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Integrated genomic and transcriptomic analysis reveals the
activation of PI3K signaling pathway in HPV-independent
cervical cancers
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BACKGROUND: HPV-independent cervical cancers (HPV-ind CCs) are uncommon with worse prognosis and poorly understood.
This study investigated the molecular characteristics of HPV-ind CCs, aiming to explore new strategies for HPV-ind CCs.
METHODS: HPV status of 1010 cervical cancer patients were detected by RT-PCR, PCR and RNA-sequencing (RNA-seq). Whole
exome sequencing (WES) and RNA-seq were performed in identified HPV-ind CCs. The efficacy of PI3Kα inhibitor BYL719 in HPV-ind
CCs was evaluated in cell lines, patient-derived organoids (PDOs) and patient-derived xenografts (PDXs).
RESULTS: Twenty-five CCs were identified as HPV-ind, which were more common seen in older, adenocarcinoma patients and
exhibited poorer prognosis as well as higher tumor mutation burden compared to HPV-associated CCs. HPV-ind CCs were featured
with highly activated PI3K/AKT signaling pathway, particularly, PIK3CA being the most predominant genomic alteration (36%).
BYL719 demonstrated superior tumor suppression in vitro and in vivo. Furthermore, HPV-ind CCs were classified into two subtypes
according to distinct prognosis by gene expression profiles, the metabolism subtype and immune subtype.
CONCLUSIONS: This study reveals the prevalence, clinicopathology, and molecular features of HPV-ind CCs and emphasizes the
importance of PIK3CA mutations and PI3K pathway activation in tumorigenesis, which suggests the potential significance of PI3Kα
inhibitors in HPV-ind CC patients.
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INTRODUCTION
Cervical cancers (CCs) are one of the most threatening female
reproductive system malignancies worldwide and rank as the
fourth most common and cause of cancer death in women,
accounting for ~569,000 new cases and 311,000 deaths every year
[1, 2]. Human papillomavirus (HPVs) has long been identified as
the key causative factor for the development of CCs [3, 4]. Once
high-risk HPVs have infected cervical basal cells, they express the
viral E6 and E7 gene products, which bind to tumor suppressor
proteins p53 and pRB, disrupting normal cell cycle regulation,
accelerating cell proliferation, and increasing the likelihood of
malignant transformation [5]. Current estimates of HPV prevalence
in CCs patients vary from 85% to 99% in different cohorts [3, 6–8];
however, with the widespread adoption of CCs screening and
endorsement of HPV vaccination [9], the incidence of HPV-

associated CCs (HPV-asso CCs) will predictably decrease. Conse-
quently, it is of importance to understand the mechanism of the
occurrence and development of HPV-independent cervical
cancers (HPV-ind CCs), which will be helpful to the early diagnosis
and treatment.
It is suggested that HPV-ind CCs present a biologically distinct

subgroup with different molecular characteristics and poorer
prognosis compared to HPV-asso CCs [8, 10, 11]. Nicolás showed a
higher proportion of abnormal staining patterns of p53 expression
and p16 overexpression in HPV-ind CC [12]. A study from The
Cancer Genome Atlas (TCGA) enrolled 9 HPV-ind CCs revealed a
higher rate of genomic mutations in KRAS, ARID1A and PTEN [10],
suggesting potential driver events in HPV-ind CCs. Other studies
have also emphasized the role of long noncoding RNAs (lncRNAs)
on promoting tumor growth and recurrence [13, 14]. However, the
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existing studies are limited to small-scale, substandard HPV
screening modalities and, most importantly, there is a lack of
comprehensive studies to guide treatment.
Thus, in the current study, we aimed to characterize the

molecular landscapes of HPV-ind CCs using whole exome
sequencing (WES) and RNA-sequencing (RNA-Seq), through which
we identified the activation of Pi3k pathway as the possible
pathogenic mechanism, indicating PI3K inhibitors as a therapeutic
strategy for HPV-ind CCs.

METHODS
Study design and patient eligibility
The study comprised two sets of CCs patients: patients from Shanghai
Cancer Center (SHCC) and The Cancer Genome Atlas (TCGA) cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC) cohort.
For the cohort from SHCC, ethical approval was granted by the Ethics
Committee of Fudan University Shanghai Cancer Center (NO.050432-4-
1212B), and informed consent was obtained from each participant. One
thousand ten samples from our previous cervical cancer banks (n= 1015)
were enrolled in the current study, because 5 of these samples had
insufficient DNA. The inclusion criteria and clinical data retrieval were
performed as described in our previous publications [15–17]. The
molecular and clinical data of the TCGA-CESC cohort were downloaded
from the data portal of Genomic Data Commons (GDC, https://
portal.gdc.cancer.gov/).

The detection of HPV infection
The HPV screening process was performed by real-time PCRs for 7 high-risk
and other common HPV subtypes, and then validated by RNA-Seq. The
flow-process diagram and results are shown in Fig. 1A. More detailed
methods are provided in Supplemetary materials.

Whole-exome sequencing (WES)
DNA of tumor tissues and paired normal tissues from 21 HPV-ind CCs
patients was subjected to WES. It was performed according to our previous
study [18].

