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BACKGROUND: Previous studies have shown that functional systemic immunity is required for the efficacy of PD-1/PD-L1 blockade
immunotherapies in cancer. Hence, systemic reprogramming of immunosuppressive dysfunctional myeloid cells could overcome
resistance to cancer immunotherapy.
METHODS: Reprogramming of tumour-associated myeloid cells with oleuropein was studied by quantitative differential
proteomics, phenotypic and functional assays in mice and lung cancer patients. Combinations of oleuropein and two different
delivery methods of anti-PD-1 antibodies were tested in colorectal cancer tumour models and in immunotherapy-resistant lung
cancer models.
RESULTS: Oleuropein treatment reprogrammed monocytic and granulocytic myeloid-derived suppressor cells, and tumour-
associated macrophages towards differentiation of immunostimulatory subsets. Oleuropein regulated major differentiation
programmes associated to immune modulation in myeloid cells, which potentiated T cell responses and PD-1 blockade. PD-1
antibodies were delivered by two different strategies, either systemically or expressed within tumours using a self-amplifying RNA
vector. Combination anti-PD-1 therapies with oleuropein increased tumour infiltration by immunostimulatory dendritic cells in
draining lymph nodes, leading to systemic antitumour T cell responses. Potent therapeutic activities were achieved in colon cancer
and lung cancer models resistant to immunotherapies, even leading to complete tumour regression.
DISCUSSION: Oleuropein significantly improves the outcome of PD-1/PD-L1 blockade immunotherapy strategies by
reprogramming myeloid cells.
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BACKGROUND
Tumour-associated myeloid cells (TAMCs) are major promoters of
tumour progression and metastasis, of which myeloid-derived
suppressor cells (MDSCs) and tumour-associated macrophages
(TAMs) are the main contributors to cancer-associated immuno-
suppression [1]. MDSCs are classified into two types according to
their phenotype: monocytic (m-MDSCs) and granulocytic
(g-MDSCs) [1]. Elevation of TAMC numbers systemically and
within the tumour microenvironment is associated with resistance
to chemotherapy, targeted therapy, and immunotherapy [2, 3].
Overall, an increase in the number of these populations is a poor
prognostic factor [4, 5]. In fact, these myeloid subsets have also

been used as biomarkers for clinical responses to immune
checkpoint blockade with monoclonal antibodies (mAbs) against
programmed death 1 (PD‐1) or its ligand (PD‐L1) [3, 6–8]. Previous
studies have shown that reprogramming of immunosuppressive
myeloid cells towards immunostimulatory subsets does take place
in responder patients under PD-1/PD-L1 blockade immunothera-
pies [3, 6, 9, 10]. Therefore, TAMC reprogramming before immune
checkpoint blockade could overcome resistance to therapy by
potentiating the “immunogenic metabolism” which controls key
processes such as phagocytosis and antigen presentation [11, 12].
Metabolic pathways are important regulators of myeloid cell
phenotype and function [13, 14]. We previously identified key
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metabolic networks in mouse MDSCs and TAMs regulating their
activities [15], using ex vivo-differentiated myeloid cells modelling
tumour-associated subsets [9, 16, 17]. Glycolytic pathways,
oxidative phosphorylation, and lipid metabolism were activated
in immunosuppressive myeloid cells. The main differential
characteristics among murine TAMCs subsets were also identified.
These included pathways related to fatty acid oxidation, which are
emerging as promising therapeutic targets [15, 18]. Some
modulators of fatty acid and lipid metabolic pathways have been
shown to reprogramme immunity in cancer [18–20], including
oleuropein, an olive oil bisphenol derivative used to regulate
chronic inflammation and oxidation. Oleuropein demonstrated
anti-proliferative capacities over cancer cells in vitro and in vivo
[21–23]. However, the reprogramming capacities of oleuropein
over TAMCs and its capacity to potentiate PD-1/PD-L1 blockade
have not been evaluated yet.
Current PD-1/PD-L1 blockade strategies are based on systemic

administration of the therapeutic mAbs once or twice a month.
However, this mode of delivery is characterised by poor antibody
penetration into solid tumours. Moreover, anti-PD-1/anti-PD-L1
antibodies can cause inflammatory adverse events and even
hyperprogressive disease in immunotherapy-treated patients [24].
Local delivery of mAbs within tumours could circumvent these
problems by increasing the therapeutic index while reducing off-
target toxicities [25–27]. PD-1/PD-L1 blockade antibodies have
been delivered into tumours using cytotoxic viral vectors to
increase immunogenicity [28, 29]. For example, RNA vectors based
on Semliki Forest virus (SFV) have been used to deliver transgenes
into target cells. Short local expression of anti-PD-L1 mAb or
nanobodies with SFV vectors demonstrated significant therapeutic
efficacy in colon adenocarcinoma and melanoma models [30, 31].
Infection of tumour cells also caused apoptosis and the induction
of potent type I interferon responses which further potentiated
antitumour responses.
Here, we conducted an in-depth characterisation of the

reprogramming capacities of oleuropein over cancer-associated
myeloid cells to overcome the resistance to PD-1/PD-L1 blockade
immunotherapies associated to these immune cell types.
Oleuropein-regulated interactome networks were identified by
differential quantitative proteomics in myeloid cell subsets which
were associated to reprogramming towards immune stimulation.
Reprogramming was confirmed phenotypically and functionally.
Oleuropein was combined with two PD-1 blockade strategies,
either systemically or locally by delivering anti-PD-1 mAb with a
self-amplifying SFV RNA vector. Oleuropein combined with PD-1
blockade showed significant therapeutic activities in cancer
models resistant to PD-1 blockade.

