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BACKGROUND: Nasopharyngeal carcinoma (NPC) treatment is largely based on a ‘one-drug-fits-all’ strategy in patients with similar
pathological characteristics. However, given its biological heterogeneity, patients at the same clinical stage or similar therapies
exhibit significant clinical differences. Thus, novel molecular subgroups based on these characteristics may better therapeutic
outcomes.
METHODS: Herein, 192 treatment-naïve NPC samples with corresponding clinicopathological information were obtained from
Fujian Cancer Hospital between January 2015 and January 2018. The gene expression profiles of the samples were obtained by RNA
sequencing. Molecular subtypes were identified by consensus clustering. External NPC cohorts were used as the validation sets.
RESULTS: Patients with NPC were classified into immune, metabolic, and proliferative molecular subtypes with distinct clinical
features. Additionally, this classification was repeatable and predictable as validated by the external NPC cohorts. Metabolomics has
shown that arachidonic acid metabolites were associated with NPC malignancy. We also identified several key genes in each
subtype using a weighted correlation network analysis. Furthermore, a prognostic risk model based on these key genes was
developed and was significantly associated with disease-free survival (hazard ratio, 1.11; 95% CI, 1.07–1.16; P < 0.0001), which was
further validated by an external NPC cohort (hazard ratio, 7.71; 95% CI, 1.39–42.73; P < 0.0001). Moreover, the 1-, 3-, and 5-year areas
under the curve were 0.84 (95% CI, 0.74–0.94), 0.81 (95% CI, 0.73–0.89), and 0.82 (95% CI, 0.73–0.90), respectively, demonstrating a
high predictive value.
CONCLUSIONS: Overall, we defined a novel classification of nasopharyngeal carcinoma (immune, metabolism, and proliferation
subtypes). Among these subtypes, metabolism and proliferation subtypes were associated with advanced stage and poor prognosis
of NPC patients, whereas the immune subtype was linked to early stage and favorable prognosis.
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BACKGROUND
Nasopharyngeal carcinoma (NPC) is a type of cancer that primarily
affects people in Southeast Asia, especially South China [1, 2].
Distant metastasis and recurrence are the leading causes of death
among patients with NPC and affect the improvement in the NPC
cure rate in clinical practice [3]. Although the tumor-node-
metastasis (TNM) staging technique is widely used in clinical
settings, the anatomy-based staging process cannot efficiently
predict patient prognosis or treatment findings. This results in
uncertain heterogeneity in the clinical outcomes of NPC when
using the same TNM staging approach [4–6]. Therefore, identify-
ing the exact molecular subtypes that represent tumor hetero-
geneity is critical for predicting outcomes and tailoring specific
treatment strategies for patients with NPC.

According to the prevailing World Health Organization (WHO),
NPC is categorized into four primary histological subtypes:
keratinizing (WHO type I), non-keratinizing differentiated (WHO
type II), non-keratinizing undifferentiated (WHO type III), and
basaloid squamous cell carcinoma [7, 8]. While the WHO subtype
system remains the most commonly employed clinical classifica-
tion for NPC, an increasing number of clinicians are recognizing its
inadequacy in predicting the outcomes of chemotherapy and
radiotherapy. The introduction and availability of next-generation
sequencing tools have resulted in a large-scale data profile of
many malignancies, allowing researchers to accurately character-
ize the tumors in a more structured manner [9, 10]. Because
molecular events influence patient prognosis and therapeutic
regimens, it is critical to determine and characterize the molecular
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subtypes of individual tumors. In NPC, although three molecular
subgroups (immunogenic, classical, and mesenchymal) have been
reported, this classification is based on miRNA expression, and
differential pathway enrichment is indistinct among these
subtypes [11]. Additionally, an epigenomic landscape study
revealed global hypermethylation and hypomethylation in mole-
cular subtypes; however, the sample size was limited [12]. The
Cancer Genome Atlas recently defined the genomic landscapes
and transcriptome subtypes of multiple malignancies, but not NPC
[13]. A thorough understanding of NPC heterogeneity is lacking,
and the translation of transcriptome outcomes into improved NPC
treatments is required.
This study aimed to (i) profile gene expression in patients with

NPC, (ii) identify novel molecular subtypes to improve the
classification of NPC, and (iii) analyze the clinicopathological
features of these subtypes.

