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BACKGROUND: Leiomyosarcomas are among the most common histological types of soft tissue sarcoma (STS), with no effective
treatment available for advanced patients. Lung metastasis, the most common site of distant metastasis, is the primary prognostic
factor. We analysed the immune environment targeting lung metastasis of STS to explore new targets for immunotherapy.
METHODS: We analysed the immune environment of primary and lung metastases in 38 patients with STS using
immunohistochemistry. Next, we performed gene expression analyses on primary and lung metastatic tissues from six patients with
leiomyosarcoma. Using human leiomyosarcoma cell lines, the effects of the identified genes on immune cells were assessed in
vitro.
RESULTS: Immunohistochemistry showed a significant decrease in CD8+ cells in the lung metastases of leiomyosarcoma. Among
the genes upregulated in lung metastases, epithelial cellular adhesion molecule (EPCAM) showed the strongest negative correlation
with the number of CD8+ cells. Transwell assay results showed that the migration of CD8+ T cells was significantly increased in the
conditioned media obtained after inhibition or knock down of EPCAM.
CONCLUSIONS: EPCAM was upregulated in lung metastases of leiomyosarcoma, suggesting inhibition of CD8+ T cell migration.
Our findings suggest that EPCAM could serve as a potential novel therapeutic target for leiomyosarcoma.
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INTRODUCTION
Soft tissue sarcomas (STS) are rare and heterogeneous mesench-
ymal neoplasms that account for 1% of all malignant adult
tumours and have more than 100 histological subtypes [1].
Leiomyosarcoma (LMS) is one of the most common histological
types of STS [2]. However, there is still no effective treatment for
patients with distant metastases [3]. The median overall survival is
12–18 months [4].
Immunotherapy has recently emerged as a new treatment

modality, in combination with surgery, chemotherapy, and
radiotherapy [5]. Immune checkpoint inhibitors have shown
promising results against malignant tumours such as melanoma,
non-small cell lung cancer, renal cell carcinoma, and head and
neck cancer [6–9], whereas numerous other malignant tumours
show poor responses, yielding poor results in clinical trials [10].
Clinical trials have reported limited effectiveness for LMS and most
STS types, except for some histological types, such as dediffer-
entiated liposarcoma and undifferentiated pleomorphic sarcoma
[11].
Recent studies have reported that in some malignant tumours,

the immune environment differs between the primary and
metastatic sites [12]. Therefore, the response to immunotherapy

may differ between primary and metastatic sites [13]. In LMS,
surgical therapy is the first choice for resectable primary sites, and
new treatments are expected to be effective for unresectable
primary sites and distant metastases [14]. Lung metastasis is the
predominant form of distant metastasis and represents a crucial
prognostic factor for LMS [15]. Therefore, immunotherapy that
targets lung metastases from LMS may be extremely useful.
However, almost no research has been conducted on the immune
environment of the metastatic sites of STS, including LMS.
This study analysed differences in the immune environment

using clinical samples from primary and lung metastatic sites of
STS, including LMS. We discovered unique immune evasion in
lung metastases of LMS, which supports the results of clinical
immunotherapy trials. Therefore, we aimed to elucidate the
mechanism of this immune evasion and explore novel treatment
targets.

MATERIALS AND METHODS
Patient tumour samples
We utilised formalin-fixed, paraffin-embedded STS tissue specimens of STS
samples collected at Kyushu University Hospital between 2005 and 2021.
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Biopsy tissues were excluded, and resected tissues were targeted.
Consequently, we used samples from 38 patients with primary tumours
and lung metastases. All tissue samples were examined by pathologists. All
the patients provided written informed consent before participating in the
study. The Institutional Review Board of Kyushu University approved the
use of human specimens for this study (approval number: 23005-02). The
histological types and clinical features of the target samples are presented
in Supplementary Table 1.

Immunohistochemistry
Immunohistochemical staining was performed on 3 μm thin sections of the
paraffin-embedded tissue specimens. The primary antibodies used were as
follows: anti-cluster of differentiation (CD)4 (#48274, Cell Signaling
Technology, Beverly, MA, USA), anti-CD8α (#70306, Cell Signaling
Technology), anti-forkhead box protein 3 (FoxP3) (#98377, Cell Signaling
Technology), anti-CD20 (#74332, Cell Signaling Technology), anti-CD56
(#99746, Cell Signaling Technology), anti-CD68 (#76437, Cell Signaling
Technology), anti-CD163 (#93498, Cell Signaling Technology), anti-
programmed cell death protein 1 (PD-1) (#86163, Cell Signaling
Technology), anti-programmed death-ligand 1 (PD-L1) (#13684, Cell
Signaling Technology), and anti-human leukocyte antigen (HLA) class I
ABC (#ab70328, Abcam, Cambridge, UK). The blocking reagent used was
10% Normal Goat Serum (#426041, Nichirei Biosciences, Tokyo, Japan), and
the secondary antibody was EnVision Dual Link System horseradish
peroxidase (HRP) (K406311, Dako). Antigen activation was performed via
heat-induced antigen retrieval with a 10-mM Na citrate buffer (for anti-
CD4, anti-FoxP3, anti-CD20, anti-CD68, anti-CD163, anti-PD-1, and anti-HLA
class I ABC), 1 mM ethylenediaminetetraacetic acid (EDTA) (for anti-CD8
and anti-PD-L1), or 10 mM Tris/1 mM EDTA (for anti-CD56). All samples
were deparaffinised in xylene and dehydrated using a graded ethanol
series. After heat-induced antigen retrieval, endogenous peroxidase
blocking and blocking treatments were performed, and the samples were
incubated overnight at 4 °C with the primary antibody. After incubation
with the secondary antibody, the samples were visualised using a
diaminobenzidine substrate system (TCI Chemicals, Tokyo, Japan) and
counterstained with diluted haematoxylin.