METHODS
Animal studies
Four-week-old female C57BL/6 and BALB/c female mice were purchased
from Envigo (Barcelona, Spain). Animal studies were approved by the
University of Navarra ethics committee (E20-22(078-19E1) and 077-19).
ARRIVE reporting guidelines were followed.

Cells
BHK-21 cells (ATCC-CCL10) were grown as described [31]. LLC cells were
grown in DMEM (GIBCO BRL, UK) supplemented with 10% FBS, 2 mM
glutamine, and antibiotics. LLC cells expressing mouse GM-CSF (LLC-
GMCSF) were generated by lentivector transduction following published
methodologies [9, 15–17]. MC38 cells were provided by Dr. Karl E.
Hellström (University of Washington, Seattle, WA). These cells were
cultured in RPMI-1640 medium (Lonza, Switzerland) supplemented with
10% FBS, 2 mM glutamine, 20 mM HEPES, antibiotics and 50 µM
2-mercaptoethanol. H1299 cells (ATCC- CRL5803) and A549 cells
(ATCC-CCL-185) were purchased from the ATCC and cultured in RPMI
1640 Medium with L-Glutamine (Lonza) supplemented with 5% fetal
bovine serum (FBS) and 5% Penicillin-Streptomycin 10,000 U/ml

(GIBCO BRL, UK). All cell lines were tested once a month for mycoplasma
by PCR.

Ex-vivo differentiation and purification of murine MDSCs
and TAMs
Granulocytic-MDSCs, monocytic-MDSCs and TAMs were differentiated
from mouse bone marrow following published procedures using
conditioning medium produced by LLC tumour cells stably expressing
GMCSF and MCSF cells [9, 15–17, 32]. MDSC subsets were purified using
the myeloid-derived suppressor cell isolation kit (Miltenyi Biotec, Bergisch,
Germany). MDSCs and TAMs were seeded with 50 µM oleuropein and
incubated for 7 days. Oleuropein was obtained as described in [33, 34].

Mixed lymphocyte reaction (MLR)
MLR were carried out following standard procedures [16]. Briefly, 100,000
MDSCs or TAMs from C57BL/6 mice were co-cultured in 96-well plates with
100,000 lymphocytes from BALB/c mice. Co-cultured cells were treated
with 50 µM oleuropein and compared with control vehicle. After 5 days,
T-lymphocyte activation, differentiation and proliferation were assessed by
flow cytometry. T cell activation and proliferation markers (Ki-67) and pro-
inflammatory cytokine production (IL-2 and IFNγ) were evaluated by flow
cytometry as described [35].

Mass spectrometry-based quantitative (shotgun) proteomics
and bioinformatics analysis
Five biological replicates per sample were analysed (m-MDSC, g-MDSC and
TAM). Cell pellets were homogenised in lysis buffer (7 M urea, 2 M thiourea
50mM DTT). Protein extracts were diluted in Laemmli buffer and loaded
into a 0.75mm thick polyacrylamide gel with a 4% stacking gel casted over
a 12.5% resolving gel. Proteomes were concentrated in the stacking/
resolving interface. Bands were stained with Coomassie Brilliant Blue,
excised and cleaved with trypsin (Promega, WI, USA; 1:20, w/w) at 37 °C for
16 h as previously described [36]. Peptide purification and concentration
was performed using C18 Zip Tip Solid Phase Extraction (Millipore).

LC-MS/MS
Peptides were separated by reverse phase chromatography using an
UltiMate 3000 UHLPC System (Thermo Scientific, MA, USA) fitted with an
Aurora packed emitter column (Ionopticks, 25 cm × 75 µm ID, 1.6 µm C18).
Samples were desalted and concentrated into an Acclaim PepMap column
(ThermoFisher, 0,5 cm × 300 µm ID, 5 µm C18). Mobile phases were 100%
water 0.1% formic acid (FA) (buffer A) and 100% Acetonitrile 0.1% FA
(buffer B). Column gradient was developed in a 120min two-step gradient
from 5% B to 20% B in 90min and 20% B to 32% B in 30min. Column was
equilibrated in 95% B for 10min and 5% B for 20min. The precolumn was
in line with the column and the flow maintained all along the gradient at
300 nl/min. Temperature was maintained at 40 °C and interfaced online
with the Orbitrap Exploris 480 MS. Spray voltage were set to 2 kV, funnel RF
level at 40, and heated capillary temperature at 300 °C. Full MS resolutions
were set to 1,200,000 at m/z 200 and full MS Automatic gain control (ACG)
target was set to Standard with an IT mode Auto. Mass range was set to
375–1500. AGC target value for fragment spectra was set to Standard with
a resolution of 15,000 and 3 s for cycle time. Intensity threshold was kept at
8E3. Isolation width was set at 1.4 m/z. Normalised collision energy was set
at 30%. Data were acquired in centroid mode using positive polarity and
peptide match was set to off, and isotope exclusion was on.

