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BACKGROUND: Wilms tumor (WT) exhibits structural and epigenetic changes at chromosome 11p15, which also cause Beckwith-
Wiedemann Syndrome (BWS). Children diagnosed with BWS have increased risk for WT. The aim of this study is to identify the
molecular signaling signatures in BWS driving these tumors.
METHODS:We performed whole exome sequencing, methylation array analysis, and gene expression analysis on BWS-WT samples.
Our data were compared to publicly available nonBWS data. We categorized WT from BWS and nonBWS patients by assessment of
11p15 methylation status and defined 5 groups– control kidney, BWS-nontumor kidney, BWS-WT, normal-11p15 nonBWS-WT,
altered-11p15 nonBWS-WT.
RESULTS: BWS-WT samples showed single nucleotide variants in BCORL1, ASXL1, ATM and AXL but absence of recurrent gene
mutations associated with sporadic WT. We defined a narrow methylation range stratifying nonBWS-WT samples. BWS-WT and
altered-11p15 nonBWS-WT showed enrichment of common and unique molecular signatures based on global differential
methylation and gene expression analysis. CTNNB1 overexpression and broad range of interactions were seen in the BWS-WT
interactome study.
CONCLUSION: While WT predisposition in BWS is well-established, as are 11p15 alterations in nonBWS-WT, this study focused on
stratifying tumor genomics by 11p15 status. Further investigation of our findings may identify novel therapeutic targets in WT
oncogenesis.

British Journal of Cancer (2024) 130:638–650; https://doi.org/10.1038/s41416-023-02538-x

INTRODUCTION
Wilms tumor (WT), or nephroblastoma, is the most common
pediatric kidney cancer [1]. While modern treatment strategies
and methodologies have increased survivability, poor outcomes
still occur, particularly in the setting of bilateral, relapsed, and
anaplastic tumors. Although healthy children develop WT, children
who have cancer predisposition disorders like Denys-Drash
syndrome, WAGR syndrome, or Beckwith-Wiedemann syndrome
(BWS, OMIM 130650), are more likely to develop WT [2–4]. Denys-
Drash syndrome and WAGR syndrome are due to alterations of
Wilms Tumor 1 (WT1) [5], and mutations in tumor protein 53 (TP53)
[6, 7] and beta-catenin (CTNNB1) [8, 9] are associated with WT
susceptibility.
BWS comprises a range of fetal and neonatal overgrowth

characteristics including nephromegaly, urogenital malforma-
tions, and development of embryonal tumors, including WT
[10–13]. Patients with BWS are at an approximately 800-fold
increased relative risk of developing WT; these neoplasms occur
at a younger age and at increased incidence, as compared
to age-matched, non-syndromic children [12, 14–16]. Due to
these factors, tumor screening is recommended for patients with

BWS by ultrasonography every three months through the 7th
birthday [17].
Loss-of-heterozygosity (LOH) is both a common somatic

oncogenic driver within tumors and can be present in the somatic
tissues of patients with a mosaic cancer predisposition syndrome
like BWS [18]. LOH is reflected in parallel alterations on 11p15
in both BWS and present somatically in at least two thirds of WT
[19]. For example, one cause of BWS is mosaic loss of
heterozygosity (LOH) at 11p15 caused by paternal uniparental
isodisomy (pUPD11) [19], which leads to disruption of an
imprinting control region that regulates parent-of-origin-specific
gene expression [20]. LOH at chromosome 11p15 is also present
in at least 30% of WT and is associated with higher staging
classification and a greater risk for relapse [5, 7, 19, 21–26]. LOH or
pUPD11 leads to gain of methylation (GOM) at the differentially
methylated region (DMR) H19/IGF2:IG-DMR, which regulates
Imprinting Center 1 (IC1), and causes increased paternal expres-
sion of Insulin-like Growth Factor 2 (IGF2) and decreased maternal
expression of non-coding RNA H19 [11]. Additionally, it also leads
to loss of methylation (LOM) at the KNCQ1OT1:TSS-DMR,
which regulates Imprinting Center 2 (IC2), and causes decreased
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maternally expressed Potassium Voltage-Gated Channel Subfamily
Q member 1 (KCNQ1) and Cyclin-Dependent Kinase Inhibitor 1C
(CDKN1C) as well as increased expression of non-coding antisense
RNA KCNQ1OT1 [11]. In some tumors, the LOH extends through
11p13 and dysregulates the WT1 gene [27, 28]. ~30% of WT have
isolated IC1 GOM without the LOH [26, 27, 29], which is also a
cause of BWS.
Given the propensity of BWS patients to develop WT and the