Evaluation and analysis of tumour-infiltrating immune cells
All images were captured using a BZ-X800 microscope (Keyence, Osaka,
Japan) and the percentage of positive cells was measured visually. Three
observers familiar with the pathological diagnoses performed the
evaluations. Staining with anti-CD4, anti-CD8, anti-FoxP3, anti-CD20, anti-
CD56, anti-CD68, anti-CD163, and anti-PD-1 monoclonal antibodies (mAbs)
was evaluated by counting the number of positively stained cells in five
different fields using a 10× eyepiece lens and a 40× objective lens, based
on previous studies [16, 17]. Global evaluation of tumour infiltration was
performed using the total number of cells. The number of positive cells
was scored as follows and is shown in Table 1: + (≤30 cells/field), ++
(30–70 cells/field), +++ (70–120 cells/field), and ++++ (≥120 cells/field).
Staining with anti-PD-L1 was evaluated by measuring the area of positive
staining throughout the tissue, and areas with 1% or more were
considered positive based on previous studies [18]. For PD-L1 staining
counts, those positive in tumour cells were included, while those positive
in immune cells, such as macrophages, were excluded. CD8 staining at the
tumour cores and tumour margins were assessed by counting the number
of positive cells in five different fields using a 10× eyepiece lens and a 40×
objective lens. The cut-off values for high and low infiltration at the tumour
cores were 100 cells/mm2, while those for high and low infiltration at the
tumour margins were 200 cells/mm2, based on previous studies [19].

Statistical analysis
Evaluation of specimens stained with anti-CD4, anti-CD8, anti-FoxP3, anti-
CD20, anti-CD56, anti-CD68, anti-CD163, and anti-PD-1 mAbs was
performed using a Wilcoxon signed-rank test with the corresponding
primary tumours and lung metastases, and the differences between the
two groups were evaluated. Differences between two groups were
considered statistically significant at p < 0.05. For the multivariate analysis
of CD8, all 38 pairs of tumours included in this study were divided into two
groups: tumours in which the number of CD8 positive cells decreased in
lung metastasis compared to that in the primary tumour, and tumours in
which the number remained the same or increased. The baseline
characteristics of the two groups were compared. Univariate analysis was
performed, followed by a multivariate logistic regression analysis. The

multivariate regression model was performed using factors that showed
marginal significance (p < 0.1) in the univariate analysis and those widely
known to affect immunocompetence (age) [20]. Differences between the
two groups were statistically analysed using the Mann–Whitney U-test for
non-parametric continuous variables and Fisher’s exact test for categorical
variables. Survival analyses were performed using publicly available data
from The Cancer Genome Atlas (TCGA) cohort [21]. Using the CD8 T cell
scores in the publicly available immune score data, the top 1/3 (26
patients) and bottom 1/3 (26 patients) of the 80 leiomyosarcoma patients
were categorised into high and low CD8 score groups, respectively. A Cox
proportional hazards model was used for multivariate survival analysis. For
assessing overall survival and metastasis-free survival, multivariate analysis
was performed by adding age, which generally correlates with prognosis,
to CD8 score and tumour size, two factors that were significantly different
in the univariate analysis. All statistical analyses were performed using JMP
Pro version 16.0 (SAS Institute Inc., Cary, NC, USA).

RNA extraction from formalin-fixed paraffin-embedded (FFPE)
samples
All targeted tissue sections were classified as soft tissue LMS; uterine LMS
was excluded. We targeted pairs of six primary foci and corresponding
lung metastatic foci with a recent tissue collection time. From FFPE blocks,
4–24 unstained slides of 10 μm thickness were collected, and tumour
sections were excised via macrodissection based on the corresponding
haematoxylin and eosin (H&E) slides. Total RNA was isolated using the
RNAstorm FFPE RNA Extraction Kit (Cell Data Sciences, Fremont, CA, USA),
following the manufacturer’s instructions.

Analysis of immune-related gene expression using the
nCounter platform
We analysed the expression of 770 immune-related genes using the
nCounter PanCancer Immune Profiling Panel (NanoString Technologies
Inc., Seattle, WA, USA). Raw data were processed using nSolver Analysis
Software (version 4.0; NanoString Technologies Inc.) for normalisation of
mRNA expression, principal component analysis, hierarchical clustering,
immune cell profiling, and functional pathway analysis. Pairwise differen-
tially expressed genes (DEGs) were analysed using R software (The R
Foundation for Statistical Computing, Vienna, Austria).

