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BACKGROUND: Trastuzumab is the only first-line treatment targeted against the human epidermal growth factor receptor 2 (HER2)
approved for patients with HER2-positive advanced gastric cancer. The impact of metabolic heterogeneity on trastuzumab
treatment efficacy remains unclear.
METHODS: Spatial metabolomics via high mass resolution imaging mass spectrometry was performed in pretherapeutic biopsies of
patients with HER2-positive advanced gastric cancer in a prospective multicentre observational study. The mass spectra,
representing the metabolic heterogeneity within tumour areas, were grouped by K-means clustering algorithm. Simpson’s diversity
index was applied to compare the metabolic heterogeneity level of individual patients.
RESULTS: Clustering analysis revealed metabolic heterogeneity in HER2-positive gastric cancer patients and uncovered nine
tumour subpopulations. High metabolic heterogeneity was shown as a factor indicating sensitivity to trastuzumab (p= 0.008) and
favourable prognosis at trend level. Two of the nine tumour subpopulations associated with favourable prognosis and trastuzumab
sensitivity, and one subpopulation associated with poor prognosis and trastuzumab resistance.
CONCLUSIONS: This work revealed that tumour metabolic heterogeneity associated with prognosis and trastuzumab response
based on tissue metabolomics of HER2-positive gastric cancer. Tumour metabolic subpopulations may provide an association with
trastuzumab therapy efficacy.
CLINICAL TRIAL REGISTRATION: The patient cohort was conducted from a multicentre observational study
(VARIANZ;NCT02305043).
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BACKGROUND
Gastric cancer (GC) is currently the fourth most common cause of
cancer-related deaths globally [1]. Trastuzumab, a recombinant
humanised monoclonal antibody directed against the human
epidermal growth factor receptor 2 (HER2), is the only targeted
agent approved for the first-line treatment of patients with HER2-
positive advanced GC [2]. Trastuzumab combined with
platin–fluoropyrimidine chemotherapy improves survival out-
comes in HER2-positive GC [2]. Nevertheless, only a subgroup
benefits from the addition of trastuzumab to chemotherapy. The
overall response rate of the combined therapy is less than 50%,
indicating that a considerable proportion of HER2-positive cancers
are resistant to HER2 inhibition [3]. Optimising the selection of
HER2-targeted regimens by identifying patient subpopulations
who would benefit from trastuzumab could be cost-effective and
would spare some patients unnecessary exposure to ineffective
treatments.

Molecular heterogeneity exhibits a variety of biological
behaviours in cancers [4]. Exploring the patterns of molecular
heterogeneity are necessary to design personalised targeted
regimens to increase patient response [5–8]. GC has a high level of
genomic and phenotypic variability even within individual
tumours, and this underlying heterogeneity is considered as a
major cause for the frequent failure of biomarker-based clinical
trials [9–11]. High incidence of HER2 heterogeneity was observed
in GC and it was associated with chemotherapy [12] and
trastuzumab efficacy [13]. Several studies uncovered proteomic
subpopulations that were linked to patient survival in GC [14–16].
Metabolic reprogramming has been recognised as one hallmark
that can be used to prevent therapeutic resistance [17].
Metabolomics, a predictor of drug therapeutic response in cancers
[18, 19], can generate metabolite profiles and also combine this
information with changes in crucial metabolic pathways, such as
Warburg effect, altered amino acid/lipid/drug metabolism,
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generation of drug-resistant cancer stem cells, and immunosup-
pressive metabolism [17]. Metabolite profile was considered an
important factor besides HER2 status in assessing the initial
response to trastuzumab treatment for GC patients [20, 21].
Specifically, one study revealed tumour metabolic heterogeneity
within HER2/neu-positive and HER2/neu-negative GC cells [22].
Nonetheless, the impact of intratumoural and intertumoural
metabolic heterogeneity on trastuzumab response in HER2-
positive advanced GC remains unclear. Matrix-assisted laser
desorption/ionisation–imaging mass spectrometry (MALDI–IMS)
enables the imaging of different molecular classes in their
histopathological context and thus the allocation of molecular
profiles to specific tumour cell types [23–25]. This high cellular
specificity is behind the increasing popularity of IMS and its
proven ability to identify diagnostic and prognostic biomarkers
[26–28]. Additionally, MALDI–IMS is an omics technique that
allows for the global characterisation of the spatial metabolomics
[29, 30], which offers an opportunity to demonstrate the drug-
resistant tumour profile with metabolic heterogeneity and
discovering the alteration in the tumour microenvironment [17].
Combined with statistical tools, MALDI-IMS constitutes a unique
tool to reveal a priori tumour subpopulations that are not
distinguishable using conventional histopathological methods,
but which are molecularly distinct [31–33].
We apply spatial metabolomics and K-means clustering method