PIK3CA mutation analysis by Sanger sequencing
Validation analyses of PIK3CAmutation status were performed using cDNA-
based Sanger sequencing as previously described [15–17]. The primers and
procedures are presented in Table S2.

RNA-Seq analysis
All 53 CC samples and 4 PDXs samples were subjected to RNA sequence,
which was performed as our previous study [19].

Comparison of molecular characteristics between groups
Differentially expressed genes between HPV-asso CCs and HPV-ind CCs
were identified by R package edgeR with a cutoff of false discovery rate
(FDR) < 0.05 and fold change (FC) > 1. Then logFC was used in pre-rank
GSEA analysis against Reactome, Kegg and hallmark gene sets by R
package clusterProfiler to access the molecular features between two
groups. A pathway was considered enriched at FDR < 0.25 and normalized
enrichment score (NES) > 1.

Identification of subtypes in HPV-ind CCs
Unsupervised hierarchical clustering of RNA-Seq data was performed using
features selected based on the most variant median absolute deviation
(MAD) and Cox regression model by the CancerSubtypes package, dividing
the 25 HPV-ind CCs into distinct subgroups. The optimal number (K= 2) of
clusters was chosen by the ConsensusClusterPlus package. The same
features selected were used in clustering the TCGA validation set.

Cell culture and drug treatment
Human squamous carcinoma of the cervix cell lines SiHa, MS751 and C-33A
were obtained from American Type Culture Collection (ATCC). SiHa and
MS751 cells were positive for HPV-16 and HPV-18, respectively, and C-33A
cells were HPV-independent. All cell lines tested free of mycoplasma
contamination were cultured in Dulbecco’s modified Eagle medium

(DMEM) supplemented with 10% fetal bovine serum (FBS) (Gibco), 1%
penicillin, and 1% streptomycin, and incubated at 37 °C with 5% CO2. The
PI3Kα inhibitor BYL719 was purchased from Selleck (S2814)

IC50 assay
Cells were seeded onto 96-well plates at a density of 6 × 103 cells/well. A
gradient concentration of BYL719 from 0.5 μM to 128 μM and a control of
DMSO were added into wells after attachment. 10 μL of CCK-8 diluted in
90uL of DMEM medium was added to each well 72 h later and incubated
for 2 h, followed by measurement of optical density at 450 nm (OD450).
GraphPad was used to fit the data, generate dose-response curves and
calculate IC50 values.

Colony formation assay
Cells were seeded onto six-well plates at a density of 1 × 103 cells/well and
cultured for 24 h before drug treatment. Fresh medium containing 25 μM
BYL719 was replaced every 3 days. At the end point, cells were washed
with phosphate-buffered saline (PBS) and fixed with formalin followed by
staining with 5% crystal violet. After capturing the images, colonies with
over 50 cells were quantified by image J.

Apoptosis and cell cycle assay
Cells were digested from plates after treatment with 25 μM BYL719 for
72 h, and then stained with Annexin-V and 7-AAD or PI for apoptosis or cell
cycle distribution, respectively, following the manufacturer’s instructions
(Cell Cycle Analysis Kit, Beyotime, Shanghai and Annexin V-PE/7-AAD
apoptosis kit, MULTISCIENCES, Hangzhou). Cell cycle distribution and
apoptosis were analyzed by flow cytometry.

Western blot assay
Western blot was performed as previously described to evaluate the
protein expression in cells between drug treatment groups [20]. The
antibodies were diluted as following: BAX (1:1000, Cat# ab32503), BCL-2
(1:1000, Cat# ab32124), CDK2 (1:4000, Cat# ab32147), CDK4 (1:4000, Cat#
ab108357), CDK6 (1:4000, Cat# ab124821), RAD51 (1:1000, Cat# ab133534),
Cleaved caspase3 (1:2000, Cat# ab32042), γH2AX (1:2000, Cat# 9718), AKT
(1:2000, Cat# 4685), pAKT Ser473 (1:1000, Cat# 4060), pAKT Thr308 (1:1000,
Cat# 13038), pS6 S240/244 (1:2000, Cat# 5364), pS6 S235/236 (1:2000, Cat#
4858) and β-actin (1:2000, Cat# 4970).

Patient-derived organoids (PDOs)
Cervical tumor tissues from consenting patients were first mechanically
shredded with scalpels and then digested in collagenase + TryplE solution
for 1–1.5 h in a 37 °C shaker. The cell suspensions were then washed three
times with AdDF+++ (Advanced DMEM/F12 supplemented with 1x
Glutamax, 10 mM HEPES and penicillin–streptomycin), and erythrocytes
were lysed with erythrocyte lysis buffer. Cells were filtered through a
100 μm nylon cell strainer and collected via centrifugation. Cells were
subsequently embedded into basement membrane extracts and plated as
50 μl volume droplets on pre-warmed six-well suspension culture plates
and allowed to solidify at 37 °C for 30min prior to addition of medium.