Cell culture
The TYLMS-1 human LMS cell line was purchased from the Japanese
Collection of Research Bioresources (JCRB) Cell Bank. TC616 is a human
LMS cell line derived from the mediastinum and was created in our
laboratory, as previously reported [22]. TYLMS-1 and TC616 cells were
cultured at 37 °C under 5% CO2 in a 1:1 mixture of Dulbecco’s modified
Eagle’s medium (DMEM) (Gibco) and Ham’s F-12 medium (Sigma-Aldrich,
St. Louis, MO, USA) with 10% fetal bovine serum (FBS) (HyClone). Human
CD8+ T cells were separated according to the manufacturer’s protocol
using CD8 MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany) after
separating peripheral blood mononuclear cells (PBMC) from whole blood
collected from healthy donors using Ficoll-Paque PLUS (Cytiva, Marlbor-
ough, MA, USA). CD8+ T cells were cultured at 37 °C under 5% CO2 in RPMI
1640 medium (Gibco) with 10% FBS and activated in advance for 48 h
using anti-CD3 (BioLegend, San Diego, CA, USA), anti-CD28 (BioLegend),
and human interleukin (IL)-2 (BioLegend) before being used for
experiments.

Inhibitor treatment
TYLMS-1 and TC616 cells were treated to inhibit epithelial cellular adhesion
molecule (EPCAM) signalling with 40 μM tumour necrosis factor-α
converting enzyme (TACE) inhibitor (TAPI)-1 (Selleck Chemicals, Houston,
TX, USA), 10 μM γ-secretase inhibitor (DAPT) (Selleck Chemicals), or a
combination of both inhibitors when the cells reached ~60% confluence.
Drug type and concentration were determined based on previous studies
[23]. The inhibitors were administered once at 0 h in all the cultures. For
the Transwell assay, cells were cultured in RPMI 1640 medium
supplemented with 0.5% FBS at the time of inhibitor administration and
incubated for 48 h to produce conditioned media (CM).

Creation of knockdown cells
TYLMS-1 and TC616 cell suspensions (in 10% FBS-containing DMEM: Ham’s
F-12 medium without antibiotics) were seeded and cultured in 12-well
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Table 1. Analysis of immune cell infiltration using immunohistochemical staining of all soft tissue sarcoma samples.

Samples Primary/Lung CD4 CD8 FoxP3 CD20 CD56 CD68 CD163 PD-1 PD-L1
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung
Primary
Lung

LMS 6

LMS 1

LMS 2

LMS 3

LMS 4

LMS 5

UPS 5

LMS 7

LMS 8

LMS 9

LMS 10

LMS 11

LMS 12

LMS 13

UPS 1

UPS 2

UPS 3

UPS 4

MFS 2

UPS 6

UPS 7

UPS 8

UPS 9

SS 1

SS 2

SS 3

SS 4

SS 5

SS 6

MFS 1

ASPS 1

ASPS 2

MFS 3

MLPS 1

MLPS 2

MLPS 3

DDLPS 1

DDLPS 2

Using a 40× objective lens, the number of positively stained cells in five different fields was counted for cluster of differentiation (CD)4, CD8, forkhead box
protein 3 (FoxP3), CD20, CD56, CD68, CD163, and programmed cell death protein 1 (PD-1), and the total number was used to assess global tumour infiltration.
The number of positive cells was scored as follows:+ (≤30 cells/field), ++ (30–70 cells/field), +++ (70–120 cells/field), and ++++ (≥120 cells/field). Compared
to the primary tumour, lung metastases with a marked increase were coloured red and those with a marked decrease were coloured blue. A marked increase
or decrease was defined as an increase or decrease of more than 50% each, and those with a change of small absolute value, less than 30 cells were excluded.
For PD-L1 staining counts, those positive in tumour cells were included, while those positive in immune cells, such as macrophages, were excluded. The area of
PD-L1 positive staining against the entire tissue was measured and areas exceeding 1% were considered positive.
LMS leiomyosarcoma, UPS undifferentiated pleomorphic sarcoma, SS synovial sarcoma, MFS myxofibrosarcoma, MLPS myxoid liposarcoma, DDLPS
dedifferentiated liposarcoma, ASPS alveolar soft part sarcoma.
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plates. In both TYLMS-1 and TC616 cells, small interfering (si)RNA was
transfected when the cells reached ~60% confluence. For EPCAM
knockdown, a Silencer Select Pre-Designed siRNA (s529200; s529201,
Thermo Fisher Scientific, Waltham, MA, USA) was transfected using
Lipofectamine 3000 (Thermo Fisher Scientific), following the manufac-
turer’s protocol. For double knockdown of EPCAM and synaptosomal-
associated protein of 25 kDa (SNAP25), Silencer Select Pre-Designed siRNA
(s529200, Thermo Fisher Scientific) and Silencer Select Pre-Designed siRNA
(s13189, Thermo Fisher Scientific) were simultaneously transfected into
TYLMS-1 cells. Control cells were transfected with Silencer Negative
Control No.1 siRNA (AM4611, Thermo Fisher Scientific). The cells were used
for experiments 48 h after transfection. When used in the Transwell assay,
the medium was replaced with 0.5% FBS-supplemented RPMI 1640
medium 48 h after transfection, and the cells were further cultured for 48 h
to produce CM.

Quantitative reverse transcription-polymerase chain reaction
(RT-qPCR)
RNA was isolated from cells using the RNeasy Mini Kit (Qiagen, Hilden,
Germany), and reverse transcription was performed using the PrimeScript
RT Reagent Kit (Takara Bio, Shiga, Japan). RT-qPCR was performed using TB
Green Premix Ex Taq II (Takara Bio). The reactions were performed using a
CFX Connect Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA).
Primer sequences for the detection of EPCAM were 5′-
TGCTGGAATTGTTGTGCTGG-3′ and 5′- AAGATGTCTTCGTCCCACGC-3′ and
for SNAP25 were 5′-CGTCGTATGCTGCAACTGGTTG-3′ and 5′-
GGTTCATGCCTTCTTCGACACG-3′. All samples were normalised to GAPDH
using the 5′-AATTCCATGGCACCGTCAAG-3′ and 5′-ATCGCCCCACTT-
GATTTTGG-3′ primers.