fact that at least two-thirds of WT have alterations at 11p15 (either
LOH or IC1 GOM), we stratified patients by 11p15 status to study
downstream signaling using a multi-omics approach. In this study,
we used DNA methylation arrays, whole exome sequencing, and
RNA sequencing to elucidate the cellular signaling pathways
involved in BWS-WT development. We compared our BWS cohort
with nonBWS-WT, stratified by 11p15 status, to shed light on the
genomic, methylomic, and transcriptomic changes that arise
because of 11p15 alterations. This experimental design enabled us
to define molecular signatures in both BWS-WT and nonBWS-WT.
Finally, using a weighted gene co-expression network analysis
(WGCNA) approach, we aimed to systematically investigate the
pattern of gene associations among samples in both cohorts
based on mRNA level in WT.

METHODS
Patients and samples
Samples and clinical information were collected through the BWS Registry,
under the oversight of the Children’s Hospital of Philadelphia (CHOP)
Institutional Review Board protocol (IRB 13-010658). In brief, consent was
obtained from all patients and/or legal guardians to collect longitudinal clinical
information, in addition to samples that became available through clinical care.
During surgical procedures for WT resection, tumor and adjacent kidney

samples were collected from patients, then snap frozen in liquid nitrogen
and stored at −80 °C. Clinical testing for BWS molecular characterization
was performed in blood, non-tumor kidney, and tumor at the University of
Pennsylvania Genetic Diagnostic Laboratory, as previously described [30].
We analyzed nine primary BWS-WT samples available to us; six had
matched non-tumor kidney samples that were collected.
Three control kidney samples (C1, C2, C3) were collected at autopsy with

consent through CHOP Pathology and Laboratory Medicine. Subsequent
testing at 11p15 was performed to verify the samples did not demonstrate
molecular BWS. Basic information about these samples was provided
through an honest-broker. An additional two control kidney samples (C4,
C5) were collected in a similar way, and were used in transcriptome
analysis to compare to tumor profiles.

NonBWS-WT data
Non-syndromic data was retrieved from the National Cancer Institute (NCI)
Therapeutically Applicable Research To Generate Effective Treatments
(TARGET) Initiative [31] and the Gene Expression Omnibus (GEO) accession
number GSE110697 (referred to as Murphy et al. data) [32]. For the
methylation study, 21 samples were used from validation set of TARGET
[31] and 39 samples were used from Murphy et al. [32]. For gene
expression data, 21 WT samples were used from the validation set of
TARGET data.
Data generated in this study have been deposited in the Database of

Genotypes and Phenotypes (dbGAP) of the National Center for Biotech-
nology Information (United States National Library of Medicine, Bethesda,
MD) under accession number phs002769.v1.p1.b. A detailed summary of
sample distribution in the study is depicted in Supplementary Fig. 1.

Genomic DNA isolation
Genomic DNA from kidney samples was isolated using the AllPrep DNA/RNA
Micro Kit (QIAGEN) and quantified on Qubit with HS DNA kit (Thermo Fisher).

Whole exome sequencing (WES)
WES libraries were prepared by the CHOP Center for Applied Genomics
(CAG) using the Twist Bioscience Human Core Exome kit with 50 ng of
input DNA. Sequencing was performed on the NovaSeq 6000 platform
(Illumina) and data were processed using the GATK pipeline [33], as
described in the supplemental methods. Ta
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Sanger sequencing
50–100 ng of genomic DNA was used as a template in a 20μl GoTaq
(Promega) PCR reaction. The thermal cycling conditions used to generate
PCR amplicons for sequencing were: 95 °C initial denaturation for 2 min, 35
cycles of 95 °C for 30 s, 58 °C for 30 s, and 72 °C for 30 seconds, and a final
extension of 72 °C for 5 min. The primers used in these PCRs are listed in
the supplemental methods. Products were cleaned using a PCR Purification
Kit (QIAGEN). Sequencing reactions were commercially performed by
Azenta Inc.

