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OBJECTIVE: Current breast cancer risk prediction scores and algorithms can potentially be further improved by including molecular
markers. To this end, we studied the association of circulating plasma proteins using Proximity Extension Assay (PEA) with incident
breast cancer risk.
SUBJECTS: In this study, we included 1577 women participating in the prospective KARMA mammographic screening cohort.
RESULTS: In a targeted panel of 164 proteins, we found 8 candidates nominally significantly associated with short-term breast
cancer risk (P < 0.05). Similarly, in an exploratory panel consisting of 2204 proteins, 115 were found nominally significantly
associated (P < 0.05). However, none of the identified protein levels remained significant after adjustment for multiple testing. This
lack of statistically significant findings was not due to limited power, but attributable to the small effect sizes observed even for
nominally significant proteins. Similarly, adding plasma protein levels to established risk factors did not improve breast cancer risk
prediction accuracy.
CONCLUSIONS: Our results indicate that the levels of the studied plasma proteins captured by the PEA method are unlikely to offer
additional benefits for risk prediction of short-term overall breast cancer risk but could provide interesting insights into the
biological basis of breast cancer in the future.
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INTRODUCTION
Breast cancer is the most common cancer in women worldwide,
with incidence rates still increasing in Western countries. While
recent advances in therapy have increased the odds of survival
after a breast cancer diagnosis, early detection of aggressive
breast cancer is paramount to further improve health in our aging
population. Current mammographic screening programmes have
a number needed to screen around 1000–2000 [1, 2], indicating
many women have to be screened every 2 years for 10 years to
save a single life. Thus, our current screening programmes need to
be improved by better detection of women at risk of developing
invasive breast cancer, particularly within the next screening
interval.
Traditional risk prediction algorithms are mainly based on

reproductive risk factors, genetic risk factors such as aggregate
genetic risk scores, family history and lifestyle factors. More
recent efforts to identify women with a high short-term or long-
term risk for breast cancers used clinical models that addition-
ally included features from mammographic images such as

breast density or the presence of microcalcifications [3, 4]. Those
models have shown high discriminatory performance compared
to traditional risk models and are now suitable for identifying
individuals at high risk for breast cancer. Nevertheless, the
sensitivity and specificity of the models can potentially be
further improved by identifying additional (independent) risk
factors.
To this end, there are several approaches to identifying novel

(molecular) markers for breast cancer risk. Current large-scale
efforts focus on genome-wide scans to identify genetic factors
that influence the overall and/or subtype-specific breast cancer
risk [5–8]. In addition, other molecular markers such as DNA
modifications [9], circulating metabolites [10], and cell-free DNA/
RNA [11], as well as proteins [12, 13] are being studied. Apart from
inherited genetic markers, only a few other biomarkers have been
successfully validated in independent studies [14]. In addition,
many past and currently underway studies suffer from several
limitations, such as small sample size and lack of available incident
cases not confounded by treatment [15].
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In this study, we present the results from the KARMA cohort, the
largest prospective breast cancer screening cohort in Sweden. We
measured plasma protein levels in an exploratory and a targeted
panel and analysed their association with incident breast cancer to
identify novel markers for breast cancer risk.

METHODS
Study population
Women aged 40–74 years are invited every 18–24 months to the national
screening programme in Sweden. Women attending the mammographic
screening in two regions (Stockholm and Skåne) in Sweden were invited to
participate in the KARMA study between 2011 and 2013. A total of 70,877
women gave informed consent to participate in the KARMA study [16].
Participants answered a comprehensive web-based questionnaire,
donated blood, and accepted linkage to national registers. From linkage
to the cancer registry, we identified 826 women diagnosed with breast
cancer which occurred within 3 years of blood draw between 2012 and
2015. From those, only 804 had plasma specimens and thus were used in
our study. We used the matchit function from the MatchIt library
implemented in R to match 804 controls from KARMA study to the
incident cases by randomly drawing women without incident breast
cancer so that the median age at blood draw in cases and controls was
similar (median matching).
We used self-reported questionnaire data to create dichotomous