Data analysis
Raw files were processed with MaxQuant [37] v1.6.17.0 using the
integrated Andromeda Search engine [38]. All data were searched against
a target/decoy version of the mouse Uniprot Reference Proteome with
March 2021 release. First search peptide tolerance was set to 20 ppm, main
search peptide tolerance was set to 4.5 ppm. Fragment mass tolerance was
set to 20 ppm. Trypsin was specified as enzyme, cleaving after
carbamidomethylation of cysteine was specified as fixed modification
and peptide N-terminal acetylation, oxidation of methionine, deamidation
of asparagine and glutamine and pyro-glutamate formation from
glutamine and glutamate were considered variable modifications with a
total of two variable modifications per peptide. “Maximum peptide mass”
were set to 7500 Da, the “modified peptide minimum score” and
“unmodified peptide minimum score” were set to 25 and everything else
was set to the default values, including the false discovery rate limit of 1%
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on both the peptide and protein levels. The Perseus software (version
1.6.14.0) [39] was used for statistical analysis and data visualisation.
Metascape [40] was used to identify enrichment GO processes, KEGG
pathways, reactome gene sets and canonical pathways in our proteomes.
For multicomparisons, ANOVA tests were performed followed by pairwise
comparisons Student’s t tests. Data were filtered according to −Log p
value x ≥ 1.3 and; log2 fold change x ≥ 0.38 and x ≤−0.38. Construction of
functional interactomes from up- or down-regulated proteins was carried
out with the Ingenuity Pathway Analysis Tool (Qiagen) (https://
www.qiagen.com/us/products/discovery-and-translational-research/next-
generation-sequencing/informatics-and-data/interpretation-content-
databases/ingenuity-pathway-analysis/).

Real-time cell analysis
Cytotoxicity in cell cultures was evaluated by xCELLigence Real-Time Cell
Analysis (RTCA) (Roche Diagnostics GmbH, Mannheim, Germany) as
described before [3, 17]. Briefly, LLC, H1299, and A549 cells were seeded
at a density of 3 × 103 cells/well on gold microelectrode-embedded 16-well
microplates (E-plates; Roche Diagnostics, Basel, Switzerland) and incubated
at 37 °C with 5% CO2. Impedance was recorded at 15min intervals.
Oleuropein (25–250 µM) was added to the culture at seeding time.
Incubations were performed in a volume of 100 µl up to 120 h. Delta Cell
Index values were evaluated with RTCA-DP software (Roche Diagnostics
GmbH). Delta CI (Delta Cell index) was used to normalise data.

Cell staining and flow cytometry
Maleimide dye was used (Promokine) to discriminate living from dead
cells. Surface and intracellular staining were carried out as described
[15, 35] with fluorochrome-conjugated antibody clones: AF488 anti-CD49d
(R1-2), PE anti-CD4 (GK1.5), APCanti-CD8(53-6.7), brilliant Violet 510™ anti-I-
A/I-E (M5/114.15.2,PE/Cyanine7anti-Ly-6G (1A8), and APC anti-CD80 (16-
10A1) (Biolegend, CA, USA), FITC anti-IL-12 (C15.6) and BV421 anti-IL-2
(JES6-5H4) (BD Bioscience, NJ, USA), APC-Vio ® 770 anti-Ly-6C (REA796), PE
REAfinity™ anti-F4/80 (REA126), and APC anti-CD68 (REA886) (Miltenyi),
PerCP-Cyanine5.5 Anti-Human/Mouse CD11b (M1/70) (Tonbo, CA, USA),
and AF488 anti-IFNγ (Clone XMG1.2) (BD Pharmigen, NJ, USA). For human
cells, we used the following fluorochrome-conjugated antibodies: PerCP-
Cy5.5-anti-CD11b (integrin alfa M) (M1/70), Violet Fluor 450 anti-CD14
antibody (61D3) (Tonbo), PE anti-CD115 (CSF-1R) (9-4D2-1E4) (Biolegend),
PE-Cy™7 anti-CD11c (Clone B-ly6) (BD Bioscience), and APC anti-HLA-DR
(REA517) (Miltenyi).
Infiltrating immune cells were studied with the fluorochrome-

conjugated antibody clones: FAPCH7 anti-CD45 (S18009F), BV605 anti-
F4/80 (BM8), AF700 anti-CD11c(N418), BV650 anti-CD14 (Sa14-2), PE anti-
CD115 (9-4D2-1E4), BV785 anti-PD-L1 (29E.2A3), Alexa Fluor® 488 anti-
CD49d (R1-2), BV510 anti-Ly6c (HK1.4), BV421 anti-VISTA (MH5A), BV605
anti-CD3 (17A2), AF700 anti-GrzB (QA16A02), BV650 anti-NKp46 (29A1.4),
BV785 anti-CD4 (GK1.5), PE/Cyanine7 anti-Ly-6G (1A8), APC anti-CD137
(17B5), BV510 anti-CD8 (53-6.7), PE anti-TIM3(RMT3-23) and BV421 anti-
LAG3 (C9B7W) (Biolegend), FITC anti-PD-1 (J43) (BD Bioscience), PerCP-
Cy5.5-CD11b (integrin alfa M) (M1/70) (Tonbo), APC anti-CD68 (REA886)
(Miltenyi). Data were collected using the FACSCanto Flow Cytometer (BD
Biosciences) for ex vivo and in vitro experiments at Navarrabiomed
Biomedical Research Center and Cyroflex LX flow cytometer (Beckman
Counter) to characterise tumour and lymph nodes at CIMA Universidad de
Navarra. Data were analysed with Flowjo.