Western blotting
For western blotting, tumour cells were washed and lysed with CellLytic M
(Sigma-Aldrich) containing protease and phosphatase inhibitors. The lysate
was cleared by centrifugation at 15,000 rpm for 15min and denatured at
95 °C for 5 min. The lysate was stored at −80 °C until immunoblot analysis.
Proteins were separated by electrophoresis using a NuPAGE 4–12% Bis-Tris
Gel (Thermo Fisher Scientific) and transferred to Amersham Protran
(Cytiva). After blocking the membrane with 5% skim milk for 1 h, it was
incubated overnight at 4 °C with specific primary antibodies. After
hybridisation with secondary antibodies, the protein bands were visualised
using Amersham ECL western blotting detection reagent (Cytiva). The
antibodies used in this study are listed as follows; anti-EPCAM (#ab223582,
Abcam), anti-SNAP25 (#5308, Cell Signaling Technology), anti-Actin (#MA5-
11869, Invitrogen), anti-rabbit IgG (#7074, Cell Signaling Technology), and
anti-mouse IgG (#7076, Cell Signaling Technology).

Transwell assay
The prepared CM was centrifuged at 3500 rpm for 30min to remove the
cell debris. CM (500 μl) was added to the lower chamber of a 6.5 mm
Transwell with a 5.0 μm Pore Polycarbonate Membrane Insert (Corning,
New York, NYC, USA), and CD8+ T cells (5 × 105 cells/100 μl) resuspended in
RPMI 1640 medium were added to the upper chamber. After incubation for
6 h at 37 °C under 5% CO2, cells that had migrated to the lower side of the
membrane were collected, fixed with Diff-Quik Fix, stained with Diff-Quik II,
and observed. All images were captured using a BZ-X800 microscope
(Keyence). The number of migrated cells was measured visually in five
random fields at ×100 magnification, and the sum was scored for
evaluation.

RNA sequencing and data analysis
We created three clones of TYLMS-1 cells treated with TAPI+ DAPT,
three clones of untreated TYLMS-1 cells (dimethyl sulfoxide added),
three clones of TYLMS-1 cells transfected with siEPCAM, and three clones
of TYLMS-1 cells transfected with scrambled siRNA, for a total of 12
TYLMS-1 cell clones. Total RNA was extracted from the clones using a
RNeasy Mini Kit (Qiagen). RNA quality was assessed using an Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA
sequencing (RNA-seq) libraries were prepared using the Illumina
Stranded-specific library preparation method (dUTP method) and
sequenced as paired-end 150 base pair (bp) reads on a NovaSeq 6000
machine. Raw RNA-Seq data were subjected to FastQC for quality
control. The data were processed using BioJupies [24] for the normal-
isation of mRNA expression and DEG analysis.

Proliferation assay
TYLMS-1 and TC616 cells were seeded in 96-well plates at 4.0 × 103 cells
and 2.0 × 103 cells per well, respectively. Four hours after seeding, the cell
viability in each well was measured as a standard value using the CellTiter-
Glo 2.0 Cell Viability kit (Promega, Madison, WI, USA). The relative cell
viability was monitored every 24 h for up to 72 h. The assay was read on an
EnSight Multimode Plate Reader (PerkinElmer, Waltham, MA, USA).

Migration assay
Tumour cell migration was assessed using a 6.5 mm Transwell with an
8.0 µm Pore Polycarbonate Membrane Insert (Corning). Knockdown-
treated TYLMS-1 cells (5.0 × 104/200 µl) or TC616 cells (2.0 × 104/200 µl)
were added to the upper chamber and 600 µl of medium with 10% FBS to
the lower chamber. After 16 h of incubation at 37 °C under 5% CO2,
migrated cells were fixed with Diff-Quik Fix, stained with Diff-Quik II, and
observed. All images were captured using a BZ-X800 microscope
(Keyence). The number of migrated cells was visually measured in five
random fields at ×100 magnification, and the sum was scored for
evaluation.

RESULTS
Comparison of immune profiles between primary tumours
and lung metastases in STS
Immune cell infiltration profiles were created via immunostaining
using paired tissue samples from the primary and lung metastatic
sites of 38 STS samples. The histological types and clinical
information are shown in Supplementary Table 1, and the immune
cell counts are shown in Table 1. We performed a paired analysis
to compare the changes between the primary tumour and lung
metastasis. In the analysis of all cases, CD68, CD163 and PD-1 were
significantly increased in lung metastases (p= 0.01, p= 0.04 and
p= 0.04, respectively, Supplementary Fig. 1a). Next, we performed
the same analysis on three tissue types: LMS (n= 13), undiffer-
entiated pleomorphic sarcoma (n= 9), and synovial sarcoma
(n= 6), all of which had relatively large sample sizes. Significant
differences were observed in CD8 and CD56 expression in LMS,
and CD68 expression in synovial sarcoma (p= 0.003, p= 0.03 and
p= 0.03, respectively, Fig. 1a and Supplementary Fig. 1b, c).
Notably, CD8 expression in LMS was reduced by ~1/4 in lung
metastases.

