive methods.
Various studies have reported that the gut microbiome can

affect the development and progression of HCC. The gut
microbiome can activate the lipopolysaccharide-toll-like receptor
four pathway and promote HCC growth in mice [4]. In addition,
gut microbiome-mediated bile acid metabolism affects anticancer
immunity via hepatic natural killer T cells [38]. Moreover, recent
studies have suggested the gut or circulating microbiome as
diagnostic biomarkers for early-stage HCC [7, 39]. These results
suggest that the microbiota in the gut and blood present
moderate dysbiosis in HCC patients, and these signatures might
be biomarkers for detecting HCC. Considering urine as an
ultrafiltrate of blood, the urinary microbiota might reflect dysbiosis
of the gut and circulatory system as well. Therefore, we tried to
find a urine microbiome-derived metagenomic signature, as urine
has several advantages over blood or feces: it can be easily and
repeatedly obtained via a noninvasive method and provides a
stable matrix for analysis.
Consistent with previous studies assessing gut and circulating

microbiota associated with HCC [7, 40], the abundance of
Akkermansia, a well-known gut commensal that promotes
intestinal integrity and attenuates hepatic injury [41], was
markedly decreased in the HCC group. In contrast, Bacterioide
was increased in the HCC group. Bacteroides has a proinflamma-
tory effect in subjects eating a Western-type diet, promoting the
progression of nonalcoholic fatty liver disease [42]. Furthermore,
increased Bacteroides abundance has been associated with the
upregulation of inflammatory cytokines, activated monocytes, and
monocytic myeloid-derived suppressor cells, suggesting a poten-
tial role in hepatocarcinogenesis [40]. In this study, the abundance
of potentially pathogenic bacteria known to be increased in the
gut of HCC patients, such as Streptococcus [40], Fusobacterium
[43], and Prevotella [44], was also increased in the HCC group.
These findings suggest that urine microbiota might capture gut
dysbiosis, i.e., the decrease in potentially beneficial bacteria
protecting intestinal integrity and the increase in potentially
harmful bacteria might promote intestinal and hepatic inflamma-
tion and the development of HCC.
However, there are several limitations in our study. First, this study

could not elucidate whether urine dysbiosis is a co-phenomenon or
a true player in the development and progression of HCC. Future
mechanistic studies are required to evaluate the functional potential
of the urine microbiota. Second, as this study could not analyze
samples from patients with other cancer types, and only a small
number of samples from patients with chronic liver disease were
available, our results may not fully discriminate HCC from other
cancer types or high-risk subjects. Additionally, serum alpha-
fetoprotein (AFP) levels were not available for the healthy controls;
therefore, we could not compare the performance of AFP levels with
that of our models. Further studies with a larger number of cases
covering various cancers and at-risk populations are necessary for
more definitive results. Last, we could not analyze themicrobiome in
other organ systems. Although the urine microbiome is probably
mostly derived from the gut and/or circulating microbiome, there
may be a significant difference between the circulating microbiome
potentially involved in host immune-microbial interactions and
those existing in the gut. Further mechanistic studies regarding the
crosstalk between the gut-liver axis and urine microbiome and their
functional roles in HCC are needed.
In conclusion, this study showed compositional dysbiosis in the

urine microbiome of patients with HCC and its diagnostic
potential for HCC. Further functional studies and validation in

larger, independent cohorts are required to validate the role of the
urine microbiota-based metagenomic signature in HCC.
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