Myeloid cell samples from non-small cell lung cancer (NSCLC)
patients
Twenty one patients with locally advanced or metastatic NSCLC treated
with the immune checkpoint inhibitor (ICI) pembrolizumab (anti-PD-1)
were recruited for the study. The characteristics of the cohort under study
are described in [3, 35]. This observational study was approved by the
Ethics Committee of Clinical Investigations at the University Hospital of
Navarre (reference number: PI_2020/115). Blood samples from non-small
cell lung cancer (NSCLC) patients were collected prior to treatment and
before administration of each immunotherapy cycle, after a signed
informed consent from the patients.
PBMCs were isolated and grown in vitro for 24 h in TEXCMACs medium

(Miltenyi Biotec) as described [3, 35]. Myeloid cells were obtained by
adherence to plastic for 24 h. Then, 50,000 myeloid cells were seeded per
well with 50 µM oleuropein in 96-well plates and incubated for
seven days.

Production and characterisation of recombinant SFV-
αPD1 vector
The SFV-αPD1 vector was engineered by cloning the coding sequence of
an anti-PD-1 mAb synthesised by GenScript [31]. This gene contains the
sequences corresponding to the heavy (IgG1 isotype) and light (lambda)
chains of an aPD-1 mAb fused by the foot and mouth disease virus 2A self-
cleaving peptide sequence preceded by a furin cleavage sequence. The
gene was subcloned into Apa I site in the SFV-b12A vector following the
same strategy used to construct SFV-αPDL1, which encodes a mAb against
PD-L1 [30]. SFV-LacZ was described previously [41].
SFV-αPD1 viral particles (VPs) were titrated in SFV-infected BHK-21 cells

following published procedures [41]. Vector titre were approximately
6 × 1010 VPs/ml for SFV-αPD1 and 2 × 1010 VPs/ml for SFV-LacZ.
Anti-PD1 mAb expression was corroborated in vitro in infected BHK-21

and LLC cell monolayers with SFV VPs at a multiplicity of infection (MOI) of
20. After 24 h, anti-PD1 mAb expression was quantified in cell extracts and
supernatants by ELISA and Western blot. Expressed recombinant anti-PD1
mAb in supernatants or lysates was quantified by ELISA (Mabtech, Sweden)
following the manufacturer’s instructions. A commercial IgG1 mAb was
used as a standard curve (Santa Cruz Biotechnology).
The binding capacity of the anti-PD1 mAb was quantified by a specific

PD-1 binding ELISA developed by our laboratory. Briefly, ELISA plates were
coated with 1 µg/ml recombinant murine PD-1 fused to human IgG1 Fc
(R&D, Minneapolis, USA) and incubated overnight at 4 °C. Subsequently,
the plates were incubated with serial dilutions of the samples. Finally, the
wells were incubated with a goat polyclonal anti-mouse IgG1 conjugated
with peroxidase (Abcam), and the substrate tetramethylbenzidine (TMB)
was used to develop the reaction and stopped with 2 M NaOH. The
absorbance was measured in an ELISA reader at 450 nm.
To confirm the blockade capacities of the expressed anti-PD1 mAb, a

competitive inhibition ELISA was developed. Briefly, ELISA plates were
coated with 0.025 μg/ml PD-L1 fused to human IgG1 Fc (R&D). Then, wells
were incubated with a mixture of 0.3 μg/ml biotinylated PD-1 (BPS
Bioscience) and different concentrations of the recombinant anti-PD-1
mAb. Finally, wells were incubated with streptavidin-peroxidase and the
reaction was stopped and read. As a positive control, purified anti-PD-1
mAb was used (Bioscience).

Mouse tumour models and therapies
Sample sizes were calculated to achieve a minimum power of 0.8 for F-
based tests taking into consideration a large effect size (f= 04). Power
calculations were carried out with Gpower 3.1.9.7. Blinding was used for
data analysis and correlation with survival. C57BL/6 female mice were
randomly allocated and subcutaneously (s.c.) injected with 106 LLC cells or
0.5 × 106 MC38 cells per animal. No blinding was established for the
experiments. When tumour growth reached an average diameter of
3.5 mm (day 0), 109 VPs of SFV vectors were administered intratumourally
(i.t.) in a volume of 50 µl. Control mice received the same volume of saline.
Some groups of mice received 100 µg of anti-PD-1 mAb (RPMI-14, BioXCell)
intraperitoneally (i.p.) at days 0, 5, and 13. When appropriate, mice received
300 µg oleuropein at days -1, 2, 4, 6, and 8. As negative control, the same
volume of saline was injected.
The two perpendicular tumour diameters were measured every two