to identify metabolically distinct tumour subpopulations of HER2-
positive advanced GC from routinely preserved pretherapeutic
biopsies, and assess their relationships with the response to
trastuzumab treatment. The workflow of this study is shown in
Fig. 1.

MATERIALS AND METHODS
Trastuzumab-treated advanced GC patient cohort
Patients receiving medical treatment for histologically confirmed meta-
static GC (including oesophagogastric junction cancer, all Union for
International Cancer Control (UICC) stage IV) were recruited after providing
written informed consent. The patient cohort was conducted from a
multicentre observational study (VARIANZ; NCT02305043) in accordance
with the Declaration of Helsinki [34]. Approvals of the ethics committees of
Leipzig University Medical Faculty and all participating centres were
obtained before site activation. All patients included in this analysis were
HER2-positive and underwent trastuzumab therapy and chemotherapy.
The cohort was divided into therapy-resistant (n= 17) and therapy-

sensitive (n= 25) patients by overall survival (cutoff= 13.8 months, Gastric
Cancer (ToGA) trial [2]). Table 1 shows the clinical characteristics of all
included patients.

Central HER2 testing
GC HER2 status data were obtained from the previous study [21]. In brief,
HER2 status was determined according to published standards in the
central pathology using immunohistochemistry (IHC) and chromogenic
in situ hybridisation (CISH) [34].

High mass resolution MALDI–Fourier transform ion cyclotron
resonance (FT–ICR) IMS
Data for spatial metabolomics were obtained from the previous study [21].
Formalin-fixed, paraffin-embedded (FFPE) biopsies coated with
9-aminoacridine (9-AA) hydrochloride monohydrate matrix (Sigma-Aldrich)
were analysed in the negative ion mode on a Bruker Solarix 7.0 T FT–ICR
MS (Bruker Daltonik) over a mass range of m/z 50–1000 as previously
described [35]. After the acquisition, samples were stained with
haematoxylin and eosin (H&E), coverslipped, scanned with a Mirax Desk
scanner (Zeiss, Göttingen, Germany), and coregistered with the respective
IMS data using flexImaging™ v. 4.0 (Bruker). Tissues were processed using
virtual microdissection with the definitions of the regions of interest as
tumour cells.

Unsupervised identification of heterogeneity and Simpson’s
diversity index calculation
The software SCiLS Lab (2020b Pro) was used for unsupervised
segmentation of the MALDI-IMS data. MALDI-IMS raw data were first
imported into the SCiLS Lab software. The standard segmentation pipeline
then starts with data preprocessing, including baseline removal, normal-
isation, and peak selection. Hereafter, edge-preserving image denoising
was carried out. At this stage, we consider a MALDI-imaging data set as a
datacube with 3-coordinates: x, y, and m/z. Given the m/z value, an image
of intensities of all spectra at this m/z value can be reconstructed. The
resulting denoised data were spatially segmented using the k means
algorithm with K ranging from 2 to 10. For k-means clustering, we used the
correlation distance. The created segmentation maps with nine subpopu-
lations were then used to identify areas in which similar spectra occur
across the patients. Simpson’s diversity index was calculated for each of
the patients based on the number of pixels in each of the subpopulations.
It measures the diversity and indicates the probability that two randomly
chosen pixels are from different subpopulations. It is defined as follows
D ¼ 1�PK