Methylation array
Genomic DNA (500 ng) was bisulfite converted using the EZ DNA
Methylation Kit (Zymo Research). Infinium MethylationEPIC array (Illumina)
runs were conducted by the CHOP CAG and data was processed using
SeSAMe package [34, 35] DMRcate [36, 37] and missMethyl [38–41] R
packages as described in the supplemental methods.

Transcriptome analysis by RNA-Sequencing (RNA-Seq)
Total RNA was isolated from frozen tumor samples using the AllPrep DNA/
RNA Micro Kit (QIAGEN). RNA eluate concentration was quantified using the
QUBIT HS RNA kit (Thermo Fisher) and quality was assessed by TapeStation
(Agilent). The matched BWS non-tumor samples had a low RIN (RNA
integrity) value and hence were not included in this library preparation and
subsequent analysis. Library preparation of samples meeting appropriate
concentration and quality criteria were completed by GENEWIZ, using a Tru-
Seq RNA Library Prep kit (Illumina), and included polyA selection. Library
quality was assessed by concentration using the QUBIT HS DNA kit (Thermo
Fisher) and by fragment size using the TapeStation (Agilent). Sequencing
was performed on the Illumina HiSeq 2500 system with 2 ×150 bp read
length. Quality of raw reads was assessed using FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adaptor trimming
for Illumina paired-end libraries was applied using Cutadapt [42]. Reads
were mapped using STAR [43] to hg19/GRCh37 and count matrices were
generated using HTSeq-Count [44].

Read counts were normalized using the variance stabilizing transforma-
tion. In the case of comparison with non-syndromic data, the DESeq2 [45]
batch correction and apeglm [46] log fold change (LFC) shrinkage was
applied to reduce variation between data sets independently sequenced
and processed. Gene set enrichment analysis (GSEA) of differentially
expressed genes (DEGs) was performed using eVITTA (easy Visualization
and Inference Toolbox for Transcriptome Analysis) [47]. Results from GSEA
with a with a nominal p-value < 0.05 and/or false discovery rate q-
value < 0.05 were considered enriched. The RNA-Seq network was
generated using STRING [48] and hub genes were identified based on
nodes with the top 10% of edges. The network with bundled edges to
represent interaction counts was generated with the R package edge-
BundleR (https://github.com/garthtarr/edgebundleR).

RESULTS
Clinical overview of the BWS-WT cohort
Samples analyzed in this study were collected from patients
referred for BWS testing at an average age of 35 ±33 months
(Table 1). The cohort represents 44% (4/9) females and 55.5% (5/9)
of the patients that were diagnosed with BWS-WT (Table 1). At a
mean follow-up time of 31 months, 78% (7/9) patients were alive;
29% of these children (2/7) had a relapse event, while 14% (1/7) had
metastatic disease (Table 1). Histologically, 78% (7/9) of tumors were
classified as favorable and 78% (7/9) with available COG staging
were stage 3 or greater (Table 1). Additionally, this study utilized
cohorts with as closely matched ages as was feasible.