variables for menopausal and smoking status. Family history of first-
degree relatives was assessed from the multi-generation registry, as
previously described [17]. BMI and age were assessed at the time of study
entry and thus at the time of qualifying blood draw. Linkage to the
prescription registry was used to determine whether women had taken a
lipid medication (ATC code C10) between 2005 and blood draw.
Tumour characteristics such as oestrogen receptor (ER) status, human

epidermal growth factor receptor 2 (HER2) status, grade and lymph node
involvement were retrieved from medical records or from the Swedish
National Cancer Registry. Mode of detection was defined by the timing
between the last mammographic screening and time of diagnosis [18, 19].
Briefly, women diagnosed between two scheduled screening intervals
without a detectable tumour in the previous screening were deemed to
have interval breast cancer (IC). Conversely, women diagnosed with breast
cancer at a regularly scheduled mammogram are considered screen-
detected (SDC). Patients who did not attend screening or missed their
scheduled screening prior to diagnosis were not considered in the analysis
of IC vs. SDC (Supplementary Table 1).

Protein measurements—targeted panel
The samples from the Karma cohort were distributed across 96-well plates
with samples from the same individual placed on the same plate and the

remaining samples randomly distributed. Samples from Skåne and
Stockholm were placed on separate plates. Proximity Extension Assay
was performed at SciLifeLab’s Affinity Proteomics Unit in Stockholm
according to instructions from Olink Proteomics AB (Uppsala, Sweden) [20]
to measure proteins in EDTA plasma using the Cardiometabolic (v.3603,
Lot No A94923) and Immuno-Oncology (v.3111, Lot No B01401) panels. For
the cardiometabolic panel, plasma samples were diluted 1:2025, and for
the immune-oncology panel 1:1 (undiluted). Normalised protein expres-
sion (NPX) values were obtained from the Olink NPX Manager software
(version 2.2.1.311) after normalisation using the “Intensity normalisation
v2” method to account for the various measurement batches [21]. In
addition to standard quality control measures, we removed proteins that
had missing values in more than 10% of the samples, either in the Skåne or
the Stockholm recruitment centre. After quality control, 163 high-quality
protein measurements from the Cardiometabolic and Immuno-Oncology
panel were available for 796 incident cases and 781 controls (Table 1) from
both cohorts. As an additional quality control maker, we also computed
the percentage of proteins that were below the level of detection (LOD) in
each participant and recorded the duration the plasma was stored at
−80 °C (age of plasma). To account for differences between the protein
levels by recruitment centre, we used a rank-based inverse normal
transformation on each protein in both cohorts separately with the qnorm
function in R. From this normalised data, we used the prcomp function in R
to compute the first ten principal components (PCs) to capture additional
underlying data structures represented by those PCs.

Protein measurements—exploratory panel
Similar to the approach for the targeted panel of proteins, we also measured
over 3000 proteins from eight different panels with a Proximity Extension
Assay (Olink Proteomics AB, Uppsala, Sweden) in a subset of individuals from
the Skåne cohort. The raw protein measurements were analysed with the
Olink NPX Manager software as described above to yield normalised protein
expression values. Proteins with more than 50% missing values were
removed from analyses as were those flagged with a warning or error from
the NPX Manager software. The less stringent cut-off for the exclusion of
proteins was chosen since the exploratory panel contains many proteins
only present in minute concentrations and thus can often be below level of
detection across the cohort. Furthermore, individuals that were flagged as
outliers by principal component analyses were also excluded, yielding a final
analytical dataset consisting of 2204 proteins in 303 BC cases and 294
controls (for more details, see ref. [22]). Similar to the small panel, we also
computed the first principal components from the protein data and used
those as additional exposures in our association analyses.

Breast cancer genetic risk score
All cases and controls were genotyped on the OncoArray genotyping
platform and passed standard quality control, as previously described [18].