days. The size was calculated using the formula: Size=Length ×Width.
Mice were humanely sacrificed when tumour size reached ~150mm2, or
when tumour ulceration or discomfort were observed. For rechallenge
experiments in the MC38 model, mice that rejected tumours were injected
s.c. with 5 × 105 MC38 cells in the left flank 3 months after the first tumour
inoculation. Naïve mice were included as controls. Tumour growth was
monitored for 2 months. Tests for liver function were carried out by
measuring serum ALT, AST, and amylase on a Cobas Mira Plus Analyser (c-
311 Roche Diagnostics).
For immunophenotyping of tumour immune infiltrates, draining lymph

nodes (DLNs) and spleens were extracted from mice harbouring LLC-
derived tumours. Tumours, DLNs and spleens were isolated on day 5 post-
treatment, and immune infiltrates analysed by flow cytometry. Briefly,
tumours were treated with 100 μg/ml LIBERASE TL (5401119001 ROCHE,
France) and 100 μg/ml DNase I (ROCHE, France). After mechanical tissue
dissociation and incubation at 37 °C for 1 h, cells were filtered through a
70-mm nylon mesh (BD Falcon, BD Bioscience, San Jose, CA, USA), washed
with PBS, treated with ammonium-Chloride-Potassium (ACK) lysing buffer
(Gibco, ThermoFisher, USA), and washed again with PBS. DNLs and spleens
were homogenised in PBS by mechanical tissue dissociation. Cell stainings
and flow cytometry were then carried out.
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ELISPOT
ELISPOTs were performed with the IFNγ ELISPOT kit (BD Biosciences)
following the instructions of the manufacturer. The number of IFNγ-
producing cells was quantified in splenocytes. Briefly, a 96-well plate was
coated with an anti-mouse IFN-γ capture antibody at a concentration of
5 μg/ml in PBS. After overnight incubation at 4 °C, the antibody was
removed and the wells were blocked with RPMI-1640 complete medium
for 2 h at room temperature (RT). Splenocytes (7 × 105/well) were co-
cultured with irradiated LLC cells (using 14,000 cGy) at a 10:170
lymphocyte:tumour cell ratio. The following day IFN-γ+ spots were
revealed and counted in an automated ELISPOT reader (CTL, Aalen,
Germany).

Statistical analyses
Statistical analyses were performed with the GraphPad Prism 8.3 software
package. No data was discarded from analyses. Cytometry data from
ex vivo or in vitro experiments were normalised to their respective controls
(samples not treated with oleuropein). All in vitro and ex vivo results from
cytometry analysis were normalised against their controls (treated sample
value- control sample value). Normality was evaluated with
Kolmogorov–Smirnov and Shapiro–Wilk tests (in the case of samples with
n < 10). Homocedasticity was evaluated by the chi-squared test. Statistical
analyses were performed with paired-tailed Student’s t test (paired
dependent t test), with a significance level of p < 0.05. For non-normally
distributed data or with intrinsic variability the Wilcoxon matched pairs test
was used. For RTCA analyses, the slope between two points was calculated
using the following formula: m= (y1− y2)/(x1− x2).
Tumour measurements of in vivo experiments were represented as

tumour surface (mm2) and plotted either as individual data points for one
individual mouse, or as mean ± SD as indicated in figure legends. For
in vivo experiments, one-way ANOVA test was used for multicomparisons,
followed by a posteriori Tukey’s pair-wise comparisons. When indicated,
two-tailed Student’s t test was applied to compare two experimental
groups. For time-series analyses, data were compared using the extra sum-
of-squares F test and fitted to second-order polynomial equation. Survival
was represented by Kaplan–Meier plots and analysed by log-rank test.

RESULTS
Reprogramming of TAMCs by oleuropein
The capacities of oleuropein to overcome the immunomodulatory
functions of MDSCs and TAMs were evaluated over MDSCs and
TAMs differentiated ex vivo. Oleuropein treatment caused
morphological changes in immunosuppressive myeloid cells
(Fig. S1a). After treatment, MDSCs acquired the characteristic
elongated shapes of dendritic cells (DCs), while TAMs resembled
M0 (uncommitted) or M1 (immunostimulatory) macrophages.
Importantly, oleuropein upregulated the expression of surface
markers of activation and antigen presentation together with
significant production of IL-12 (Fig. 1a, b). Mixed lymphocyte
reactions (MLR) were used to test T cell activating capacities by
oleuropein-treated myeloid cells. Untreated MDSCs and TAMs
failed to stimulate T cells. In contrast, these cells potently
stimulated CD4 T cell proliferation and production of interferon-
gamma (IFN-γ) and IL-2 following oleuropein treatment (Figs. 1c
and S1b). We hypothesised that this functional change could be
caused by myeloid cell reprogramming towards differentiation of
immunostimulatory subsets. To find out if this was the case, the
proteomes of oleuropein-treated MDSC and TAMs were compared
to untreated controls (Fig. 1d, e). Differentially-regulated proteins
were identified with a false discovery rate lower than 1% (912,
2620, and 955 for m-MDSC, g-MDSC, and TAM, respectively)
(Fig. S1c). Cluster analyses confirmed significant changes in
proteomes of oleuropein-treated TAMCs (Fig. 1e). Ingenuity
pathway analysis (IPA) algorithms identified the pathways
specifically altered by oleuropein (Fig. 1f). Protein networks
regulating inflammation were down-modulated. Pathways and
regulators associated to immunosuppressive functions in MDSCs
and TAMs were reduced, including decreased expression of the
TREM1 receptor, cyclic adenosine monophosphate (cAMP), RAN
signalling, IL-9 and CD40 [42, 43]. Additionally, oleuropein