Copy number and single nucleotide variations associated with
BWS-WT
We evaluated copy number alterations (CNAs) and single
nucleotide variations (SNVs) using whole exome sequencing. We
first assessed BWS-WT for commonly observed alterations seen in
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nonBWS-WT (including WT1, TP53, CTNNB1, LOH at chromosome
16q, content gains at 1q, and content losses at 7p and 17, among
others) [6, 49–51]. We also studied recurrent alterations that
occurred at the same genomic locations in two or more of the
BWS-WT patients. We observed the following recurrent alterations:
100% (9/9) at 15q, 89% (8/9) at 7p, 78% (7/9) at 16q, and 67% (6/9)
at 1q, (Fig. 1A, Supplementary Fig. 2A). To determine the tumor
mutational burden driving WT in BWS, we normalized the six
tumors to their matched non-tumor counterparts, with the goal of
determining the number of CNAs in each WT. Using this approach,
we found an average of 137 ±78 CNAs per matched set (Fig. 1B).
Within BWS WT samples themselves, BWS-WT8 and BWS-WT13
carried a relatively higher number of CNAs, 274 and 192
respectively, but with different distributions. Specifically, BWS-
WT13 had many changes on specific chromosomes (chr 6, 16, and
18) and BWS-WT8 presented with chromosome end loss across
the genome (Fig. 1A, B).
In our SNV analysis, the six tumors normalized to matched non-

tumor counterparts had an average of 85 ±113 SNVs (Fig. 1C).
Again, two samples were outliers from the trend; BWS-WT8 and
BWS-WT16 each had >400 SNVs (>10/Mb) and over 250 of these
were non-synonymous, classifying them as hyper-mutators
(Fig. 2C). In the case of BWS-WT8, due to the increased number
of SNVs and CNAs localized to chromosome ends, we performed
SNV mapping to members of GO:0005697 telomerase holoenzyme
complex or GO:0006298 mismatch repair, respectively. Those
classified as likely pathogenic or pathogenic/damaging were

independently confirmed by Sanger sequencing. Both BWS-NT8
and BWS-WT8 had variants in TEP1, SMG6, and NVL genes
(Supplementary Fig. 2B). Considering BWS-WT16 only had an
increased number of SNVs, we explored the possibility of a
mismatch repair defect. Both BWS-NT16 and BWS-WT16 had
variants in MLH3 and MCM9 (Supplementary Fig. 2C).
While these mutations contributed to the genomic landscape of

two BWS-WTs, we wanted to identify other putative variants
driving WT predisposition and oncogenesis across the cohort. By
employing the clinical testing panel of genes used at our
institution (which includes 238 genes involved in solid tumor
development listed in the Supplemental Methods and is part of
our standard of care for the clinical evaluation of WT), we
interrogated our WES-identified CNAs and SNVs datasets. Samples
without matched non-tumor normalization, BWS-WT9, BWS-WT10,
and BWS-WT14, had the largest number of SNVs, but few of these
were recurrent among the samples with matched non-tumor WTs
(Fig. 1D). The BCORL1 gene had the highest mutation rate in the
cohort (4/9) followed by ASXL1, ATM and AXL genes (3/9; Fig. 1D).
All four genes are potential cancer driver genes involved in
chromatin remodeling, DNA repair processes, cell cycle processes
and Wnt signaling pathways. Interestingly, CTNNB1 mutation, a
driver of WT was observed in one BWS-WT but TP53, WT1, but WT-
mutated WTX/AMER1 genes were not observed in any of these
BWS-WT (Fig. 1D). In aggregate, the findings from our cohort
indicate that the complex mechanisms driving BWS-WT tumor-
igenesis are largely independent of gene mutations.
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Imprinting of 11p15 in BWS and nonBWS-WT
We next investigated differential methylation profiles through
methylation array. The samples in this study were collected from
patients diagnosed with BWS due to differential genomic
methylation changes (IC1 GOM or pUPD11). We confirmed the
molecular changes detected in the clinical lab (Table 1) in BWS
WT/matched non-tumor kidney samples by performing differen-
tial methylation studies using Infinium MethylationEPIC array.
Samples for each analysis are defined in Fig. 2A. We determined
the methylation status at 11p15, and the normal methylation
range was established as 95% CI (confidence interval) of the
control kidney interval, between 55–62% for IC1 and 38–58% for
IC2. All BWS-WT samples as well as corresponding BWS non-tumor
demonstrated IC1 GOM (Fig. 2B). IC2 LOM was observed in BWS-
WT12 and BWS-WT14 (Fig. 2C). As such, these two samples were
confirmed as pUPD11, matching their clinical testing designation
(Table 1). For BWS-WT10 and BWS-WT16, previous clinical testing
identified pUPD11 as indicated in the array results (Fig. 2B, C).
To further define BWS-WT in the context of nonBWS-WT, and