Table 1. Summary statistics of included KARMA participants at baseline exam.

Stockholm Skåne

Variable Controls BC cases Controls BC cases

Number of individuals 410 405 371 391

Mean age (SD) [years], matched* 58.48 (9.56) 58.52 (9.60) 58.66 (9.82) 59.05 (9.66)

Mean body mass index (SD) [kg/m2] 25.16 (4.19) 25.61 (4.20) 25.33 (4.25) 25.76 (4.13)

Postmenopausal [%] 70.49 69.38 70.35 72.38

Ever smoked [%] 58.00 59.17 50.70 55.59

Lipid medication taken [%] 11.46 11.85 12.40 15.60

Hypertensive medication taken [%] 27.07 22.72 28.30 26.09

Heart medication taken [%] 11.71 10.86 11.86 9.46

Renal failure (prevalent) [%] 0.73 0.25 0.54 0.00

Mean age of plasma [years] 7.92 (0.65) 7.53 (0.71) 8.02 (0.70) 7.61 (0.76)

Average frequency of proteins below LOD (SD) 0.12 (0.02) 0.12 (0.02) 0.14 (0.02) 0.14 (0.02)

Mean 313 SNP Genetic Risk Score (SD) −0.08 (0.29) −0.02 (0.30) −0.07 (0.32) −0.05 (0.31)

LOD level of detection.
*Variable used for median matching cases and controls.
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Briefly, we excluded related individuals, individuals with excessive
missingness (> 3% missing sites before variant QC) or heterozygosity as
well as individuals not of European descent. In addition, variants with a
strong deviation from Hardy–Weinberg equilibrium (P < 0.00001) or with a
high degree of missingness (missing in more than 10% of individuals) were
also excluded. For more details, please see refs. [18, 22].
Breast cancer risk was quantified by a genetic (polygenic) risk score from

313 variants associated with breast cancer risk as previously described with
plink2 [7]. Briefly, the genotype at each variant (coded as the number of
risk-increasing alleles 0, 1 or 2) was multiplied with the respective log odds
ratio indicating the strength of association with breast cancer risk. Then, for
each individual, the weighted alleles were summed up over all variants,
yielding a single score for each individual. Higher genetic risk scores
indicate a higher genetic risk for breast cancer from common variants,
while lower scores indicate lower risk.

Statistical analysis and presentation
Unsupervised clustering of the raw NPX values by their Euclidean distance
was performed with the heatmap.2 function from the gplot package [23].
All association analyses were carried out with Cox proportional hazard
models, as implemented in the survival package in R [24]. We adjusted the
models for known confounders of protein levels or breast cancer risk. In
particular, the models were adjusted for age at blood draw, BMI, lipid and
heart medication, renal failure, smoking status, menopause status, family
history of breast cancer, breast density, age of plasma (i.e., duration of
storage), number of proteins below LOD, the 313 variant genetic risk score
and, where appropriate, recruitment centre. The results of the association
analyses were plotted as Manhattan plots with the ggplot function
implemented in the ggplot2 library [25] or as correlation plots with the
corrplot function implemented in the corrplot library [26].

RESULTS
Quality control and unsupervised clustering
After quality control, a total number of 163 proteins from the Olink
Proximity Extension Assay (PEA) Cardiometabolic and Immuno-
Oncology panels (targeted panel) were available for analysis in 796
incident cases and 781 controls, which were selected from two
cohorts recruited in Stockholm and in the Skåne region in Sweden,
respectively (Table 1 and Supplementary Table 1). Baseline character-
istics ascertained at blood draw (Table 1) as well as tumour
characteristics (Supplementary Table 1) were similar among both
cohorts. First, we performed an unsupervised clustering approach and
observed that individuals were broadly grouped according to the
recruitment centre in which they were recruited (Fig. 1a). To account
for this, we normalised protein levels within each region by computing
a rank-based inverse normal transformation. This effectively removed
the systematic difference in protein levels observed by the recruitment
centre (Fig. 1b). The remaining clusters were not representative of
other covariates nor of disease status (Fig. 1b and Table 1).