Patient-derived xenografts (PDXs)
The establishment and administration were detailed described in our
previously study [21]. Four mice for HPV-asso PDXs and HPV-ind PDXs each
were randomly divided into two groups when the volume of the tumor
reached 100 to 300mm3 and treated with BYL719 45mg/kg (p.o.) and
saline for 4 weeks, respectively. Ki-67, cleaved caspase3 and γH2AX
antibodies were used to measure the corresponding protein expression by
IHC staining.

Quantification and statistical analysis
All analyses were performed in R software version 4.1.1 (http://www.r-
project.org). The survival of HPV-asso and HPV-ind CCs patients were
presented in Kaplan-Meier curve and compared by the Log-rank test using
R package survminer and survival. Continuous data of clinical features and
molecular features between groups were analyzed by Wilcoxon rank-sum
test and categorical variables were analyzed by chi-square test (or Fisher’s
exact test as indicated). Quantitative results from cell experiments were
analyzed with Student’s t test in GraphPad. Two-tailed P values < 0.05 were
considered statistically significant. Data were visualized using the R
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package ggplot2, with R package ggpubr for statistical analysis. Heatmaps
were generated with the R package pheatmap.

RESULTS
The clinicopathological association and prognosis analysis of
HPV-ind CCs
HPV-ind CCs accounted for 2.48% (25/1010) in our cohort (Fig. 1A).
Of all HPV-ind CCs, 11/25 (44%) were squamous cell carcinoma
(SCC), 12/25 (48%) were classic adenocarcinoma (ADC), 1/25 (4%)
was neuroendocrine tumor (NET) and 1/25 (4%) was peripheral
primitive neuroectodermal tumor (PNET). The mean age of
patients was 52.8 years old (52.8 ± 14.3). Patient characteristics
are detailed in Table 1. HPV-ind CCs patients were older (52.8 vs.

47.6-year-old, P= 0.009) and more likely to be in the post-
menopausal stage (60% vs. 36%, P= 0.027). They were more
accompanied with parametrial involvement (16% vs. 5%,
P= 0.049). ADC was more commonly observed in HPV-ind CCs
than HPV-asso CCs patients (48% vs. 15%, P < 0.001). The TCGA
dataset included 307 samples, of which 18 were HPV-ind and 289
were HPV-asso (Table 1). The clinical characteristics were basically
consistent with those of our cohort except for menopause status,
and the proportion of deaths.
In the median follow up of 54 months (range: 1–75 months),

HPV status was significantly associated with relapse (HPV-ind:
48% vs. HPV-asso: 18%, P < 0.001). Univariate analysis revealed a
striking association between HPV status and patient survival,
concordant with previous studies [7, 8, 22], HPV-ind CCs showed
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a worse outcome than HPV-asso CCs (5-year PFS: 52% vs. 82%,
P= 0.001, 5-year OS: 68% vs. 88%, P < 0.001) (Fig. 1B; Table 2).
Our multivariate analyses revealed that HPV-ind in cervical
cancer was an independent predictor for poorer PFS (HR= 0.53,
95% CI: 0.28–0.99, P= 0.045) (Table 2). Similarly, poorer OS and
PFS were observed in patients with HPV-ind CCs from the TCGA
cohort, although statistical significance was not achieved.
(Fig. 1C, D). Collectively, these results revealed that HPV-ind
CCs formed a rare but more deadly type of CCs distinct from
HPV-asso CCs.

The PI3K pathway was highly activated in HPV-ind CCs
Genomic alterations. WES was performed to evaluate the
genomic variations in 21 HPV-ind CCs (Fig. 2A). It showed that
more PI3K pathway-related mutation were found: PTEN (62%),
PIK3CA (52%), and AKT2 (33%). We then analyzed the PIK3CA status
of 25 HPV-ind CCs and 972 HPV-asso CCs, which had the detailed
mutation information in exon9, and exon20 by Sanger sequencing
in our previous study. Compared to HPV-asso CCs, HPV-ind CCs
presented higher PIK3CA mutations (36% vs. 13%, P= 0.006,
Fig. 2B). Other high-frequency mutations appeared in FGFR2

Table 1. Patients’ characteristics bewteen HPV-independent and HPV-associated cervical cancers.

N (%) SHCC P valuea N (%) TCGA P valuea

HPV-ind HPV-asso HPV-ind HPV-asso

(n= 25) (n= 972) (n= 18) (n= 289)