treatment up-regulated pathways such as LXR/RXR and fatty acid
β-oxidation I signalling (Figs. 1f and S2), associated to MDSC
reduction in vivo [44, 45]. The lipid metabolism was altered
through increased expression of regulators such as sirtuin,
polyamines, and PPAR-α/ RXR-α, while oestrogen and insulin
signalling were downregulated (Fig. 1f). Oleuropein altered
signalling pathways associated to fatty acid β-oxidation, including
a reduction of IL-36γ signalling and Lyz1 (Fig. S2a, c, d, f). The
expression of some proteins was specific for particular myeloid
subsets. For example, Ftap4, Acsf2 and Ilrn1 were inhibited in
m-MDSC but not in g-MDSC (Fig. S2c, e). Glut1, a regulator of
glucose uptake which drives M1 polarisation [46], was elevated in
TAMs treated with oleuropein (Fig. S2f). Summarising, oleuropein
caused major global reprogramming in murine myeloid cell
subsets by deactivating immunosuppressive pathways.
We tested whether similar results could be obtained in human

myeloid cells isolated from peripheral blood of NSCLC patients.
Following oleuropein treatment, an elevation of CD11b+ cells was
observed with an increase in the percentage of myeloid cells
expressing CD115 HLA-DR, CD14 HLA-DR, and CD11c HLA-DR
(Fig. 2a). Hence, oleuropein caused a diversification towards
monocytic-like and dendritic cell (DC)-like phenotypes. These
results were not limited to myeloid cells from cancer patients, as
similar results were obtained with myeloid cells from healthy
donors (Fig. 2b).

Oleuropein sensitises a lung cancer model resistant to PD-1
blockade and potentiates immunotherapy
The capacities of oleuropein to inhibit the growth of lung
adenocarcinoma cells were studied in cultures of mouse LCC
and human A549 and H1299 cell lines. Oleuropein retarded their
growth within a concentration range of 50–250 μM (Fig. S3a, c). To
test antitumour capacities in vivo, LLC cells were implanted
subcutaneously in mice and tumours were allowed to grow to an
average diameter of around 12 mm2. Tumours derived from LCC
cells are poorly immunogenic and notoriously refractory to PD-1/
PD-L1 blockade [3, 9, 47, 48]. Oleuropein was then administered
intraperitoneally every other day for 8 days (Fig. S4a). Oleuropein
significantly delayed tumour growth and increased survival
(Fig. S4b, c), with most of the mice responding to the treatment
(Fig. S4d).
The combination of oleuropein with systemic administration of

anti-PD1 antibodies was evaluated in the LCC lung cancer model
(Fig. 3a). As controls, groups of mice were treated with saline or
with each of the agents singly. Again, oleuropein significantly
delayed tumour growth and increased survival. As expected, anti-
PD-1 mAb monotherapy failed, confirming the resistance of LCC-
derived tumours to PD-1 blockade (Fig. 3c, d). Importantly,
oleuropein alone and the combination therapy significantly
increased long-term survival (Fig. 3d).

Oleuropein potentiates PD-1 blockade immunotherapy in
colorectal cancer
The therapeutic efficacy of oleuropein alone and the oleuropein/
PD-1 blockade combination were tested in a colorectal cancer
model with MC38 cells. Oleuropein was administered intraper-
itoneally 1 day prior to anti-PD1 mAb injection, followed by four
intraperitoneal doses every 2 days. As in previous experiments,
mice treated with anti-PD1 mAb received two additional
intraperitoneal doses (Fig. 4a).
Oleuropein significantly delayed the growth of MC38 tumours

which significantly increased survival with a 16% cure rate
(Fig. 4b–d). In this tumour model, anti-PD-1 mAb alone also
significantly improved long-term survival with 33% complete
regressions. Importantly, oleuropein combined with systemic PD-1
blockade demonstrated a very potent antitumour activity with
66% complete regressions and a significant increase in long-term
survival (Fig. 4b, d). Mice with complete remissions remained
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tumour-free after challenge with MC38 cells (Fig. 4e), demonstrat-
ing efficacious memory responses.