Association of proteins with breast cancer risk in the targeted
and exploratory panel
Next, we computed the association of normalised plasma protein
levels in the targeted panel with breast cancer risk using Cox
regression while adjusting for potential confounders such as age
at blood draw, BMI, smoking status, renal failure, family history of
breast cancer, the 313 simple nucleotide polymorphism (SNP)
genetic risk score for breast cancer and medication. In the
targeted panel, we found 8 proteins nominally associated with
breast cancer risk (P < 0.05), of which two proteins showed a
positive and six a negative effect size (Fig. 2). Notably, among the
significantly associated proteins was Caspase 8 (CASP8), which has
previously been implicated in breast cancer genetic risk as well as
other cancers. However, after adjustment for multiple testing
(either by controlling the false discovery rate, FDR, at FDR < 0.05 or
Bonferroni correction), none of the proteins remained statistically
significant (Fig. 2). We did not find a significant association of the
principal components computed from the protein data with
breast cancer after adjustment for multiple testing (Fig. 2).

Considering the complexity and scale of the circulating
proteome, it remained a possibility that none of the 163 proteins
analysed on the targeted Olink Cardiometabolic and Immune-
oncology panels represented proteins of relevance for breast
cancer risk. Therefore, we measured a total of 2950 plasma
proteins using the Olink Explore I and II panels in a subset of the
Skåne study only to avoid confounding the analysis by the
recruitment centre (Supplementary Table 2). After quality control,
2204 proteins remained for statistical analysis in 303 incident
breast cancer cases and 294 controls. We performed the
association analyses in those sample with the same adjustments
as before. Here, 115 proteins were nominally associated with
breast cancer risk (Fig. 3). However, none of the 115 proteins nor
the first ten principal components survived Bonferroni multiple
testing correction (P < 0.05/2,204, Fig. 3) nor were they significant
at FDR < 0.05.
To gain further insights into the nominally significantly

associated proteins (P < 0.05) from the targeted panel, we
investigated the association of those proteins with breast cancer
risk after stratifying the patients according to their tumour
characteristics (Supplementary Table 1). In general, the proteins
are associated similarly in women with different prognostic markers
(Supplementary Fig. 1). For particular markers, we see that it is
associated more pronounced with more aggressive prognostic
markers. Indeed, CXCL13 is statistically significantly more strongly
associated with interval compared to screen-detected cancer in a
case-only analysis (P= 0.005). In addition, CASP8 seems to be more
strongly associated with less favourable markers, although it is not
significantly different in a case-only design comparing unfavourable
against favourable markers (i.e., BC cases with ER-negative, lymph
node-positive or high-grade tumours compared to women with ER-
positive, lymph node-negative and low-grade tumours).

Lasso regression
While we did not find that proteins were significantly associated
with breast cancer risk individually, they could still exhibit
combinatorial effects that would help to predict a future breast
cancer diagnosis. To this end, we used Lasso regression to detect
whether a combination of proteins in addition to established risk
factors would improve risk prediction accuracy, as assessed by the
area under the receiver operating curve (AUC, Fig. 4a, c). In this
analysis, we found that the baseline model containing age at
blood draw, BMI, percent mammographic density, menopause
status, the 313 BC genetic risk score and family history of breast
cancer outperformed models with additional protein level
measurements in the targeted (Fig. 4a) and in the exploratory
panel (Fig. 4c). This finding strongly indicates that the studied
proteins are not useful for risk prediction of overall, short-term
breast cancer risk.