Age, Mean (SD) 0.009 0.014

Mean 47.7 52.8 47.6 48.5 55.3 47.8

SD 9.62 14.3 9.5 13.9 11.2 13.8

Menopause status 0.027 0.894

Pre-menopause 629 (63%) 10 619 125 (60%) 10 115

Post-menopause 368 (37%) 15 353 84 (40%) 8 76

Histological subtypes <0.001c 0.001

SCC 733 (74%) 11 722 254 (83%) 9 245

ADC 154 (15%) 12 142 48 (15%) 6 42

ASC 79 (8%) 0 79 5 (2%) 3 2

Others 31 (3%) 2 29 0 (0%) 0 0

FIGO stage 0.892 0.266

Stage I 472 (47%) 11 461 163 (54%) 7 156

Stage II+ 525 (53%) 14 511 137 (46%) 11 126

Lymph node involvement 0.641 0.179e

Yes 297 (30%) 9 288 53 (29%) 1 52

No 700 (70%) 16 684 127 (71%) 10 117

Tumor Size 1 0.0502e

>4 cm 316 (32%) 8 308 159 (54%) 14 145

≤4 cm 681 (68%) 17 664 133 (46%) 4 129

LVSId 0.685 1.000e

Yes 378 (38%) 11 367 80 (53%) 5 75

No 614 (62%) 14 600 72 (47%) 5 67

Depth of myometrial invasion 0.387e

Whole-thickness 406 (41%) 13 393

>1/2 325 (32%) 8 317

≤1/2 266 (27%) 4 262

Parametrial involvement 0.049e 0.123

Yes 57 (6%) 4 53 108 (36%) 10 98

No 940 (94%) 21 919 193 (64%) 8 185

PI3KCA mutation status 0.006 0.002e

Wild type 853 (86%) 16 837 205 (71%) 5 200

Mutant 144 (14%) 9 135 84 (29%) 10 74

Outcomes 199 (20%) 12 187 0.001e 72 (23%) 4 68 0.306e

Relapse 183 (19%) 12 171 <0.001a

Death 117 (12%) 8 109 0.005a 72 (23%) 4 68 0.306e

aWilcox test for age; X2 test for other characteristics.
bSCC Squamouscarcinoma, ADC Adenocarcinoma, NEC Neuroendocrine carcinoma, ASC Adenosquamous carcinoma.
cSCC vs. ADC.
dLVSI Lymphovascular invasion.
eFisher exact test.
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(48%), FBXW7 (43%) and TP53 (43%) in HPV-ind CCs. Similarly,
single nucleotide variation (SNV) from the TCGA dataset was
analyzed for validation (Fig. 2C, D). It demonstrated that TTN
(32%), PIK3CA (27%), KMT2C (19%), MUC4 (18%), MUC16(17%) were
the top 5 most frequent mutated genes in 274 HPV-asso CCs,
while among 14 patients with HPV- CESC, PIK3CA (64%), SYNE1
(50%), TP53 (50%), PTEN (36%), TTN (36%) sited the 5 most
frequent mutations, depicting a different mutation signature.
PIK3CA, EP300, FBXW7, ARID1A, PTEN were identified as signifi-
cantly mutated genes (SMGs) in HPV-asso CCs, which is consistent
with previous findings of CCs overall [10], however, they were
NDUFS1, PIK3CA, PTEN and TP53 in HPV-ind CCs. (Table S3, S4).
Concordant with our cohort, HPV-ind CCs in the TCGA database
had a higher mutation rate of PIK3CA and TP53 (Fig. 2E, PIK3CA 9/
14 64% vs. 74/274 27%, p= 0.005; TP53 7/14 50% vs. 15/274 5.5%,
P < 0.001 Fisher’s Exact Test). Most mutations of PIK3CA located in
the activating helical domain E542K and E545K (Fig. S1A), whereas
mutations in TP53 were scattered with no hotspots as reported in
both HPV-asso and HPV-ind CESCs (Fig. S1B). No survival
differences were observed between PIK3CA mutant and wild-
type samples in either HPV-ind CCs or HPV-asso CCs, so as
between TP53 mutation status (Fig. S1C–H).
In addition, HPV-ind CCs demonstrated a higher tumor mutation

burden (TMB) compared to HPV-asso CCs from the analysis of TCGA
cohort (11.11 vs 3.84, p < 0.05, Fig. 2F). Due to lack of genomic
information from WES in HPV-asso CCs patients, we analyzed the
TMB only in SHCC HPV-ind CCs. It revealed that the TMB of HPV-ind
CCs in our cohort was 16.20, which was significantly higher than
that of HPV-asso CCs from the TCGA cohort.
Copy number variants (CNVs) were processed and analyzed by

GISTIC2.0 in TCGA dataset. An average of 288.5 and 302.2 copy
number variants were found for HPV-asso and HPV-ind CESCs,
respectively (P= 0.91, Wilcoxon test), but a significant variance of
26.2 and 2.5 CNVs each for HPV-asso and HPV-ind CESCs were
achieved after including CNVs restricted to q < 0.1 (Fig. S2A, B,
P < 0.001, Wilcoxon test). It revealed 46 amplifications and 36
deletions in HPV-asso CESCs while only 1 amplification and 2
deletions in HPV-ind ones (Fig. S2C, D). The CNVs in HPV-ind CESC
included amplification of 3q26.31 (GHSR, FNDC3B, 44.4%) and
deletion of 5q11.2 (PDE4D, PART1, 27.8%) and 22q13.32 (MAPK11,
TYMP, 27.8%), which displayed different variations with HPV-asso
CCs. It is noteworthy that though 3q26.31 appeared in both HPV
status, the distribution of its amplification seemed to be comple-
mentary to those without PIK3CA mutation in HPV-ind CESCs
(Fig. S2E). As GHSR rarely expressed in CESCs, FNDC3Bmight play an
important role in PIK3CA wild type HPV-ind CESCs.