METHODS
Clinical sample collection
Fresh tumor biopsy samples were collected from patients diagnosed with
NPC at Fujian Cancer Hospital between January 2015 and January 2018.
TNM staging was used to confirm and classify all collected tumor samples.
Table 1 presents the clinical data of the patients with NPC. This study was
approved by the Ethics Committee of Fujian Cancer Hospital (Fuzhou, China;
numbers K2022-084-01). Each patient provided written informed consent for
participation in this study. The external validation cohorts were downloaded
from the Gene Expression Omnibus (GEO) database, including GSE102349
and GSE103611 datasets. RNA expression files of NPC cell lines (NP69, HK-1,
CNE-2, and 5–8F) were derived from GSE15098, GSE29123 and GSE15921.

RNA isolation, mRNA library construction, and sequencing
A TRIzol reagent kit was used to extract total RNA according to the
manufacturer’s instructions. Furthermore, mRNA samples from NPC tissues
were enriched using oligo (dT) -attached magnetic beads. The enriched
mRNA samples were then separated into fragments using a fragmentation
buffer, followed by reverse transcription into cDNA. Then, a single ‘A’
nucleotide was added to the 3’ ends of the blunt fragments after repairing

the ends of the purified double-stranded cDNA segments. The reaction
system and program for adapter ligation were configured to ligate the
adapters with cDNAs, and PCR was performed to amplify them. The
generated cDNA library was sequenced by BGI Technology Services Co. Ltd.

Extraction of all metabolites and LC-MS/MS analysis
We collected 1 × 107 cells in a clean tube. Then, extraction solution
(acetonitrile: methanol= 1:1, with an isotopically-labeled internal standard
mixture) was added to the sample, and the mixture was vortex-mixed for
30 s, sonicated for 10min in an ice-water bath, and incubated at −40 °C for
60min for precipitating the proteins. Then, this mixture was centrifuged at
12,000 rpm for 15min at 4 °C. For UHPLC-QE-MS analysis, the supernatant
was transferred to a different LC-MS glass vial (2 mL). Finally, a quality
control sample was prepared by mixing equal aliquots of the supernatants
from all samples. A UHPLC system (Vanquish, Thermo Fisher Scientific,
USA) that included a UPLC BEH Amide column coupled to a Q Exactive HFX
mass spectrometer (Orbitrap MS, Thermo Scientific) was used for the LC-
MS/MS analysis. The variable importance in the projection (VIP) score of
the (O)PLS model was used to rank the metabolites that best distinguished
the two groups. The VIP threshold was set at 1. Univariate analysis was
performed using the t-test to analyze different metabolites. The
metabolites that showed a | foldchange| ≥ 2 and p-value of t-test <0.05
were regarded as differential metabolites between both groups.

Gene set variation analysis
Gene Set Variation Analysis (GSVA) was performed to obtain the pathway
score of every NPC sample based on transcriptome data, using the “GSVA”
package in R software (version 4.2.1). GSVA computes the enrichment
score for each sample by evaluating the expression levels of genes within a
predefined gene set. This score serves as a representative measure of the
overall activity or enrichment of a specified gene set within a sample
[14, 15]. In our analysis, KEGG gene sets were used to obtain a finer
resolution of functional signature variations across samples.

Consensus clustering
The “ConcensusClusterPlus” tool in R software was used to identify the
molecular subtypes by means of consensus clustering. Thereafter, the
optimal cluster value between k= 2 and 10 was determined, and this
technique was performed 1000 times to ensure that all results were
reproducible and robust.

Principal component analysis
Principal component analysis (PCA) was performed to evaluate the
transcriptional patterns of different subtypes. The analysis was conducted
using the “princomp” function in the “limma” package, and these results
were displayed using the “ggplot2” package in R.