Oleuropein combined with anti-PD-1 delivery within tumours
with a SFV vector demonstrates significant therapeutic
activities
Intratumour mAb delivery could reduce toxicity by concentrating
mAb activity within the TME [25–28]. Hence, a strategy based on
intratumour expression of anti-PD-1 mAb in combination with
oleuropein was studied. A self-amplifying RNA vector based on
SFV was used to express anti-PD-1 (SFV-αPD-1, Fig. S5a). This
vector expressed and secreted anti-PD-1 mAb in vitro in BHK and
LLC infected cells (Fig. S5b), with the expected specificity and
blockade activities (Fig. S5c, d).
Oleuropein was then administered intraperitoneally in combi-

nation with a single injection of SFV-αPD-1 within LLC tumours
(Fig. 5a). Treatment with SFV-αPD-1 alone reduced tumour growth

and significantly increased survival. These results demonstrated
that local delivery of anti-PD-1 mAb was efficacious in lung
tumours resistant to conventional anti-PD-1 therapy (Fig. 5b–d).
Importantly, the oleuropein/SFV-αPD-1 combination demon-
strated the most potent therapeutic activity leading to complete
regressions and 33% long-term survival (Fig. 5d).

Oleuropein enhances antitumour responses by altering
tumour immune infiltration
To uncover the mechanisms by which oleuropein exerts
antitumour responses in vivo either alone or in combination with
PD-1 blockade therapies, mice with LLC-derived tumours were
treated with the different therapeutic strategies (Fig. 6a). Tumours
and draining lymph nodes (DLNs) were isolated on day 5 post-
treatment, and the immune infiltrate was analysed. This time point
was chosen because tumour growth delay was evident following
treatments (Fig. S5a).
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As expected from our previous data, we found differences in
myeloid cell composition. Oleuropein significantly decreased
CD115+ myeloid cells (macrophages, neutrophils, and MDSCs)
(Fig. 6b). The oleuropein/SFV-αPD-1 combination significantly
decreased MDSCs (CD49d+CD11b+) (Fig. 6c). Interestingly, the
inhibitory checkpoint Vsir (VISTA) was downregulated in all treated
groups (Fig. 6d, e). This was particularly evident in CD115+ cells in
groups responding better to therapies (oleuropein alone or
combined with SFV-αPD-1). PD-L1 expression in myeloid cells
was reduced only in mice treated with SFV-αPD-1 (Fig. 6f).
However, a closer analysis uncovered a significant reduction in the
percentage of cells co-expressing VISTA and PD-L1 (Fig. 6e). No
apparent changes in T and NK cell infiltration were observed
(Fig. S6c, e), with the exception of a significant increase in
CD137+CD4 T cells after oleuropein treatment (Fig. 6h). Mice
treated with the oleuropein/αPD-1 mAb combination showed an
increase of PD-1+ and LAG3+ CD4 T cells (Fig. 6i, j). In contrast,
mice treated with SFV-αPD-1 showed a reduction of PD-1+ and
TIM3+ CD4 T cells (Fig. 6i, k), highlighting differences in the mode

of action of anti-PD-1 delivery systems. In DLNs, DC infiltration was
elevated in all groups especially with the oleuropein/SFV-αPD-1
combination (Fig. 6l). Interestingly, and in contrast to results from
the tumour microenvironment, a significant increase in VISTA+
CD11b+ myeloid cells was observed in DLNs for oleuropein, SFV-
αPD1, and oleuropein/SFV-αPD-1 treated groups (Fig. 6m). Sys-
temic antitumour T cell responses were evaluated in splenocytes
by IFNγ ELISPOT using irradiated LLC cells at a 10:1 ratio (Fig. 6n).
SFV-αPD1 treatment was the most potent inducer of systemic T
cell responses.
Responses were also studied for SFV-αPD1 or in combination

with oleuropein at later times (day 11 post-treatment) (Fig. S7a).
Antitumour responses were more evident for all treatment groups
at this timepoint (Fig. S7b). These groups also showed a significant
decrease in CD49d+CD11b+ MDSCs and CD115+CD11b MDSCs
in tumours (Fig. S7c). No changes were found in VISTA and PD-L1
expressing cells (Fig. S7d, f). In tumours, mice treated with SFV-
αPD1 showed a significant decrease in CD11b+ cells (Fig. S7g) but
an elevation of CD3+ T cells compared with oleuropein (Fig. S7h).
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All treated mice exhibited significant systemic responses (Fig. S7i).
Hepatic and pancreatic toxicities were assessed by quantifying
serum transaminase (Fig. 6o, p) and amylase (Fig. S7j). All groups
treated with oleuropein, SFV- αPD1 or their combination, showed
a significant reduction in AST levels.

DISCUSSION
PD-1/PD-L1 blockade has demonstrated remarkable clinical out-
comes in patients with many tumour types. Nevertheless, these
therapies still fail in most cancer patients due to immunosuppres-
sion within the TME and systemic immune dysfunctionality
[3, 35, 49]. Myeloid cells constitute the major immune constituent
of the TME infiltrate, so reprogramming these cell subsets to
stimulate anticancer activities could be a promising strategy to
overcome treatment resistance. Oleuropein demonstrated potent
reprogramming activities over MDSCs and TAMs differentiated
ex vivo. Major reorganisations of intracellular pathways were
demonstrated by quantitative proteomics, as well as acquisition of
immunostimulatory phenotypes leading to enhanced T cell
activation capacities. Remarkably, up-regulation of IL-12 in all
oleuropein-treated myeloid cell subsets was demonstrated. This is
important because IL-12 is one of the most potent anti-cancer
cytokines [12, 16, 50–53]. Overall, oleuropein changed differentia-
tion and polarisation of immunosuppressive myeloid cells, including
m-MDSCs, g-MDSCs and TAMs. Oleuropein altered cholesterol and
fatty acid metabolism by activating LXR/RXR and PPAR-α/ RXR-α
pathways, which in macrophages regulate lipid and glucose
metabolism as well as inflammatory responses [45, 54]. TREM-1
and cAMP-mediated pathways were also inhibited in all TAMCs. It is
important to remark that TREM-1 expression in TAM has been
associated to resistance to PD-L1 blockade in hepatocellular
carcinoma [55]. cAMP signalling, associated to MDSC and TAM
immunosuppressive functions [42, 43], was also down-regulated by