Transcriptome analysis. We further explored the correlation
between PIK3CA mutation mediated PI3K pathway activation
and HPV status in cervical cancers. RNA-Seq was performed in all
25 HPV-ind CCs and an addition 28 HPV-asso CCs. It was shown
that gene expression profiles differed between HPV-asso and HPV-
ind CCs. For example, HDAC9, FGFR were highly expressed in HPV-
ind CCs (Fig. 3A), which was also confirmed by the TCGA database
(Fig. S3A). Gene Set Enrichment Analysis (GSEA) was then
performed to display the different patterns of activated pathways
between these two types (Figs. 3B; S3B). The PI3K/AKT signaling
pathway was significantly enriched in HPV-ind CCs in both cohorts
(Fig. 3C), while the P53 signaling pathway was highly activated in
HPV-asso CCs (Fig. 3D; Fig. S3C), suggesting that the PI3K/AKT
signaling, instead of TP53 signaling, may strongly engage in the
oncogenic effects of HPV-ind CCs. Concurrently, the fibroblast
growth factors (FGFR) family, including FGFR1 and FGFR4, was
highly enriched in HPV-ind CCs (Fig. 3E; Fig. S3D). Other
enrichment pathways between these two CCs included the
abnormal activation of G-protein coupled receptor (GPCR) and
the calcium signaling pathway in HPV-ind CCs, as well as
hyperactivation of the senescence-associated secretory pheno-
type (SASP), G2M checkpoint and E2F related signaling in HPV-
asso CCs. To undercover the downstream effects of activated PI3K/
AKT signaling, a gene network of FGFR-PI3K-AKT signaling
pathway was constructed (Fig. 3F). In addition to the receptors
FGFR1, FGFR4 and ERBB4, the main effector AKT1 and its
downstream effectors, MTOR, GSK3B, p21, WEE1, BAD and CREB5,
which mediate cancer cell growth and progression, also exhibited
marked changes in HPV-ind CCs. Collectively, the aberrant
activation of the PI3K/AKT pathway may act as a potential driver
of cervical carcinogenesis in the absence of HPV infection, thus
indicating the potential role of PI3K inhibitors. Furthermore, the
activation of the FGFR pathway suggested a combined therapeu-
tic role of PI3K and TKI inhibitors in HPV-ind CCs.

Immune infiltration was suppressed in HPV-ind CCs
The tumor microenvironment (TME) was analyzed between HPV-
ind and HPV-asso CCs in two cohorts. Sixty-four cell types in these
two groups were quantified by the xCell algorithm, and the
differences are shown in Fig. S4A and Fig. S4B. HPV-ind CCs
contain more matrix cells, such as the pericytes, fibroblasts and
preadipocytes. Additionally, compared to HPV-asso CCs, common
immune cells such as lymphoid progenitor (CLP), pro B-cells and
CD8+ naïve T-cells were less infiltrated in HPV-ind individuals.
Next, immune-related pathways were further analyzed by ssGSEA
(Fig. S4C, D). As expected, antigen processing- and presentation-

Table 2. HPV status in cervical cancer predicted independently better PFS in univariate and multivariate analyses.

Univariate analyses Multivariate analyses

Clinicopathologic characteristics HR 95% CI P value HR 95% CI P value

Age (>48 years) 1.19 0.900–1.574 0.223

Postmenopausal 1.243 0.937–1.650 1.243

Tumor sizes (>4 cm) 1.432 1.072–1.912 0.015 1.09 0.81–1.47 0.563

Depth of myometrial invasion (>1/2) 3.632 2.309–5.713 <0.001 2.12 1.40–3.46 0.003

Parametrial involvement 3.31 2.217–4.914 <0.001 1.47 0.96–2.27 0.078

LVSI 2.356 1.780–3.117 <0.001 1.62 1.18–2.21 0.003

Node status 3.405 2.572–4.508 <0.001 2.09 1.51–2.89 <0.001

Histological subtypesa 1.825 1.364–2.441 <0.001 2.13 1.02–1.86 <0.001

FIGO status 1.82 1.360–2.435 <0.001 1.38 1.02–1.86 0.039

HPV statusb 0.407 0.222–0.748 0.004 0.53 0.28–0.99 0.045

SCC squamous cell carcinoma, LVSI lymphovascular invasion.
aNon-SCC vs. SCC.
bHPV positive vs. HPV negative.
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related immune-promoted pathway were significantly down-
regulated, while members of the immune-inhibited pathway
(TGF-β family members and their receptors) were upregulated in
HPV-ind CCs. Furthermore, BCR, TCR signaling pathway, TNF family
members receptors, chemokines and interferons were down-
regulated in HPV-ind CCs from TCGA cohort. (Fig. S4D). We next
merged the two cohorts in calculating the immune cell infiltration
by the CIBERSORT algorithm to acquire a higher confidence.