Weighted gene co-expression network analysis
Weighted gene co-expression network analysis (WGCNA) was conducted
using the R software (version 4.2.1) with default parameters [16–18]. The
Pearson correlation between each module and each phenotypic char-
acteristic within each subtype (immune, metabolic, and proliferative) was
derived and corrected using the Benjamini–Hochberg FDR method. Within
each module, the hub genes were identified based on their high
connectivity (correlation) with other genes in the module. These hub
genes are considered as key regulators within the module.

Immune cell type fractions analysis
The Tumor Immune Estimation Resource (TIMER) algorithm was applied to
calculate the infiltration levels of eight types of immune cells in each NPC
sample, including macrophages, B cells, CD4 T cells, CD8 T cells,
neutrophils, and dendritic cells (DCs). TIMER employs algorithms to
perform deconvolution and estimate the proportion of immune cells in
tumor samples [19, 20].

Immune score estimation
The immune score and tumor purity were calculated using the estimation
of stromal and immune cells in malignant tumor tissues using expression
data (ESTIMATE). The ESTIMATE algorithm, implemented in R software
(version 4.2.1), was designed to estimate the fractions of stromal, tumor,
and immune cells in tumor tissues based on RNA sequencing data.

Table 1. Clinical characteristics of NPC patients.

Characteristics n= 192

Age 48 (16–87)

Sex

Female 56 (29.2%)

Male 136 (70.8%)

T-category, 7th

T1 40 (20.8%)

T2 43 (22.4%)

T3 62 (32.3%)

T4 47 (24.5%)

N-category, 7th

N0 14 (7.3%)

N1 67 (34.9%)

N2 79 (41.1%)

N3 32 (16.7%)

TNM stage, 7th

I 4 (2.1%)

II 40 (20.8%)

III 73 (38.0%)

IVa 48 (25.0%)

IVb 19 (9.90%)

IVc 8 (4.2%)
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Specifically, it uses a predefined set of genes expressed by immune cells,
and the expression levels of these genes in the tumor sample are used to
infer the abundance of immune cells in the tumor microenvironment.

Constructing and validating the prognostic risk signature
The coefficient values were then computed using the least absolute
shrinkage and selection operator (LASSO) Cox regression. LASSO, a
regression analysis technique, conducts variable selection and regulariza-
tion to enhance both the predictive accuracy and interpretability of a
statistical model. Consequently, LASSO Cox regression is well-suited for
constructing prognostic models grounded in gene expression profiles
[21–25]. Kaplan–Meier (KM) analysis was then performed to compare OS
between the low- and high-risk groups. The Survminer and survival
packages of R software were used for KM analysis. The NPC dataset
(GSE102349) was used as the validation set [26].

Assessment of cytotoxic activity of compounds using
CCK-8 assay
NPC cell lines HK1, CNE-2, and 5–8F were seeded in 96-well plates at a
density of 1 × 105, or 4 × 104cells per well and cultured overnight at 37 °C
and allowed to attach for 24 h. Indomethacin was added at graded
concentrations with 0, 100, 250, 400, 500, and 1000 µg/mL incubated for
72 h. Cell viability was evaluated using the CCK-8 assay in accordance with
the manufacturer’s guidelines. Dose-response curves were generated, and
the 50% inhibition concentration (IC50) was determined, representing the
concentration of compounds that led to a 50% reduction in cell growth
compared to the control.

Cell proliferation assays
The EdU assay was conducted to investigate the impact of arachidonic acid
on the proliferation of NPC cell lines. HK1, CNE-2, and 5–8F cells were
seeded in a 24-well plate at a density of 2 × 105 cells per well and allowed
to incubate overnight. Subsequently, a conditioned medium containing
indomethacin at various IC50 concentrations (450, 300, 250 µg/mL) was
applied for 24 h at 37 °C with 5% CO2. Following this, 100 µL of EdU
(50 µM) was introduced to the culture medium for an 8-h incubation
period. The cells were then fixed with 4% paraformaldehyde for 20min,
permeabilized using Triton X-100 to breach the nuclear membrane, and
blocked with PBS for an additional 1 h at 25 °C. Finally, cell staining was
performed using the BeyoClick™ EdU-555 Cell Proliferation Kit (Beyotime,
China) in accordance with the manufacturer’s instructions. A negative
control was established using 1% DMSO.