expand the power of our cohort, we compared our data with two
publicly available non-syndromic/nonBWS cohorts. The nonBWS
cohort included the TARGET dataset (n= 21) [31]; and Murphy et
al. dataset (n= 39) [32];. We examined the 11p15 status of the
nonBWS tumors in parallel to our samples with normalization to
account for batch correction (Supplementary Fig. 1). In the
published TARGET WT cohort analysis, a methylation range of
30–70% was considered normal for both IC1 and IC2 and >80%
methylation at IC1 was considered as GOM [31]. Applying our
narrower normal range, only three TARGET samples demonstrated
normal 11p15 methylation at both IC1 and IC2: PAJPHA, PAKKSE,
and PALERC (Supplementary Fig. 3A), which were designated as
normal-11p15 nonBWS-WT samples (Fig. 2A - which were further
used for our WGCNA analysis). Similar evaluation of the Murphy
et al. data [32], showed only four samples with normal 11p15
methylation: APT074, APT027, APT022 and APT033 (Supplemen-
tary Fig. 3B) which were designated for the differential methyla-
tion analysis as normal-11p15 nonBWS-WT samples (Fig. 2A). All
other samples from both of these cohorts had aberrant
methylation at one or both imprinted regions and were classified
as altered-11p15 nonBWS-WT (Supplementary Fig. 3A, B, Fig. 2A).
To evaluate the global methylation profile of BWS and normal-

11p15 nonBWS-WT, we performed a principal component analysis
(PCA) stratified by 11p15 status on the nonBWS cohort (Murphy
et al. data, which used an array platform similar to our dataset)
and the BWS-cohort (Supplementary Fig. 3C). In considering the
normal-11p15 nonBWS-WT samples from Murphy et al., there was
a clear separation of control kidney and BWS non-tumor kidney
samples in the first principal component (Dim1), while the WT
samples separated along the second principal component (Dim2)
according to their methylation status at 11p15 (normal vs altered)
(Fig. 2D). This indicates that there are distinct methylation profiles
between control kidneys, BWS-NT, BWS-WT samples and normal-
11p15 nonBWS-WTs. We also performed PCA on altered-11p15
nonBWS-WT samples and found that these samples segregated
from control kidneys and BWS non-tumor kidney samples
(Supplementary Fig. 3C). However, the distribution across BWS-
WT samples and normal-11p15 nonBWS-WT samples was uneven
(Supplementary Fig. 3C). We also applied the methylation range
defined by Gadd et al. [31] on Murphy et al. data and found that 2/
3 of samples classified as altered-11p15 nonBWS-WT and the other
1/3 as normal-11p15 nonBWS-WT (Supplementary Fig. 3D). The
PCA shows that the normal-11p15 nonBWS-WT clustered
unevenly as compared to clear separation observed in unsuper-
vised distribution based on our methylation criteria (Supplemen-
tary Fig. 3E). This suggests that the methylation range for defining
imprinting is narrower in BWS.
Next, we looked for differentially methylated regions
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normal-11p15 nonBWS-WT and control kidneys using the
DMRcate package [36, 37]. For both BWS-WT and altered-11p15
nonBWS-WT, the most significant DMR was DMR1, the IC1 region
on chromosome 11p15 (chr11:2,016,513–2,020,560) (Fig. 2E) with
mean delta β-values of 0.29 and 0.27, respectively. BWS-WT and
altered-11p15 nonBWS-WT samples segregated separately from
other groups across this region, demonstrating that nonBWS-WT
are not the result of undiagnosed BWS. To further highlight
the uniqueness of BWS-WT, we performed a region level gene
ontology (GO) analysis of the DMRs identified using DMRcate with
a mean delta β-value of greater than 15% between WT samples of
both cohorts and control kidneys using the missMethyl package
[38–41]. The gene ontology analysis was performed in all the
groups; BWS-WT, normal-11p15 nonBWS-WT and altered-11p15
nonBWS-WT. Normal-11p15 nonBWS-WT showed enrichment of
cellular metabolic processes (Supplementary File 1). BWS-WT
showed enrichment of Wnt signaling pathway, integrin signaling
pathway, insulin receptor signaling pathway and BMP signaling
pathway as shown in Table 2. Altered-11p15 nonBWS-WT showed
enrichment of cell cycle processes, DNA damage checkpoint
processes, TORC1 signaling, TOR signaling and Wnt signaling
pathways as shown in Table 3. These findings demonstrate that
differential methylation of Wnt signaling is a common signature of
both BWS-WT and altered-11p15 nonBWS-WT, while there are
separate unique signals driving WT between study cohorts.
We also performed gene ontology analysis on samples classified