Apparently, the HPV-ind CCs had less immune cell infiltration than
the HPV-asso ones either in terms of innate immune cells or
adaptive immune cells, including plasma cells, CD8+ T cells,
activated CD4+ memory T cells, activated NK cells, dendritic cells,
and activated macrophages, accompanied by enrichment of
resting immune cells, anti-immune M2 microphage, mast cells
and neutrophils. (Fig. S4E–G). Hence, a relatively suppressed
immune state was exhibited in HPV-ind CCs, which also explained
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the worse prognosis, and indicated that HPV-ind CC patients may
hardly benefit from immunotherapies such as immune checkpoint
inhibitors or cancer vaccines due to the barren TME.

PI3K-α inhibitor BYL719 has a superior effect on HPV-ind
cervical cancer cells
Considering the significant role of aberrant activation of the PI3K/
AKT signaling pathway, the inhibitory effects of PI3K α-selective
inhibitor BYL719 were evaluated in HPV-ind (C-33A) and HPV-asso
cervical cancer cell lines (SiHa and MS751). It revealed that C-33A
cells were more sensitive to BYL719 than MS751 and SiHa cells
(IC50: 19.94 nmol/L (C-33A) vs. 26.69 nmol/L (SiHa); 38.39nmol/L
(MS751), Fig. 4A). A concentration of 25nmol/L BYL719 signifi-
cantly inhibited C-33A cell proliferation but barely affected that of
SiHa and MS751 (Fig. 4B, C). Additionally, BYL719 treatment
contributed to higher apoptosis rate (23.7% (C-33A) vs. 11.67%
(SiHa); 7.5% (MS751), p < 0.001, Fig. 4D, F) as well as more cells
arrest in the G0/G1 phase in C-33A cells than that of SiHa and
MS751 cells (Fig. 4E, G). Consistently, corresponding changes of
apoptosis, proliferation and cell cycle-related proteins were
observed in C-33A cells (Fig. 4H). Increased phosphorylation of
downstream substrates of the PI3K/AKT signaling pathway was
significantly repressed on the treatment of BYL719 in C-33A cells
(Fig. 4I), supporting our hypothesis of the aberrant activation of
the PI3K/AKT signaling pathway and the inhibitory effect of
BYL719 in HPV-ind CCs.

BYL719 showed marked anti-tumor effect on HPV-ind cervical
cancer patient derived models
Next, we evaluated BYL719 in two HPV-ind and two HPV-asso
patient-derived organoids (PDOs) (Fig. 5A). Consistent with the
in vitro experiments, HPV-ind PDOs had lower IC50 as compared
to HPV-asso PDOs (0.59 ± 0.22 nmol/L vs. 3.54 ± 0.16 nmol/L,
P= 0.013, Fig. 5B). Similarly, the antitumor effects of BYL719 were
determined in two patient-derived tumor xenograft (PDX) models
from HPV-ind and HPV-asso patients. The xenografts were treated
with BYL719 for 28 days. It showed that tumor proliferation was
significantly repressed with a higher tumor growth inhibition rate
(TGI%) in HPV-ind PDXs than that with HPV-asso xenografts
(Fig. 5C–F), however, an obvious body weight loss was also
observed (Fig. 5G). Furthermore, tumors of HPV-ind PDXs treated
with BYL719 displayed reduced staining of Ki67, and increased
staining of cleaved caspase3 and γH2AX, indicating that BYL719
had superior effect on inhibiting tumor proliferation, promoting
tumor apoptosis and DNA damage in HPV-ind PDXs than that with
HPV-asso PDXs (Fig. 5H).
To further understand the effect of BYL719 on TME in HPV-ind

and HPV-asso PDXs, RNA-Seq was performed with tumor tissues.
It identified that the PI3K-Akt signaling pathway was highly
enriched in HPV-ind PDXs compared to HPV-asso PDXs in
untreated groups, although PIK3CA mutation was not carried
(Fig. 5I). While it was evidently inhibited under the treatment of
BYL719, the treatment also influenced the other cancer-related
pathways, such as JAK-STAT, NF-kB, Ras, TNF signaling pathways
(Fig. 5J). However, only changes in calcium, TNF and TGF-beta
signaling pathways were found after the exposure of BYL719 in
HPV-asso PDXs (Fig. 5K). In summary, these results revealed that
the PI3K-Akt signaling pathway was aberrant activated in HPV-
ind CCs, and these patients may benefit from the PI3K α-
selective inhibitor BYL719.