Cell migration assay
The migration assay was conducted using a 24-well plate with 8.0 μm pore
membrane inserts (Corning, NY) devoid of matrigel. NPC cell lines were
introduced into the upper chambers at a concentration of 1 × 105 cells per
well and incubated for 24 h, followed by treatment with various IC50
concentrations of indomethacin. The upper chambers were maintained in
a conditioned medium without serum, while the lower chambers were
filled with conditioned media containing 20% serum. After 24 h (5–8F cells)
or 36 h (CNE-2 cells), the migrated cells were stained with 0.1% crystal
violet and photographed under a light microscope at 100× magnification.
For HK1 cells, migration was observed over a period of 5 days. The number
of migratory cells was quantified and subjected to statistical analysis to
ascertain significant differences. The migration assay was independently
replicated three times, with 1% DMSO serving as the negative control.

Statistical analysis
Statistical data analysis was conducted using GraphPad Prism 8.4.1. For the
comparison of two groups, a two-tailed unpaired Student’s t-test or the
Wilcoxon test was employed. In scenarios involving more than two groups,
the Kruskal–Wallis test was applied for comparison.

RESULTS
Consensus clustering identified immune, metabolism, and
proliferation subtypes with distinct clinical features in
patients with NPC
Transcriptomic analysis was performed on 192 treatment-naïve
primary NPC acquired from the Fujian Cancer Hospital. Table 1

summarizes the clinicopathological information of the patients,
including sex, age, T-category, N-category, and TNM stage as
described by the American Joint Committee on Cancer. This
dataset comprised patients with a median age of 48 years, and
included 29.2% (n= 56) female patients and 70.8% (n= 136) male
patients. Furthermore, 44 (22.9%) patients developed stage I/II
cancer, 73 (38.0%) developed stage III tumors, and 75 (39.1%)
developed stage IV tumors.
RNA sequencing was performed to obtain gene expression

profiles. To quantify the pathway activity of each NPC sample,
pathway signatures were acquired from the Kyoto Encyclopedia of
Genes and Genomes database. Thereafter, the GSVA was used to
determine the pathway score based on transcriptomics. Subse-
quently, NPC subtypes were identified using consensus clustering.
The k-means clustering technique was used and three clusters
were identified to describe the different patterns of pathway
activity (Fig. 1a). Specifically, cluster C1 showed high activity in
immune pathways, such as natural killer cell-mediated cytotoxi-
city, antigen processing and presentation, T-cell receptor signaling
pathway, leukocyte transendothelial migration, and chemokine
signaling pathways (Fig. 1b). In contrast, clusters C2 and C3
displayed low immune pathway activity, but high metabolic
activation (e.g., histidine metabolism, arachidonic acid metabo-
lism, ether lipid metabolism, and retinol metabolism) and
proliferation pathways (e.g., cell cycle, DNA replication, mismatch
repair, ribosome, and homologous recombination). Hence, the C1
cluster was defined as the immune subtype, the C2 cluster was
defined as the metabolic subtype, and the C3 cluster was defined
as the proliferative subtype (Fig. 1b). PCA technique was used to
compare transcriptional patterns among different subtypes. In
general, PCA results indicated that the samples from the three
clusters were strongly isolated from each other, indicating that
these subtypes displayed different transcriptional profiles and
heterogeneity (Fig. 1c).
Next, we explored whether these three subtypes were

associated with different clinical features. Intriguingly, patients
classified into immune subtypes had an early clinical stage, low
relapse rate, and favorable long-term prognosis. Conversely, the
metabolism and proliferation subtypes primarily included
advanced clinical stages, high relapse rates, and poor prognoses
(Fig. 1d–f). Subgroup analysis of stage IV patients demonstrated
statistically significant differences in disease-free survival DFS
(Fig. 1g). The repeatability of this classification was verified in two
independent public cohorts (GSE102349, n= 88; GSE103611,
n= 48). Similarly, patients in the GSE102349 (Fig. 1h, i) and
GSE103611 cohort (Fig. S1A, S1B) were stratified into immune,
metabolic, and proliferative subtypes.