In lung metastases of LMS, CD8+ T cells are significantly
reduced compared to primary tumours
We focused on CD8+ cells in the LMS and conducted further
analyses. Representative examples of immunostaining are shown
in Fig. 1b. We performed a paired analysis of primary tumours and
lung metastases in LMS and other sarcomas (Fig. 1c and
Supplementary Fig. 2). The results showed no significant changes
in CD8+ cells in lung metastases of other sarcomas, and the
significant decrease in CD8+ cells in lung metastases only in LMS.
In contrast, patient background factors, such as sex, age,
chemotherapy, and radiotherapy are known to contribute to
changes in infiltrating immune cells [12, 21, 25, 26]. In addition, in
STS, tumour-infiltrating lymphocytes are more abundant in non-
translocation-associated sarcomas, including LMS, than in
translocation-associated sarcomas [27]. Therefore, we conducted
multivariate analysis to ensure that these factors were not
involved (Supplementary Table 2a). The results showed that LMS
was the only factor involved in decreasing the number of CD8+

cells in the lung metastases (p= 0.04). The infiltration of CD8+

T cells into tumours is related to the prognosis of numerous
malignant tumours; in most cases, low infiltration is associated
with poor prognosis [28, 29]. We analysed the correlation between
CD8+ T cell scores and prognosis in LMS using TCGA database.
The low CD8+ T cell score group had a significantly worse
prognosis in terms of overall survival and metastasis-free survival
(Fig. 1d, e). The results of the additional multivariate analyses also
supported these results (Supplementary Table 2b, c). Therefore,
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Fig. 1 Decreased tumour-infiltrating cluster of differentiation (CD)8+ cell numbers in lung metastasis of leiomyosarcoma and correlation
between the abundance of infiltrating CD8+ T cells and prognosis in leiomyosarcoma. a Comparison of tumour-infiltrating immune cell
numbers in primary and lung metastatic leiomyosarcoma tissues (n= 13). b Representative images of CD8 immunohistochemical (IHC)
staining of leiomyosarcoma. These were primary and lung metastatic tissues from the same patient. c Comparison of CD8+ cell numbers in
primary and lung metastatic leiomyosarcoma tissues (n= 13). The lines indicate that they were obtained from the same patient. d, e The data
were obtained from The Cancer Genome Atlas cohort. Of the patients with 80 leiomyosarcomas, the top (26 patients) and bottom 1/3 (26
patients) were categorised into the high and low CD8 score groups, respectively. d Comparison of the overall survival of patients with
leiomyosarcoma between the high and low CD8 score groups. e Comparison of metastasis-free survival of patients with leiomyosarcoma
between high and low CD8 score groups. a, c Wilcoxon signed-rank test. *p < 0.05, **p < 0.01. d, e Log-rank test.
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low infiltration of CD8+ T cells in lung metastases of LMS is
considered a poor prognostic factor. We therefore decided to
further analyse this mechanism.

CD8+ T cell infiltration in lung metastases of LMS is reduced at
the tumour cores rather than at the tumour margins, resulting
in heterogeneous distribution
We first analysed changes in the spatial distribution of infiltrating
CD8+ T cells in the LMS. For the infiltration of CD8+ T cells into the
tumour core and tumour margins, we classified four groups
according to the number of CD8+ T cells: tumour core high/
tumour margin high, tumour core high/tumour margin low,
tumour core low/tumour margin high and tumour core low/
tumour margin low, based on previous studies [19]. Primary
tumours had 4, 3, 2, and 4 cases, respectively, and tumour cores
were high in more than half of the cases (Supplementary Fig. 3a).
In contrast, lung metastases accounted for 1, 2, 3, and 7 cases,
respectively, with tumour cores low in approximately three-
quarters of the cases (Supplementary Fig. 3b). Quantitative
comparison showed that the number of infiltrating CD8+ T cells
in the tumour cores in lung metastases was significantly lower
than in tumour margins (p= 0.01, Supplementary Fig. 3c, right). In
contrast, the number of infiltrating CD8+ T cells in the tumour
cores in primary tumours did not differ from that in tumour
margins (Supplementary Fig. 3c, left). The margin/core ratio of the
number of infiltrating CD8+ T cells also showed that there were
more infiltrating CD8+ T cells at the tumour margins in lung
metastases (p= 0.03, Supplementary Fig. 3d), indicating hetero-
geneity in the distribution of CD8+ T cells between the tumour
core and margin. Therefore, some immune evasion mechanisms
that inhibit the infiltration of CD8+ T cells into the tumour core
were considered to be present in lung metastases of LMS.