as altered-11p15 nonBWS-WT and normal-11p15 nonBWS-WT
based on the methylation range defined by Gadd et al. The
normal-11p15 nonBWS-WT cohort showed enrichment of cell
cycle processes in addition to cellular metabolic processes
(Supplementary File 4) whereas altered-11p15 nonBWS-WT cohort
were enriched with GO Terms related to cell cycle, DNA repair, and
Wnt signaling among others (Supplementary File 5). The altered-
11p15 nonBWS-WT cohort shared signaling features with BWS-WT
cohort even though the BWS-WT cohort had a different
methylation range for IC1 GOM. This finding demonstrates the
importance of defining a narrow methylation range to define

BWS-WT, to exclude nonBWS-WT as being miscategorized as a
BWS-WT.

Differential gene expression study
As methylation influences gene expression, we performed
differential gene expression analysis between the BWS cohort
and control kidneys. Using DEseq2, we obtained a total of 8626
differentially expressed genes (DEGs) with log2fold change >|0.5|
and FDR < 0.05. Of these 8626 genes, 48% genes were upregu-
lated, and 52% were downregulated. The list of DEGs is attached
as Supplementary File 2.
We first analyzed the expression of the genes subject to

genomic imprinting (with parent-specific regulation) due to
methylation status at 11p15. We analyzed expression of H19,
IGF2, KCNQ1, KCNQ1OT1 and CDKN1C. At IC1, H19 was similarly
expressed between control kidneys and normal-11p15 nonBWS-
WT TARGET samples and was downregulated in both altered-
11p15 nonBWS-WT TARGET and BWS-WT samples (Supplementary
Fig. 4A). IGF2 was similarly upregulated across all WT samples
(Supplementary Fig. 4A). At IC2, KCNQ1 was downregulated across
all WT samples, while KCNQ1OT1 did not demonstrate significant
expression changes between groups (Supplementary Fig. 4A).
CDKN1C was downregulated in all WT groups compared to control
kidneys (Supplementary Fig. 4A). We also examined WT1
expression at 11p13, as some of the BWS-WT had pUPD11 extend
through this region. Expression ofWT1 was upregulated in altered-
11p15 nonBWS-WT and BWS-WT as compared to control kidneys
and normal-11p15 nonBWS-WT (Supplementary Fig. 4A). Overall,
the expression profile of genes subject to genomic imprinting was
similar in altered-11p15 nonBWS-WT samples and BWS-WT
samples. These expression trends were replicated in the Murphy
et al. cohort (Supplementary Fig. 4B), suggesting that changes to
genomic imprinting genes are common in WT, regardless of
the cause.
We further performed functional analysis/gene set enrichment

analysis (GSEA) with our 8,667 DEGs. The pathways and GO terms
that were enriched are shown in Fig. 3A and their enrichment

Table 3. GO Term enrichment of differentially methylated probes in altered-11p15 nonBWS-WT.