i¼1 p
2
i , where pi is the share of pixels in subpopulation i and K is

the number of clusters [36]. It can have values between 0 and 1; The higher
the values of the index indicates the higher the diversity of the pixels in the
different subpopulations for a patient.
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Fig. 1 Schematic overview of the de novo identification of metabolic heterogeneity and tumour subpopulations. The workflow comprises
approaches used to assess metabolic heterogeneity and tumour subpopulations in patients with HER2-positive gastric cancer, followed by
bioinformative analyses linked to clinical data.
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Cluster presence threshold optimisation and Cox proportional
hazards regression model
The statistical analysis required linking the survival data of samples to the
presence of specific clusters (subpopulations). To do so, a sample was
assigned to a cluster if the cluster was sufficiently present in that sample,
i.e. if the cluster held a higher fraction of pixels than a certain threshold
(termed cluster presence threshold). A single sample could be assigned to
more than one cluster if it contained significant tumour heterogeneity. The
effect of choosing different thresholds on survival was investigated using
Cox proportional hazards regression model as previously described [14]. In
brief, an iterative loop was created with thresholds. At each threshold, a
binary variable was created by applying the threshold to the cluster ratio.
Cox proportional hazards regression model was then built using the
thresholded data. The quality of each regression model was evaluated
using the Akaike information criterion (AIC) [14]. The AIC provided a
measure of model goodness of fit, and the preferred model was the one
with the lowest AIC value over all values of K [2–10] and threshold (4–40%).

Pathway analysis and correlation network analysis
Metabolites were annotated with the Kyoto Encyclopaedia of Genes and
Genomes (KEGG; www.genome.jp/kegg/), allowing M-H, M-H2O-H, M+ K-
2H, M+Na-2H, and M+Cl as negative adducts. The altered metabolites in
each subpopulation were identified by comparing with the other subtypes
using the Mann–Whitney U-test with a cutoff adjusted p value < 0.05 and a
fold change of 1.5. Pathway analysis was performed via the KEGG database
using the MetaboAnalyst online tool (www.metaboanalyst.ca; Fisher’s
exact test, q < 0.05 for FDR correction). Correlation networks were created
based on the above significant metabolites using Cytoscape (v. 3.8.0) [37].
All networks were visualised using the absolute value of the correlation
coefficient calculated by Spearman’s rank-order correlation.

Statistical analysis
Patients’ subpopulations survival was compared with Kaplan–Meier curve.
Accounting for multiple measurements for one patient due to several
subpopulations, a count process following the formulation of Andersen
and Gill was used. The Wald test was used to determine statistical
difference in survival. The p-values are non-adjusted due to the limited
sample size. To investigate the association between survival time and

heterogeneity level of patients, cutoff-optimised survival analyses were
performed, which in this context means that the threshold for low and
high heterogeneity (cutoff= 0.068) was chosen such that the p value by
log-rank test is minimal (p= 0.002), while ensuring robust results for similar
cutoffs. Correlations were calculated using a pairwise Spearman rank-order
correlation with non-adjusted p values. The Fligner–Killeen test was used
to compare the variances of metabolites, and the Mann–Whitney U-test
was used to determine the significantly altered metabolites for each
subpopulation and the calculated p values were adjusted using the
Benjamini–Hochberg correction. Two sided p values < 0.05 were consid-
ered statistically significant.

RESULTS
Tumour metabolic subpopulations identification and
metabolic heterogeneity visualisation
First, K-means clustering with K ranging from 2 to 10 was applied
to identify survival-associated tumour subpopulations. Cox pro-
portional hazards regression model for each of the K clusters was
applied to identify the optimal number of clusters after assigning
different subpopulation presence thresholds ranging from 4 to
40% [14]; 4–26% thresholds result in the best regression models.
K= 9 and K= 10 clusters with a threshold of 24% have the lowest
Akaike Information Criterion (AIC) value from the Cox regression
models across all K values and thresholds, and are thus defined as
the optimal values for the number of clusters and the threshold
(Fig. 2a). Following the principle of parsimony, all the subsequent
analysis was based on K= 9. To estimate the ability of
metabolomics data to distinguish tumour subpopulations, the K-
means image for the distribution of nine subpopulations is shown
in the unsupervised segmentation image, revealing the tumour
metabolic heterogeneity within patients (Fig. 2b). Figure 2c
indicates that subpopulation 4, 6, 7 and 9 could be clearly
separated by Uniform Manifold Approximation and Projection
(UMAP) analyses based on the abundances of metabolites.
Figure 2d shows the number of patients in each tumour
subpopulation.