Reduced CD8+ T cell infiltration in lung metastases of LMS can
be confirmed at the gene expression level, with decreased T
cell function and chemokine-related pathways
Known factors that induce the exclusion of CD8+ T cells include
sustained high PD-L1 expression and the loss of HLA class I
[30, 31]. We first analysed the correlation between the expression
of these molecules and the number of infiltrating CD8+ T cells. The
number of infiltrating CD8+ T cells tended to be higher in the PD-
L1 positive group than in the PD-L1 negative group; however, this
difference was not statistically significant (p= 0.07, Supplemen-
tary Fig. 4a, b). This result did not mean that sustained high PD-L1
expression excluded CD8+ T cells [32]. There was no difference in
the number of infiltrating CD8+ T cells between the high- and low-
HLA class I expression groups (Supplementary Fig. 4c, d). Because
no known mechanisms are likely to be involved, we hypothesised
that novel mechanisms may be involved. Therefore, we performed
gene expression analysis to analyse the variation in gene
expression involved in immunity. We performed gene analysis
using nCounter on tissue specimens from the primary and lung
metastatic sites of the six most recently diagnosed patients with
LMS among our 13 patients. Principal component analysis showed
that in five patients, excluding patient no. 2, the primary tumours
and lung metastases in the same case were in close proximity
(Fig. 2a). Similarly, hierarchical clustering analysis tended to cluster
the primary tumours and lung metastases in the same case rather
than by primary tumours or lung metastases (Fig. 2b). This showed
that in our LMS patients, the expression profiles of immune-
related genes were roughly similar between the primary tumours
and lung metastases in the same cases. Furthermore, in the cell
type score, CD8+ T and natural killer (NK) cells were reduced in
lung metastases, which matched our immunostaining results
(Figs. 1a and 2c). Regarding the pathway score, we observed a
decrease in T cell function and chemokine pathways in lung
metastases (Fig. 2d). In summary, the reduction in infiltrating
CD8+ T cells in lung metastases of LMS confirmed by

immunohistochemical analysis was also confirmed at the gene
expression level, and furthermore, the pathways associated with
immune cell migration were reduced.

EPCAM was upregulated in lung metastases of LMS and
correlated with the number of infiltrating CD8+ T cells
Next, to identify the genes involved in the exclusion of CD8+

T cells from lung metastases of LMS, we analysed the DEGs and
identified six genes: C4BPA, CEACAM6, EPCAM, LAMP3, DMBT1, and
MUC1 (Fig. 3a, b). When we analysed the correlation between the
expression levels of these genes and the number of CD8+ T cells,
we found the strongest negative correlation for EPCAM (Fig. 3c).
We also examined the expression of each gene in normal body
tissues and found that all five genes, except for EPCAM, were
highly expressed in the respiratory system (The Human Protein
Atlas; data not shown). Therefore, DEGs other than EPCAM may
have been contaminated with normal lung tissues. Based on these
results, we hypothesised that the upregulation of EPCAM in lung
metastases from LMS may be involved in the exclusion of CD8+

T cells. This effect was verified in vitro.

In human LMS cell lines, inhibition or knockdown of EPCAM
restored the migration of CD8+ T cells
We performed a Transwell assay using the human LMS cell line
TYLMS-1 and CD8+ T cells isolated from healthy donors
(Supplementary Fig. 4e). First, we performed an experiment
inhibited EPCAM signalling. Through two-step proteolytic proces-
sing, EPCAM is sequentially cleaved by TACE and presenilin 2 (PS-
2), a protease component of γ-secretase complex, and releases an
N-terminal extracellular domain (EpEX) and a 5 kDa C-terminal
intracellular domain (EpICD) to initiate signal transduction [33]. To
inhibit EPCAM signalling, both TACE inhibitor (TAPI), which block
the release of EpEX, and γ-secretase inhibitor (DAPT), which, in
turn, block the release of EpICD, are used [23, 34]. Significantly
more migrated CD8+ T cells were observed in the TAPI+ DAPT
and TAPI-only groups (Fig. 4a, b). Next, we conducted EPCAM
knockdown via siRNA transfection (Fig. 4c, d) and performed the
same Transwell assay. In TYLMS-1 cells with EPCAM knockdown,
the number of migrated CD8+ T cells significantly increased
(Fig. 4e, f). In addition, when we performed the same experiment
using another LMS cell line, TC616, we observed a significant
increase in the number of migrated CD8+ T cells following EPCAM
inhibition by TAPI+ DAPT and EPCAM knockdown by siEPCAM
transfection (Supplementary Fig. 5a–f). In summary, when EPCAM
was inhibited or knocked down in human LMS cell lines, CD8+ T
cell migration increased. Thus, the upregulation of EPCAM in
human LMS cell lines inhibited the migration of CD8+ T cells.

The restoration of CD8+ T cell migration by knockdown of
EPCAM in human LMS cell lines is cancelled by simultaneous
knockdown of SNAP25
To our knowledge, no previous studies have examined the
relationship between EPCAM and CD8+ T cell migration. First,
we examined the chemokines involved in CD8+ T cell migration
[35, 36]. However, when we examined whether the expression
levels of C-C motif chemokine ligand (CCL5), C-X-C motif
chemokine ligand (CXCL)9, CXCL10, CXCL11, and CX3CL1 were
altered by the inhibition of signal transduction or EPCAM
knockdown in human LMS cell lines, we observed no consistent
changes in any of the cytokines (data not shown). Therefore, we
performed mRNA-seq to comprehensively analyse this mechan-
ism. In the analysis of DEGs, 65 upregulated and 208 down-
regulated genes were identified in the EPCAM-inhibited TYLMS-
1 cells compared to those in the control (Fig. 5a). Compared to the
control, 29 upregulated and 14 downregulated genes were
identified in the EPCAM-knockdown TYLMS-1 cells (Fig. 5b). In
the search for common genes in each set of DEGs, only SNAP25
upregulation was confirmed (Supplementary Fig. 6a). Next, we
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investigated whether SNAP25 mediated the inhibition of CD8+ T
cell migration by EPCAM in TYLMS-1 cells. As there were no
specific inhibitors of SNAP25, we determined whether double
knockdown of EPCAM and SNAP25 could prevent the increase in
migrated CD8+ T cells observed with a single knockdown of
EPCAM (Fig. 5c, d). With double knockdown, the number of
migrated CD8+ T cells decreased to the same level as in the naïve
and control groups (Fig. 5e, f). In addition, when we performed the
same experiment using another LMS cell line, TC616, we observed
a decrease in the number of migrated CD8+ T cells with double
knockdown to the same level as in the naïve and control groups
(Supplementary Fig. 6b–e). In summary, in human LMS cell lines
with knockdown and inhibition of EPCAM, the expression of