Power considerations
Next, we studied whether the lack of association with breast cancer
risk could potentially be attributed to a lack of power. Although this
study is the largest prospective study investigating the association
of proteins with incident breast cancer by a large margin, we could
still be underpowered to detect such associations. Therefore, we
generated random subsets of our data and artificially inflated the
effect sizes of the association of each protein with breast cancer.
This allowed us to compute the post hoc power of our study to
identify specific proteins with a significant P value after accounting
for multiple testing (i.e., Bonferroni corrected P value < 0.05). We
found that we had more than adequate power (> 80%) to detect
proteins that were associated with breast cancer risk with a hazard
ratio greater than 1.28 per standard deviation (SD, log hazard ratio
per SD >0.25, Fig. 4b) in the targeted panel, which is more than
adequate to identify risk factors with effect sizes observed for
benign breast disease or elevated breast density. Similarly, even
though we only measured the exploratory panel in less than half of
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our cohort, we still had sufficient power to detect 80% of all
associations with a hazard ratio above 1.74 (per SD, Fig. 4d), which
corresponds to effect sizes observed for proteins associated with
oesophageal carcinoma, or established risk factors such as hormone
replacement therapy and family history. These results mean that we
would have ample power to detect associations previously reported
for other cancers. However, the effect sizes we observed for
nominally significantly associated proteins (P < 0.05) was 0.10 and
0.18 on average for the targeted and the exploratory panel,
respectively. Those findings show that none of the investigated
proteins are likely associated with overall breast cancer risk with
large and thus relevant effect sizes as observed in previous studies
for other cancers.

DISCUSSION
In this study, we present results from the largest study to date
about circulating proteins involved in breast cancer risk. We found

that neither the pre-selected proteins in the targeted panel nor
proteins from the extended Olink panel were significantly
associated with short-term general breast cancer risk. The lack
of associations was not due to low power but attributable to the
small effect sizes observed for even nominally significant proteins.
Based on our results, we cannot exclude a role of plasma proteins
in breast cancer risk but their impact on risk is likely to be low and
thus they are of little value to improve risk prediction efforts.
Interestingly, we found that CASP8 was nominally associated

with a short-term risk for breast cancer providing insights into a
potential role of plasma CASP8 levels in breast cancer risk. Several
in vitro studies have shown that CASP8 is involved in apoptosis
and necroptosis [27] in different cell types. Inherited genetic
variations in the CASP8 gene have also previously been found to
be associated with breast cancer [28] as well as other types of
cancers [29, 30]. Importantly, circulating plasma levels of this
protein seem to influence the risk for prostate [31] and
oesophageal squamous cell carcinoma (ESCC) [32] as well as type

IMONC CAM IMONC CAMa b

Fig. 1 Unsupervised clustering of patients and controls according to protein levels. a Cases and controls are clustered according to
recruitment centre (Skåne in blue and Stockholm in red). b After quantile normalisation of protein levels of participants from each centre, no
striking differences between centres were obvious. Future disease status is indicated by black (BC) and white (control) bars. IMONC Immuno-
Oncology (v.3111) panel, CAM Cardiometabolic (v.3603) panel.
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2 diabetes [33] and coronary events [34]. Given its role in diverse
phenotypes and involvement in multiple pathways leading to
apoptosis, the observed association with breast cancer is still not
easily understood. Thus, additional studies designed to provide
mechanistic insights into the precise role of CASP8 or related
genes and downstream targets in breast cancer risk are needed.
Similar to genome-wide association studies, which generally
identify variants weakly associated with disease risk, our results
are encouraging that high-throughput protein panels can
potentially identify important proteins and thus pathways in
breast cancer even if individual proteins only show weak
associations.
Previous studies using Olink protein panels have often found