Simpson’s diversity index reveals that patients with high
metabolic heterogeneity have a better prognosis
To further compare the heterogeneity level of individual patients,
Simpson’s diversity index was applied. Figure 3a shows the
Simpson’s diversity index calculated for each patient using the
nine subpopulations from the K-means analysis. Patients with high
Simpson’s diversity scores are associated with better patient
outcomes (Fig. 3b). Additionally, the percentage of high hetero-
geneity patients is significantly higher in the trastuzumab-
sensitive patients (82%) than in the trastuzumab-resistant patients
(44%) (p= 0.008) (Fig. 3c). Overall, these analyses demonstrate the
potential relation of tumour heterogeneity with survival and
trastuzumab therapy in HER2-positive GC. Figure 3d shows the
representative ion distribution maps of patients with high and low
heterogeneity.

Clinical impact of tumour metabolic subpopulations on
survival and trastuzumab efficacy
After applying the AIC-optimised threshold for tumour subpopula-
tions, Kaplan–Meier curves of the nine subpopulations are
compared (Fig. 4a). In the pairwise comparisons, there is a
significant difference in survival between the subpopulations
encompassed by subpopulations 1 and 4 (p= 0.014), and
subpopulations 1 and 5 (p= 0.017), respectively (Fig. 4b, c). The
Kaplan–Meier curve indicates better outcomes for subpopulation
9 than both subpopulations 4 (p= 0.005) and 5 (p= 0.037)
(Fig. 4d, e). In order to confirm the clinical importance of the
tumour subpopulations, we identically performed the survival
analysis for another two values of k (K= 10 and K= 5) for the GC
MSI dataset, and compared them with K= 9. As shown in
Supplementary Fig. 1, clinical consistency of these subpopulations

Table 1. Summary of patient characteristics.

Characteristic

Number of patients 49

Age [years]

Median 66

Range 24–89

Gender

Male 38

Female 11

UICC stage

IV 49

Survival time [months]

Median 14

Range 0–80

HER2 IHC score

0+ 0

1+ 0

2+ 9

3+ 40

HER2 CISH

Amplified 47

Non-amplified 0

n.a. 2

Samples with insufficient data to make a conclusion were set to ‘n.a.’.
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indicates their robustness towards changing of K. There are no
statistically significant differences in other pairwise tumour
subpopulation comparisons. Spearman correlation analysis was
performed to investigate the association of each of the nine

tumour subpopulations with the trastuzumab response. The result
shows that subpopulation 1 (p=0.036), subpopulation 2 (p=0.009),
subpopulation 6 (p=0.030), while subpopulation 9 (p=0.002) are
associated with trastuzumab sensitivity, and subpopulation 4 is
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associated with trastuzumab resistance (p=0.020). There is no
correlation between trastuzumab efficacy and subpopulations
3, 5, 7, and 8 (Fig. 4f). Taken together, we find that tumour
subpopulations 1 and 9 are associated with favourable prognosis
and trastuzumab sensitivity, and subpopulation 4 is associated
with poor prognosis and trastuzumab resistance.

Potential metabolites and pathways associated with
trastuzumab therapy response
Next, Mann–Whitney U-test analysis was performed to determine
which metabolites differentiated the tumour subpopulations. The
metabolites responsible for these distinct tumour subpopulations
were subjected to pathway analysis. Tumour metabolic hetero-
geneity among distinct subpopulations could be observed at the
level of pathway analysis. Figure 5a summarises the discriminative
pathways of each of the nine subpopulations. Classes of metabolic
pathways with high number of variations are carbohydrate
metabolism, nucleotide metabolism, lipid metabolism, amino acid
metabolism, and metabolism of cofactors and vitamins. It is
noteworthy that the trastuzumab-resistant subpopulation (sub-
population 4) exhibits profound changes in downregulated
pathways; the most significant pathways are related to nucleotide
metabolism, carbohydrate metabolism and amino acid metabo-
lism. By contrast, the trastuzumab-sensitive subpopulation (sub-
population 9) shows profound changes in upregulated pathways;
the most significant pathways are related to carbohydrate
metabolism and amino acid metabolism.
To gain deeper insight into the molecules’ processes and events