SNAP25 was significantly increased. SNAP25 and EPCAM knock-
down in vitro abrogated the increase in CD8+ T cell migration
observed after EPCAM knockdown. This suggests that SNAP25
mediates the effect of EPCAM on CD8+ T cell migration in the
human LMS cell lines.

Upregulation of EPCAM in human LMS cell lines does not
affect cell proliferation but promotes cell migration
Finally, EPCAM is reportedly involved in cell proliferation and
migration [23, 33, 34]. Therefore, we investigated the effect of
EPCAM expression on cell proliferation and migration in LMS cell
lines. In both TYLMS-1 and TC616 cells, EPCAM-knockdown cells
showed no differential proliferation compared to control cells
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(even in double knockdown cells with EPCAM and SNAP25)
(Supplementary Fig. 7a, b). In contrast, in both TYLMS-1 and TC616
cells, EPCAM-knockdown cells showed significantly reduced cell
migration compared with control cells (cell migration was equally
reduced in double knockdown cells with EPCAM and SNAP25)
(Supplementary Fig. 7c–f). These results indicate that upregulation
of EPCAM in LMS does not affect tumour growth but may promote
metastasis. Therefore, it is considered that EPCAM upregulation in

LMS promotes metastasis and inhibits CD8+ T cell infiltration, thus
worsening the prognosis by a dual mechanism.

DISCUSSION
In this study, we analysed the differences in the immune
environment between primary and lung metastatic lesions of
STS using clinical samples and found that the infiltration of CD8+
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T cells into the tumour core was significantly reduced in lung
metastases of LMS. Gene expression analysis suggested that
EPCAM might be responsible for decreased CD8+ T cell infiltration
in lung metastases. In vitro experiments using human LMS cell
lines further demonstrated that EPCAM inhibited the migration of
CD8+ T cells via SNAP25. This study is the first to reveal a novel
and unique role for EPCAM, suggesting that it may contribute to
immune evasion by inhibiting the infiltration of CD8+ T cells in
lung metastases of LMS.
In recent years, immunotherapy has shown good outcomes for

some malignant tumours [5]. Among them, immune checkpoint
inhibitors have shown good therapeutic outcomes against solid
tumours, such as melanoma, non-small cell lung cancer, renal cell
carcinoma, and head and neck cancer [6–9]; however, the cancer
types are limited, and numerous malignant tumours are not
responsive [10]. Several studies have reported limited therapeutic
effects of immune checkpoint inhibitors in STS [37]. In a phase 2
clinical trial (SARC028) evaluating the therapeutic effect of
pembrolizumab for advanced STS, therapeutic effects were
observed in some undifferentiated pleomorphic sarcomas and
liposarcomas; however, the effect was limited, and no therapeutic
effect was reported in LMS [11]. In our study, CD8+ T cell
infiltration was significantly reduced in LMS lung metastases. The
therapeutic effects of immune checkpoint inhibitors correlate with
the abundance of infiltrating CD8+ T cells [38]. Although this study
only examined lung metastases, the lack of infiltrating CD8+

T cells may explain the lack of a therapeutic effect of
pembrolizumab in LMS in SARC028. Furthermore, regardless of
immunotherapy, the abundance of tumour-infiltrating CD8+

T cells correlated with good prognosis in numerous malignant
tumours [28, 29]. The role of tumour-infiltrating CD8+ T cells in
LMS is not clear; therefore, when we analysed it using cohort data,
we found that the abundance of tumour-infiltrating CD8+ T cells
correlated with prognosis. Therefore, an approach to recover
tumour-infiltrating CD8+ T cells, which are reduced in distant
metastases, can improve the prognosis of LMS.
Cytokines play a significant role in the recruitment of CD8+

T cells to tumours. CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 are
involved in the recruitment of CD8+ T cells to tumours [35, 36].
Gene expression analysis revealed no differences in the expression
of these cytokines between LMS primary lesions, which had a
relatively high number of infiltrating CD8+ T cells, and LMS lung
metastases, which had a lower number of infiltrating CD8+ T cells.
Thus, we focused on EPCAM by considering the gene expression
results. In vitro verification revealed that EPCAM expression in
human LMS cell lines reduced CD8+ T cell migration. EPCAM is a
type I transmembrane glycoprotein that functions homophilically
as an epithelium-specific intercellular adhesion molecule. Addi-
tionally, EPCAM plays a role in signal transduction, cell migration,
proliferation, and differentiation [39]. EPCAM is highly expressed
in numerous malignant tumours, and much research has been
conducted on its use as a prognostic marker [40]. It is also used as
a cancer-associated antigen and has been used in clinical practice
as an EPCAM/CD3 bispecific antibody formulation for refractory