oleuropein. VISTA was also downmodulated by oleuropein both
in vitro and in vivo in tumour mouse models, an immune
checkpoint associated to myeloid cell immunosuppression [48].
Finally, oleuropein polarised in vitro differentiated TAMs towards
activated macrophage-like phenotypes. Similar results were
observed in myeloid cells isolated from NSCLC patients.
In our study we combined oleuropein with anti-PD-1 mAb

immunotherapies. In agreement with previous studies, oleuropein
alone exhibited antitumour activities in vitro and in vivo [56–58].
Importantly, oleuropein demonstrated potent reprogramming
capacities of myeloid cells, and potent antitumour activities in
combination with anti-PD-1 therapies in lung cancer and colon
cancer models. One of these corresponded to lung adenocarci-
noma LLC “cold” tumours that are intrinsically resistant to PD-1
blockade. In this model, tumour-infiltrating myeloid cells
have been shown to be critical determinants of resistance to
treatment [8].
Oleuropein was also combined with delivery of anti-PD-1 mAb

within the tumours using a SFV-based self-amplifying RNA. This
delivery system amplifies immune responses by eliciting type I IFN
responses and cancer cell apoptosis [45, 55]. These mechanisms of
action could be important for the treatment of refractory tumours
to classical immune checkpoint blockade immunotherapies
[30, 59]. Indeed, our previous study showed that SFV-αPD-L1
demonstrated superior antitumour activities for the treatment of
LLC-derived tumours when compared to conventional anti-PD-L1
mAb therapy [30]. In this study, its combination with oleuropein
significantly increased its therapeutic activity. Both oleuropein and
anti-PD-1 therapies reduced tumour infiltration by VISTA+
myeloid cells, and increased DC populations within DLNs. This
increase was more pronounced with the oleuropein/SFVα-PD-1
combination. These results suggested stimulation of T cell priming
by DCs migrating to DLNs to orchestrate a robust antitumour
response. These results were supported by the establishment of
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systemic tumour-specific T cell responses and protective memory
responses. Importantly, no toxicity was observed in mice receiving
oleuropein, SFV-αPD-1 or their combination, indicating that these
therapies could have a good safety profile. In fact, a significant

decrease of AST in serum was observed, possibly an indicative of
reduced tumour burden.
The combined use of oleuropein and anti-PD-1 mAb administra-

tion exhibited a clear synergy for the treatment of MC38-derived
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Fig. 6 Immune cell populations in tumours and draining lymph nodes (DLNs) following oleuropein and anti-PD-1 therapeutic strategies.
a Schematic diagram of the experimental setup. Mice were treated as described in (a). Analysis of the CD45 immune cells infiltrate in tumours
and DLNs. b–g Percentage of tumour infiltrated myeloid cells (CD11b+CD45+) that express the indicated markers. h–k Percentage of tumour
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0.7 × 106 T cells. o, p Transaminase levels (AST and ALT) in serum (n= 6 or 8). Data in (a–p) are expressed as mean ± SD (n= 6 mice) and were
analysed by one-way ANOVA and Dunnett’s multiple comparisons test. *p < 0.05; **p < 0,01; ***p < 0,001; ****p < 0,0001.
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tumours. However, such a synergy was not evident in the LLCmodel
when combining oleuropein with systemic administration of anti-
PD-1 antibody. However, it is important to remark that synergy was
demonstrated when delivering anti-PD-1 antibody within the
tumour with an SFV vector. These results indicate that reprogram-
ming of myeloid cells, albeit key to establishing proficient
antitumour responses, may not be sufficient for the treatment of
poorly immunogenic tumours. While MC38 tumours are good
models for immunogenic colorectal cancer, the LLC model is
representative of poorly immunogenic lung cancer. Therefore, the
use of a cytotoxic SFV vector to deliver mAb causes immunogenic
cell death and release of neoantigens that otherwise would remain
“hidden” to the immune system. Hence, it is highly likely that
reprogramming of the myeloid compartment combined with other
strategies that increase tumour immunogenicity will be necessary
to improve current immune checkpoint blockade.
Summarising, oleuropein is a potent immunomodulatory agent

which reprogrammes immunosuppressive myeloid cells towards
immunostimulatory subsets. Oleuropein exhibited potent anti-
tumour capacities and most importantly, enhanced anti-PD-1
therapies in models of lung and colon cancer. Oleuropein
improved anti-PD-1 therapies in a tumour model intrinsically
resistant to PD-1 blockade, highlighting its potential for cancer
treatment. These results in preclinical models lead us to put
forward oleuropein as a potential adjuvant for clinical trials.
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