that play a role in tumour cells, and which are related to patients’
trastuzumab response, we performed a metabolic network
analysis evaluating the co-localisation pattern of the metabolites
in the trastuzumab-resistant subpopulation 4 and trastuzumab-
sensitive subpopulaiton 9. The spatial correlation networks
illustrated in Fig. 5b, c reveal the correlation of functionally
interconnected metabolites in the two subpopulations. The dense
cluster in the trastuzumab-resistant subpopulation 4 indicates a
strong correlation of metabolites involved in the nucleotide
metabolism, such as GMP, D-Ribose 5-phosphate and Precursor Z
(Fig. 5b). For the trastuzumab-sensitive subpopulaiton 9, there are
strong correlations of metabolites involved in the carbohydrate
metabolism, such as D-Glucosamine, D-Fructose 6-phosphate and
D-Glucose 1-phosphate (Fig. 5c). Representative images of dipho-
sphate, melatonin and 5’-Methylthioadenosine from the networks
of subpopulation4 and 9 are shown in Fig. 5d. Both metabolite
networks are related with sn-glycerol 3-phosphate, melatonin,
5’-Methylthioadenosine and diphosphate, indicating their impor-
tance in associating with trastuzumab therapy response in HER2-
positive GC.

DISCUSSION
In the present study, we discovered heterogeneity in a series of
patients with HER2-positive advanced GC based on tissue
metabolomics. We defined nine distinct metabolic subpopula-
tions. Of the nine subpopulations, two subpopulations were
associated with favourable prognosis and trastuzumab sensitivity,

and one subpopulation was associated with poor prognosis and
trastuzumab resistance. Additionally, tumour metabolic hetero-
geneity was associated with prognosis and trastuzumab response.
To our knowledge, this study is the first to investigate the impact
of metabolic heterogeneity on the trastuzumab treatment efficacy
and survival in HER2-positive advanced GC. A higher degree of
tumour metabolic heterogeneity associated with a better prog-
nosis and trastuzumab sensitivity. This observation is in line with
previous studies [12, 38]. One study described the high incidence
of intratumoural HER2 heterogeneity in a large series of 322
patients with GC in detail by performing HER2 immunohisto-
chemistry (IHC) and fluorescence in situ hybridisation (FISH) and
evaluating the gene copy number individually in distinct areas
with different IHC staining intensity. In addition, they further
revealed that HER2 heterogeneous positivity was associated with
longer survival than the homogeneous [12]. Another study
consistently reported proteomic heterogeneity and their positive
correlation with prognosis in HER2-positive breast cancer patients
treated with trastuzumab [38]. Moreover, they revealed that high
heterogeneity of tumours could reflect the presence of hetero-
typic components including infiltrating immune cells, which
facilitated the response to treatment [38]. This could be the
possible explanation of the observed correlation between a higher
metabolic heterogeneity and a better outcome in HER2-positive
advanced GC in the present study. Taken together, those studies
together with us demonstrated the association of tumour
heterogeneity of the molecular expression with trastuzumab
response, indicating that molecular heterogeneity should be taken
into consideration when clinical therapeutic decision of trastuzu-
mab is made. The most significant pathways among nine tumour
subpopulations were related to nucleotide metabolism and
carbohydrate metabolism, which are revealed to be highly
spatially organised and could be visualised as different molecu-
larly defined regions. Major changes in nucleotides and nucleotide
metabolism have been linked to patient survival. Typically, cancer
cells have deactivated crucial DNA damage response signalling
routes and often rewire their metabolism and energy production
networks [39, 40]. Anabolic metabolism of DNA was identified as
an important downstream effect of the HER2 oncogene in breast
cancer [41]. In GC, one study characterised GC with metabolomic
features and identified three tumour-specific subtypes. One
tumour-specific subtype comprised enriched DNA metabolism,
and it predicted a benefit when initiating trastuzumab therapy
[20]. Another study identified DNA metabolism as a factor
influencing response to HER2-targeted trastuzumab therapy, and
the changes in DNA metabolism found in patient tissues were
validated in a HER2-positive/sensitive and HER2-positive/resistant
GC cell model [21]. The nucleotide metabolites GDP and GMP
showed significant effect on survival in the GC patients treated
with trastuzumab therapy [21]. This study is consistent and found
that the subpopulation with downregulated nucleotide metabo-
lism (subpopulation 4) was associated with a resistance to
trastuzumab therapy.
Meanwhile, correlated metabolites within the trastuzumab-