malignant ascites [41]. It has also been investigated as a
therapeutic target, and clinical trials of anti-EPCAM monoclonal
antibodies have been conducted in colorectal cancer and
metastatic breast cancer [42, 43]. Although these drugs are well
tolerated, their therapeutic efficacy is limited, and they are not
currently used. However, EPCAM is still considered a promising
therapeutic target and is being investigated as a novel antibody
preparation and target antigen for CAR-T therapy [44]. There are
few reports on the role of EPCAM in tumour immunity. Moreover,
there are only reports of its involvement in PD-L1 protein
expression in colorectal cancer and the cytotoxic activity of NK
cells in hepatocellular carcinoma [34, 45]. This study found that
EPCAM can also be used as a target for immunotherapy.
To explore the mechanism by which EPCAM inhibits the

migration of CD8+ T cells, we conducted RNA-seq in EPCAM-
knockdown and EPCAM-inhibited human LMS cell lines and
performed a comprehensive analysis. The data revealed that the
expression of SNAP25 significantly increased with EPCAM knock-
down and inhibition. When SNAP25 was knocked down with
EPCAM in vitro, an increase in the number of migrating CD8+

T cells was abrogated. Therefore, SNAP25 is considered to mediate
the inhibition of CD8+ T cell migration by EPCAM. SNAP25 is one
of the proteins that make up the SNARE complex located in the
presynaptic membrane and is widely known as a protein essential
for the exocytosis of neurotransmitters. SNAP25 has long been
associated with attention deficit hyperactivity disorder and
schizophrenia [46]; while there have been almost no reports
related to malignant tumours. However, a recent study using
TCGA database reported that SNAP25 expression correlates with
tumour infiltration of immune cells in colon and prostate cancers
[47, 48]. Di et al. reported that the expression of SNAP25 in
prostate cancer was positively correlated with the infiltration of
immune cells such as B, CD8+ T, CD4+ T, neutrophils, dendritic
cells, macrophages, and NK cells [48]. In addition, the expression
of SNAP25 was positively correlated with chemokine/chemokine
receptors, suggesting that SNAP25 may regulate the migration of
immune cells. In this study, we found that SNAP25 is involved in
the migration of CD8+ T cells in human LMS cell lines. However,
further research is required to elucidate the detailed mechanism
by which SNAP25 is involved in immune cell migration.
The limitations of this study include its small sample size. We

analysed 13 samples of LMS by immunostaining and six by gene
expression analysis and identified EPCAM as a gene involved in
the decrease in infiltrating CD8+ T cells in lung metastases of LMS.
Nonetheless, the sample size was insufficient, and more samples
should be examined in the future. In addition, we only studied
primary and lung metastatic lesions and did not examine
metastases to other organs, such as the bone, liver, brain, and
intestine. Although the lungs are the most common organ for
distant metastases of LMS, what happens in cases of metastasis to
other organs remains unknown. Next, we showed in vitro that the
knockdown or inhibition of EPCAM in human LMS cell lines
increased the migration of CD8+ T cells; however, this needs to be
verified in vivo. As no cell lines or animal models are readily

Fig. 4 Analysis of the effect of epithelial cellular adhesion molecule (EPCAM) inhibition and knockdown on the migration of cluster of
differentiation (CD)8+ T cells in the human leiomyosarcoma cell line TYLMS-1. a, b TYLMS-1 cells treated with EPCAM inhibitors-produced
conditioned media. Tumour necrosis factor-α converting enzyme (TACE) inhibitor (TAPI), and γ-secretase inhibitor (DAPT) were used. In
addition to the inhibition of EPCAM signalling by the combination of TAPI and DAPT, partial inhibition of EPCAM signalling was performed
with each drug alone. The migration of CD8+ T cells was evaluated and compared using a Transwell assay with conditioned medium.
c–f TYLMS-1 cells were transfected with small interfering (si)EPCAM or scrambled siRNA-produced conditioned medium. The migration of
CD8+ T cells was evaluated and compared using a Transwell assay with conditioned medium. a, e The membrane of the Transwell insert was
stained, and the number of migrated CD8+ T cells was evaluated. Representative microscopy images are shown. b, f Comparison of the
numbers of migrated CD8+ T cells. For each membrane shown in (a) and (e), the number of stained positive cells was counted in five different
fields using a 10× objective lens, and the total number was evaluated. c EPCAM expression in each cell line was determined by reverse
transcription-quantitative polymerase chain reaction (RT-qPCR). d EPCAM expression in each cell line was determined by western blotting.
Data in (b) and (f) are mean ± standard deviation (SD); n= 3. Two-tailed t-test. *p < 0.05, **p < 0.01.
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available for LMS, patient-derived cell or xenograft models must
be used for in vivo verification. In addition, because the
verification of these findings requires the evaluation of tumour
infiltration by CD8+ T cells, animal models with functional immune
cells, such as humanised mice, are required.

In this study, the number of infiltrating CD8+ T cells was
significantly reduced in lung metastases of LMS compared with
that in primary lesions. Furthermore, gene expression data
showed that EPCAM is upregulated in lung metastases, suggesting
that it is involved in the decrease in infiltrating CD8+ T cells, which
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was verified in vitro. To our knowledge, this is the first study to
report a unique role of EPCAM in the suppression of CD8+ T cell
migration. In addition, EPCAM knockdown in LMS cell lines
reduced tumour cell migration in vitro. In LMS, therapies targeting
EPCAM could potentially improve prognosis by reducing metas-
tases and restoring the infiltration of CD8+ T cells.
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