Immune, metabolism, and proliferation subtypes are
associated with distinct tumor microenvironments
In this study, we analyzed the composition of the tumor
microenvironments of the different subtypes. In general, the
immune subtype displayed a higher immune score than the
proliferation and metabolism subtypes in the in-house cohort
and external validation cohorts (Figs. 2a, S2A), whereas tumor
purity showed a lower score (Figs. 2b, S2B). The TIMER method
was used to assess immune heterogeneity across different
subtypes. Patients with the immune subtype had a significantly
higher proportion of B cells, CD8+ T cells, CD4+ T cells,
macrophages, neutrophils, and DCs than did those with the
metabolic and proliferative subtypes (Figs. 2c, S2C). Furthermore,
the majority of immune checkpoints, MHC genes, and cytotoxi-
city genes were overexpressed in the immune subtype. The
metabolic and proliferative subtypes showed opposite trends
(Fig. 2d–f). These findings suggest that patients with immune
subtypes may benefit from immune checkpoint inhibitor
therapy.
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Identification of the key metabolites in metabolism subtype
Metabolic reprogramming is a characteristic of cancer and an
essential target for cancer therapy. We initially classified NPC cell
lines (CNE-2, 5–8F, HK-1, and NP69) based on their RNA-seq

expression profiles. Notably, the CNE-2 and 5–8F cell lines
exhibited higher metabolic pathway activity, whereas NP69 and
HK-1 showed lower metabolic pathway activity (Fig. S3A). To
further verify the key metabolites that drive the malignant
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phenotype of NPC, a metabolomic analysis was performed
between CNE-2 and NP69 cells. In total, 27 differentially expressed
metabolites were identified under negative-ion mode with |fold
change| > 2 and p < 0.05 (Fig. S3B). We found arachidonic acid was
obviously up-regulated in CNE-2 compared to NP69 cell line, and
arachidonic acid metabolism pathway was significantly enriched in
NPC metabolism subtype (Fig. S3C). Next, we conducted a series of
in vitro experiments to preliminarily validate arachidonic acid
metabolism in NPC. We found that inhibition of arachidonic acid
metabolism by indomethacin significantly reduced the viability of
HK1, CNE-2, and 5–8F cells in a concentration-dependent manner,
with IC50 values of 436.7 μg/mL, 319.6 μg/mL, and 235.1 μg/mL,
respectively (Fig. 3a). Interestingly, compared to HK-1 cell line, CNE-
2 and 5–8F exhibited higher sensitivity to indomethacin, possibly
due to the elevated activity of the arachidonic acid metabolism
pathway in these two cell lines. Next, we further investigated
whether inhibition of arachidonic acid metabolism (AA-) could
inhibit the malignancy of NPC cells. The results revealed that
indomethacin could decrease the percentage of EdU-positive cells
in HK1, CNE-2, and 5–8F cells (Fig. 3b). Moreover, transwell assays
demonstrated arachidonic acid inhibition could significantly
decelerate CNE-2 and 5–8F cell migration (Fig. 3c).