sensitive subpopulaiton 9 comprise different carbohydrate com-
pounds, such as D-Glucosamine, D-Fructose 6-phosphate and

Fig. 5 Identification of discriminative metabolites and metabolic pathways in the tumour metabolic subpopulations. a Pixel-wise
Mann–Whitney U-test analysis was performed for each metabolite. Coloured squares represent counts of altered metabolites: orange ones
indicate increased metabolites; blue ones indicate decreased metabolites. Correlation networks of metabolites within b trastuzumab-sensitive
subpopulation (subpopulation 9) and c trastuzumab-resistant subpopulation (subpopulation 4). Correlations between metabolites were
calculated and filtered (adjusted p < 0.05). Edges represent positive (green) and negative (orange) correlations between metabolites. Node
colour in the network indicates altered metabolites: orange ones indicate increased metabolites; green ones indicate decreased metabolites.
d Representative images of metabolites from the networks of subpopulation4 and 9 are shown for diphosphate, melatonin and 5’-
Methylthioadenosine. AMP: adenosine monophosphate, GMP: guanosine monophosphate, dGDP: deoxyguanosine diphosphate, cPMP: cyclic
pyranopterin monophosphate.
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D-Glucose 1-phosphate. These compounds are involved in
different pathways contributing to tumour cell survival [42, 43].
D-glucosamine and and its derivatives have shown their anti-
tumour effects on cell proliferation, cell death and angiogenesis in
human bodies, although the precise function and mechanism
remains to be clarified [43]. Additionally, carbohydrate metabolism
is the major HER2-related altered metabolic pathway, and the
association of glucose metabolism with HER2-positive breast
cancer was confirmed [44, 45]. Gluconeogenesis in HER2-positive
breast cancer was upregulated for energy supply, resulting in
enriched consumption of related amino acids [46]. In particular,
previous studies support our observation in the metabolite
networks that the metabolites succinate, sn-glycerol 3-phosphate,
5’-Methylthioadenosine and diphosphate showed significant
importance in distinguishing trastuzumab-sensitive and
trastuzumab-resistant patients, which can be interpreted as the
potential biomarkers for the trastuzumab therapy response
[20, 21]. However, these new potential metabolite biomarkers
and their related metabolisms have not yet fully investigated in
GC. A greater understanding of these metabolite biomarkers in
the future could reveal detailed insights into the molecular
changes underlying GC disease, metabolic responses to treat-
ments, and mechanisms leading to trastuzumab therapy response.
One challenge in identifying metabolic heterogeneity for their

association with trastuzumab response is the limited number of
tumour samples. All patients must have HER2 positivity, trastuzu-
mab treatment, and adequate follow-up. Industry-sponsored
controlled clinical trials do exist; however, the availability of these
studies for independent research is unfortunately limited.
Although the number of tumour samples is limited in the current
study as well, the samples and associated data still offer some
advantages. The tissue specimens in this study were collected
from many sites. Furthermore, HER2 testing was centrally
performed with the highest quality standards [34]. This ensured
that the inclusion criteria were validated for each tumour sample.
In conclusion, we demonstrated the importance of considering
tumour metabolic heterogeneity in HER2-positive advanced GC
for optimising patient management. Consequently, tumour
metabolic heterogeneity showed an impact on trastuzumab
efficacy and patient outcomes. These findings should be validated
in larger independent cohorts, and additional molecular correla-
tive analysis are warranted.
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