Molecular subgroups of HPV-ind CCs were identified by RNA-
Seq
To investigate the heterogeneity among HPV-ind CCs, our RNA-
Seq data was analyzed using unsupervised hierarchical clustering
to classify 25 HPV-ind CCs into different subgroups. The optimal
number (K= 2) of clusters was chosen by ConsensusClusterPlus
package. (Fig. 6A and Fig. S5A). Survival analyses of the two

clusters illustrated an obviously lower survival probability for
subtype 1 in terms of both OS (HR: 5.9, CI: 1.3–27.2, P= 0.018,
Fig. 6B) and PFS (HR: 8.4, CI:1.8-39.1, P= 0.0044, Fig. 6C).
Subsequently, the same features were also validated in the TCGA
cohort (Fig. S5B, C). Survival analyses showed a difference in
survival probability between the two clusters, albeit with no
statistical significance in the log-rank test (Fig. 6D, E). Principal
component analysis (PCA) conducted managed to differentiate
the clusters in both cohorts (Fig. S5D, E), and the clinical features
of the two clusters in SHCC and TCGA cohorts were depicted in
Table S5
Further independent analysis of both cohorts showed that

subtype 1, named metabolic subtype, was more active in
metabolism and epithelial-mesenchymal transition, while
immune-related pathways were distinctly enriched in subtype
2, named immune subtype (Fig. S5G, H). The results were
consistent with those of separate analyses when the samples
from two cohorts were combined (Figs. 6F and S5I). In detail, the
metabolic subtype was enriched in fatty acid metabolism while
the immune subtype was enriched with targets of novel
antitumor targeted therapies, such as PD-1 signaling and Notch
signaling (Fig. 6G, H), In addition, PIK3CA was found highly
mutated in immune subtype in the SHCC cohort (15%
(subtype1) vs. 58% (subtype2), P= 0.041, Fisher exact test), but
there were no differences in PI3K-AKT signaling activation
between these two subtypes (Fig. S5F), suggesting an alternative
PI3K-AKT signaling activating mechanism beyond the PIK3CA
mutation in the metabolic subtype. Furthermore, the immune
subtype had more tumor-infiltrating lymphocytes (TILs) espe-
cially CD8+ and activated CD4+ T cells, and higher immune
score in most immune-promoting pathways, including antigen
processing and presentation, chemokines, interferons, and TNF-
related pathways, alongside lower scores for the immune-
suppressive TGF-β pathway. (Fig. 6I).
Collectively, we identified two subtypes with distinct biological

characteristics and outcomes in HPV-ind CCs, which indicated the
heterogeneity of HPV-ind CCs and personalized therapies should
be suggested in different subtypes.

DISCUSSION
Our study revealed that HPV-ind CCs accounted for 2.48% (25/
1010) of CCs with FIGO stage IB-IIA under our most stringent
cutoff. It had poorer survival than that with HPV-asso CCs. The
PI3K/AKT pathway was highly activated by PIK3CA, PTEN and AKT
mutation in HPV-ind CCs, which may elucidate the pathogenesis
of HPV-ind CCs and indicate the clinical applications of PI3Kα
inhibitor in HPV-ind CCs patients. Also, HPV-ind CCs were divided
into metabolic subtype and immune subtype according to
different prognosis, suggesting personalized therapies in HPV-
ind CCs.
Previous studies of the percentage of HPV-ind CCs fluctuated

between 1%–15% [3, 6, 7, 23, 24]. The methods used for HPV
detection varied, comprising hybrid capture 2 (HC2), PCR targeting
HPV DNA L1 region or E6/E7 region, and commercially available
kits using reverse hybridization after PCR. The detectable HPV
subtypes also different from high-risk HPV to a total of 34 of high-
to low- risk HPV types. However, no more than two methods were
applied to HPV detection in most reports, leading to the false
negatives and disparities in the prevalence of HPV-ind CCs. In this
study, a new sequential procedure for HPV screening was used for
two available kinds of samples (freshly frozen tissues and paraffin-
embedded sections); DNA and cDNA were used for PCR, which
primers were designed to target type-specific E6/E7 regions and
the conserved L1 open reading frame. More importantly, RNA-Seq,
capable of identifying 195 subtypes of HPV, including novel strains
such as RTRX7, L55, etc. was used for validation, reducing the
incidence of false positives. Consequently, the HPV-ind CCs

Y. Wang et al.

997

British Journal of Cancer (2024) 130:987 – 1000



samples screened in our study shared high accuracy, which
provides necessary guarantee for the subsequent analysis of
molecular characteristics of HPV-ind CCs.
In this study, it demonstrated that the prevalence of HPV-ind

CCs among different histological subtypes were 1.5% (11/733) for
SCC, 7.8% (12/154) for ADC, and 1.8% (2/110) in other types,
including ASC, NEC and carcinosarcoma (CS), which was slightly
different from what has been reported. Pirog and Holl showed
that nearly all SCCs were HPV-asso, while it accounted 14% and
10% in ADC and ASC, respectively [25, 26]. Of all HPV-ind CCs in
our study, 44% (11/25) were SCC, 48% (12/25) were classic ADC,
and 8% (2/25) were neuroendocrine carcinoma (NEC). Thus, HPV-
ind CCs were more common seen in ADC, which also explained
poor survival of ADC, and encouraged us to explore the molecular
type of ADC. In addition, HPV-ind CCs were associated with older
onset age and poorer prognosis in both our cohort and the TCGA
cohort, although the difference was not significant in the TCGA
cohort due to the limited sample size. These findings led to the
hypothesis that HPV-ind CCs formed a distinct type of CCs from
traditional HPV-asso CCs and therefore called for an in-depth
study of the pathogenesis and characteristics as well as novel
potential treatment modalities.
The current study revealed integrated genomic and transcrip-