Establishment and verification of the NPC prognostic
signature
We further developed a prognostic model based on the key genes
of the three subtypes. To identify key genes in these subtypes, we
applied WGCNA to the gene expression matrix. The characteristic
genes of the brown, green, and turquoise modules were remarkably
related to the immune, metabolic, and proliferative subtypes,
respectively (Fig. 4a). We identified seven key genes with significant
prognostic value in the brown module of the immune subtype, 6
key genes in the green module of the metabolic subtype, and eight
key genes in the turquoise module of the proliferative subtype
(Fig. 4b). As depicted in Fig. 4c, the 21 key genes identified
by WGCNA were evaluated and selected to establish a prognostic
model using LASSO regression analysis. Thereafter, a risk score
model was developed using the following equation: Risk score=
0.00029 × PKM+ 0.00526 × CAV1+ 0.05278 × GLI3+ 0.02225 ×
PICK1+ 0.00672 × PRPF6+ 0.00403 × UBE3A− 0.01432 ×MEF2B−
0.01298 × VAV1− 0.00076 × BTK. In this study, the relationship
between the survival status and risk score was assessed. The results
revealed that the number of live statuses of patients in the high-risk
cohort was remarkably lower than that in the low-risk cohort
(Fig. 4d). The prognostic significance of this risk model was further
determined using KM analysis. A high-risk score was associated with
poor DFS in the in-house training cohort (Fig. 4e), which was verified
using the GEO testing cohort (Fig. 4f). In addition, we further
demonstrated the prognostic value of risk model in the subgroup
analysis of each subtype. The high-risk score was associated with
unfavorable DFS in immune, metabolism, and proliferation
subtypes (Fig. S4A).

NPC risk signature exhibits a strong power for prognosis
assessment
A receiver operating characteristic (ROC) curve was used to assess
the predictive efficiency of the risk signature for the 1-, 3-, and

5-year survival rates. The areas under the ROC curve values were
0.84, 0.81, and 0.82, respectively, showing a high predictive value
(Fig. 5a). We also compared the predictive efficiency of the NPC
risk signature with clinical characteristics including age, sex,
T-category, N-category, and clinical stage. The results demonstrated
that the risk score presented the best performance in predicting
prognosis compared to the other clinical characteristics (Fig. 5b).
The independent predictive value of the risk prognostic model

for DFS was assessed using univariate and multivariate Cox
regression analyses. Univariate analysis indicated that a high-risk
score was significantly associated with poor DFS (Fig. 5c). Other
variables associated with poor survival included age and
T-category. Multivariate analysis revealed that a high-risk score
was independently associated with a significantly worse DFS,
suggesting that it could be employed as an independent
prognostic factor for patients with NPC (Fig. 5d).

DISCUSSION
Precision oncology utilizes advanced molecular profiling techni-
ques such as next-generation sequencing and gene expression
analysis to identify specific genetic mutations or biomarkers in
tumors. These techniques provide novel insights into cancer
diagnostics and targeted therapeutics. In this study, we intro-
duced a novel molecular classification of NPC based on
transcriptomic analysis, namely immune, metabolic, and prolif-
erative subtypes with distinctive clinical features. These results
indicated that the immune subtype was associated with early
clinical stages and a favorable long-term prognosis. Conversely,
the metabolic and proliferative subtypes mainly include advanced
clinical stages and poor prognoses. In addition, the findings of this
study show that arachidonic acid metabolites and pathways are
associated with NPC progression. The WGCNA technique was used
to identify key genes among the subtypes. We also identified
several key genes in each subtype using WGCNA. Moreover, we
developed and validated a prognostic model based on these key
genes, which has a strong potential for prognosis assessment.
The canonical histopathology of NPC includes keratinizing, non-

keratinizing differentiated, non-keratinizing undifferentiated, and
basaloid squamous cell carcinoma. However, even with the same
histological type or TNM stage, patient responses to treatment
and prognoses vary when identical therapeutic approaches are
employed [27–29]. In recent years, with the advancement of
sequencing technologies and the establishment of various plat-
forms, such as high-throughput RNA sequencing, proteomics,
metabolomics, and single-cell sequencing, our understanding of
tumor heterogeneity has significantly improved. Molecular sub-
typing of NPC is a dynamic field of research, with several studies
attempting to delineate its molecular intricacies. For example,
genomic studies have identified genetic alterations in NPC,
including loss of the CDKN2A/CDKN2B locus, CCND1 amplification,
TP53 mutation, and activation of signaling pathways such as the
PI3K/Akt/mTOR pathway, DNA repair, chromatin modification, and
MAPK signaling [1, 26, 30–32]. For RNA expression studies,
although microRNA sequence-based analysis was used to classify
NPC into immunogenic, classical, and mesenchymal subtypes, the
prognostic value of this classification is limited [11]. In addition, an