stronger effect sizes than those we observed in our cohort for
nominally significant proteins [31, 32, 35–37]. This could be
attributed to multiple factors, such as smaller sample size in
preceding studies or the winner’s curse effect, both of which
would strongly bias and inflate the estimates, as much as twice
their true value [38]. However, even though those previous studies
reported exaggerated effect sizes, we would still have enough
power to pick up even signals with smaller impact. Conversely, the
effect sizes we observed in our cohort are much smaller than most
established risk factors, indicating that protein levels are not
strongly associated with general breast cancer risk. This is in
agreement with the results from the lasso regression, which
showed that the addition of proteins does not improve risk
prediction accuracy beyond a baseline model containing estab-
lished hormonal, reproductive, lifestyle, and family history/genetic
risk markers. Thus, the proteins we studied are not only weakly
associated with breast cancer risk, but they appear unlikely to be
informative for future efforts to predict overall breast cancer risk.
Our results do not preclude that proteins might be useful in

predicting certain types of breast cancer, either defined by its
aggressiveness (i.e., grade and lymph node involvement) or by cell
surface markers (such as oestrogen receptor or human epidermal
growth factor receptor 2 (HER2) status) [39]. Indeed, we found that
the association strength can differ by breast cancer subtype (see
Supplementary Fig. 1), although we only observed a statistically
significant difference in the association signals for CXCL13 with

interval cancer vs. screen-detected cancer. Therefore, larger
studies of incident breast cancer cases would be necessary to
include a sufficient number of cases with rarer but highly relevant
characteristics, such as triple-negative tumours and those that
spread beyond the breast. In addition, a combination of proteins
and established or yet unknown risk factors could help to predict
breast cancer risk in an individualised fashion for certain subtypes
of breast cancer. Such efforts, however, require even more
extensive studies and, importantly, independent replication in
incident breast cancer cases. Such efforts could be possible by
including data from individuals recruited in the UK Biobank, which
is currently measuring the 3000 proteins in >50,000 randomly
selected individuals [40]. Given the incidence of breast cancer in
the UK Biobank of around 700 women per year since recruitment,
this would translate to around 140 incident breast cancer patients
with such protein measurements within 2 years since recruitment.
Hence, our study is still at least twice as large and therefore more
powered to detect associations with short-term risk, which would
be most useful for risk prediction in current screening
programmes.
Many of the circulating proteins targeted by the PEA approach

originate from organs involved in metabolic or inflammatory
processes predominantly due to active secretion [41]. In addition,
the proteins can also be potentially contained in diverse
extracellular vesicles (EVs) to facilitate intercellular communica-
tion, immune response, blood coagulation, and tissue repair [42].
Alternatively, the proteins can originate from an (undetected)
tumour which either actively or passively secretes those proteins.
Our approach, however, is not suited to easily distinguish between
those processes. When we stratified our breast cancer patients by
time between blood draw and diagnosis according to the median
(in this case, 19 months), we found similar associations in both
groups, indicating that leakage of proteins from the tumour is
unlikely to be the main driver of the blood proteome in breast
cancer captured by our PEA approach. Thus, detecting cancer risk-
related proteins originating from the tumour, remains a known
challenge if these are not enhanced by systemic involvement of
metabolic or inflammatory processes. Compared to classical
proteomics platforms using mass spectrometry, the chosen
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affinity-based PEA assay enables highly sensitive analysis of low-
abundant blood proteins [43]. However, there remain relevant
functional protein characteristics involved in governing human
health [44] that were not resolved with this approach such as the
presence of different proteoforms [45] and interacting proteins
[46]. These protein traits may still harbour information relevant to
breast cancer risk but remain out of reach when analysing
systemic blood fluid.
In conclusion, our results indicate that the levels of the investigated

proteins captured by a Proximity Extension Assay are unlikely to be
informative to improve risk prediction of short-term breast cancer risk.
Still, our study was designed to study overall breast cancer risk. Thus, a

study focused on breast cancer subtypes (i.e., tumour characteristics
or survival) could identify more specific associations which could
prove useful for predicting certain types of breast cancer. Finally,
despite low effect sizes observed in our dataset, we note that protein
data can potentially be leveraged in future studies to gain important
insights the biology underlying breast cancer, thus enabling the
identification of novel preventive targets.

DATA AVAILABILITY
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