tomic molecular features of HPV-ind CCs using WES and RNA-Seq
technologies. It showed a highly mutation of genes related to
pathogenic PI3K/AKT pathway in HPV-ind CCs. Notably, 52% of
HPV-ind CCs had oncogene PIK3CA mutations, compared to only
14% in HPV-asso CCs. However, in HPV-ind head and neck
squamous cell carcinomas (HNSCs) and anal squamous cell
carcinomas, the mutation rate of PIK3CA was significantly lower
than that in HPV-asso ones [27–30], while in penile carcinoma, the
rate was similar [31]. Further transcriptomic analysis validated the
activation of PI3K/AKT pathway caused by ERBB4 and FGFR1/4
overexpression and PTEN deletion in HPV-ind CCs. This suggests
that the influenced cell proliferation, survival and glycolysis
caused by aberrant activation of PI3K pathway may be the
oncogenic driver event of HPV-ind CCs, which deserves more
research for validation.
Given the highly activation of PI3K pathway in HPV-ind CCs, the

efficacy of PI3Ka inhibitor BYL719 was evaluated in vitro and
in vivo. Superior effect on HPV-ind C-33A cells than HPV-asso SiHa
and MS751 cells was observed. Also, BYL719 demonstrated better
antitumor effects in the HPV-ind PDO and PDX models, the latter
showed an aberrant upregulation of PI3K pathway but not
carrying PIK3CA mutation, than in the HPV-asso PDX. These
results indicated a favorable response to PI3Kα inhibitors in HPV-
ind CCs. Alpelisib (BYL719) was first approved by the FDA in 2019
for combined treatment with fulvestrant for PIK3CA mutated,
HR+ , HER- advanced or metastatic breast cancer [32]. It
demonstrated a good efficacy in PIK3CA-altered solid tumors,
especially in cervical cancer, from the first-in-human study of
Alpelisib [33]. Consequently, non-HPV infectious status may be a
clinical indication for BYL719 administration, which requires
clinical trials for validation.
Interestingly, we also identified enrichment of FGFR pathway in

HPV-ind CCs, a receptor initiates a cascade of intracellular events
involved in angiogenesis, cell proliferation and cellular survival
[34], as well as the downstream activation of PI3K. To today,
numerous FGFR inhibitors have been developed for the malig-
nancies with aberrant alteration of FGFR [34], among which,
Erdafitibinib, Pemigatinib and Infigratinib have been approved by
the FDA. Therefore, we hypothesized that HPV-ind CCs maybe a
possible new indication for trials of FGFR inhibitors, although
further research is required. In addition, TMB predicts immu-
notherapy response and was found to be significantly elevated in
HPV-ind CCs, suggesting a potential role for combination
immunotherapy with PI3K inhibitors.

CNV aberrations in critical regions are generally thought to be
deleterious [35]. In the present study, despite that we failed to find
novel CNVs in HPV-ind CCs, an imbalance in CNV levels between
HPV-ind CCs and HPV-asso CCs was revealed. This may be
explained by the fact that HPV virus can integrate into the host’s
DNA [36]. In addition, an amplified region, 3q26.31 (8/15, 53.3%),
was found in HPV-ind CCs, which were not harbored with PIK3CA
mutation. Especially, FNDC3B was located and enriched in that
area. Previous studies illustrated that FNDC3B abundance was
correlated with the development and invasion in CCs [37], HNSCs
[38] and gastric cancers [39], and it also predicted a poor
prognosis [40]. Therefore, we hypothesized that FDNC3B may act
as a surrogate pathogenic factor in PIK3CA wild-type HPV-ind CCs.
However, more studies are needed before a conclusion can
be drawn.
The present study also first presented the heterogeneity within

HPV-ind CCs and divided patients into two subtypes: the immune
subtype and the metabolic subtype. As termed, the immune
subtype was characterized by enrichment of immune-related
pathway and TILs, accompanied by a better prognosis. Our
classification was also verified in the TCGA-CESC cohort. Similar
to previous studies, enhanced PD-1 signaling and NOTCH
signaling were found in the immune subgroup [18, 41], and
both could be targeted for immunotherapy [42]. In particular, the
PD-1 inhibitor, Pembrolizumab has shown great advantages in
prolonging PFS and OS in persistent, recurrent, or metastatic
cervical cancer patients [43]. Considering the enhanced PI3K/AKT
pathway in HPV-ind CCs, a combination of a PI3K inhibitor and a
PD-1/PD-L1 inhibitor may achieve a better result in the immune
group [44] (NCT03711058). Whereas the metabolic subtype may
benefit from metabolic inhibitors targeting fatty acid synthesis;
however, more research into potential therapeutic targets is still
needed.
In summary, our work has clarified the proportion of HPV-ind

CCs and explored the genomic and transcriptomic characteriza-
tion of this unique type. The findings suggest a highly activation
of PI3K/AKT pathway, especially caused by PIK3CA mutation,
in HPV-ind CCs, and emphasize the application of PI3K inhibitor
for the treatment. With the increasing incidence of HPV-ind
cervical cancer, further studies with larger sample size are
required.
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