Fig. 1 Consensus clustering identified three molecular subtypes in patients with NPC. a Heatmap of consensus clustering solution (k= 3) in
192 NPC samples. b Heatmap of pathway score in the proliferation, immune and metabolism molecular subtypes (n= 192). c Principal
component analysis plots revealing distinct expression patterns among three subtypes; red dots represent immune subtype, blue dots
represent metabolism subtype, and green dots represent proliferation subtype. d Bar plots presenting the frequency of different stages
among these subtypes. e Relapse rate among these subtypes. NPC relapse was presented by PET/CT (positron emission tomography/
computed tomography). f, g Kaplan–Meier disease-free survival curve for all patients with NPC (F) or stage IV patients (g) assigned to immune,
metabolism, and proliferation subtypes in the in-house cohort. h Validation of three molecular subtypes classification in GSE102349 external
cohort. i Validation of Kaplan–Meier analysis in GSE102349 external cohort.
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immune-associated classification has been delineated, wherein
the immune-enriched subtype manifests noteworthy enrichment
of immune cells, whereas the non-immune subtype exhibits highly
proliferative characteristics [33]. In the present study, an original
RNA expression file was established from 192 patients with NPC.
We further classified the non-immune subtypes into proliferative

and metabolic subtypes. The results of this study showed that this
classification system was repeatable and predictable and dis-
played a high prognosis evaluation value. Nevertheless, it should
be noted that our findings require further internal cohort
validation. Our findings should be interpreted with this limitation
in mind.
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We also identified a panel of key genes among these subtypes
that were significantly associated with NPC prognosis. Among
these genes, PKM, CAV1, GLI3, PICK1, PRPF6, and UBE3A have
been identified as oncogenes, and play a pivotal role in
orchestrating tumor-host interactions, fostering tumor growth,
promoting metastasis, enhancing resistance to therapy, and
ensuring cellular survival. For example, PKM serves as a pivotal
enzyme in glycolysis and functions as a mediator of the Warburg
effect observed in tumors [34]. CAV1 operates as a pro-survival
factor, playing a role in mediating resistance against the
cytotoxic effects induced by ionizing radiation [35]. Additionally,
PRPF6, an integral component of the tri-snRNP (small ribonu-
cleoprotein) spliceosome complex, propels cancer proliferation
through its involvement in the preferential splicing of genes
associated with cellular proliferation [36]. GLI3 and PICK1 were
found to over-express in various cancers, including colorectal
cancer, ovarian cancer, breast cancer, prostate cancer, and oral
squamous cell carcinoma [37–40]. On the contrary to these
oncogenes, MEF2B, VAV1, and BTK, negatively associated with
risk score, have been identified as immune regulatory genes.
VAV1 is a key player in the signaling cascades initiated by
antigen receptors on lymphocytes. It is involved in the activation
of T-cell and B-cell receptors, leading to immune responses
[41, 42]. BTK is a critical component of the BCR signaling
pathway, mediating B-cell activation, proliferation, and differ-
entiation [43]. However, the functions of these key genes require
further validation in vitro or in vivo.

Immunotherapy, particularly with immune checkpoint inhibi-
tors (ICIs), is extremely effective for NPC treatment [44–46].
Except for a few intriguing clinical trials, the general application
of immunotherapies has yielded different responses, with a
proportion of patients displaying resistance to these treatments.
Therefore, classifying patients with NPC with high or low
sensitivity would assist in optimizing the effectiveness of
immunotherapy. Previous studies identified several predictive
biomarkers for immunotherapy, including tumor mutational
burden, microsatellite instability, lymphocytes, immune score,
T-cell receptor diversity, and PD-L1/PD1 expression [47–49].
However, the predictive value of single biomarkers is limited.
In this study, an immune subtype was characterized by high
PD-L1/PD1 expression, cytotoxicity genes, MHC genes, and
high infiltration of immune cells. This finding indicates that
patients with different immune subtypes may benefit from ICI
therapy.
In conclusion, this study presented a novel classification of

NPC based on transcriptomics. This classification demonstrated
a significant value in predicting the survival in patients with
NPC.
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