Ontology Term Total number of
genes in term

Differentially
methylated probes

P-value FDR

GO:0000075 BP cell cycle checkpoint signaling 186 119 5.98E–07 4.47E–05

GO:0000077 BP DNA damage checkpoint
signaling

121 80 1.10E–05 0.00066147

GO:0031570 BP DNA integrity checkpoint
signaling

129 84 1.43E–05 0.00083506

GO:1901988 BP negative regulation of cell
cycle phase transition

272 156 1.46E–05 0.00085117

GO:0043067 BP regulation of programmed
cell death

1508 755 9.05E–06 0.00056282

GO:0007093 BP mitotic cell cycle checkpoint
signaling

141 89 3.20E–05 0.0017054

GO:0038202 BP TORC1 signaling 58 41 0.0001169 0.0054515

GO:0031929 BP TOR signaling 127 80 0.00012544 0.00576725

GO:0097193 BP intrinsic apoptotic signaling
pathway

298 164 0.00056938 0.0209013

GO:0032006 BP regulation of TOR signaling 105 65 0.00076791 0.02689792

GO:0016055 BP Wnt signaling pathway 453 250 0.00114106 0.03708133

GO:0198738 BP cell-cell signaling by wnt 455 251 0.00118165 0.0382377

GO:0031571 BP mitotic G1 DNA damage
checkpoint signaling

29 22 0.00155439 0.04698605

BP Biological Processes.
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scores and statistical significance are provided in Supplementary
File 3. The enriched GO terms included pathways related to both
kidney functions and cancer processes. The cancer pathways,
including Notch signaling, PPAR signaling, Wnt signaling, DNA
replication and cell cycle-related biological processes were
enriched in BWS-WT as compared to control kidneys. We observed
a clear clustering pattern of genes enriched in these pathways
across the control groups and BWS-WT samples (Fig. 3B). We
further investigated the protein-protein interaction network of
genes enriched in these pathways using STRING database [52]. We
observed an intricate network of genes that clustered together in
a pathway specific manner (Fig. 3C). We further generated an
interactome for these genes using the interaction output from
string analysis to understand the gene interaction partners

(Fig. 3D). A number of genes including CTNNB1, FEN1, LIG1,
MCM2/3/4/5/6/7, POLA1, POLD1, POLE, POLE2, POLE3, PRM2, RFC2/
3/4/5 and RPA1 showed 16–30 interactions. CTNNB1 showed the
most versatile interactions with genes from different pathways.
CTNNB1 interacted with Wnt signaling pathway genes (WNT5B,
VANGL2, FZD2/3/7/10, CTNNBIP1, LEF1, ROR2, SMAD4), Notch
signaling pathway genes (NOTCH2, TLE1/4, HDAC2, RBPJ, DVL2,
CUL1), a cell cycle pathway gene SMARCA4, a DNA replication
pathway gene RPA1 and a PPAR signaling gene PPARG. Interest-
ingly, most of these upregulated pathways and interactions are
reminiscent of an alteration in the stem/progenitor differentiation
programming and nephron patterning [53]. This suggests that
BWS-WT may have a dysregulated progenitor cells as a causal
agent in disease development and/or progression.
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Weighted gene co-expression network analysis
We next performed comparative studies with nonBWS data using
an unsupervised cluster method - weighted gene co-expression
network analysis (WGCNA). We defined four sample traits – control
kidneys, BWS-WT, normal-11p15 nonBWS-WT, altered-11p15
nonBWS-WT, as detailed in Supplementary Fig. 1. A total of 27
samples (4 control kidneys, 5 BWS-WT, 3 nonBWS normal-11p15WT,
15 altered-11p15 nonBWS-WT) were used for this analysis. We used
the normalized count obtained from DESeq2 as input for WGCNA.
We chose eight as the suitable soft-thresholding power for each set
in this analysis based on two criteria described previously [54, 55].
We merged and obtained a total of 27 consensus gene co-
expression modules (Supplementary Fig. 5B). The tables of

module-trait relationships indicated the relation between the
sample traits (control kidneys, BWS-WT, normal-11p15 nonBWS-
WT, altered-11p15 nonBWS-WT) and the consensus modules in
each data set (Fig. 4). To explain further, turquoise, salmon, tan, and
gray showed significant relations to BWS-WT sample traits;
darkgreen showed significant relations to normal-11p15 nonBWS-
WT and blue, turquoise showed significant relations to altered-
11p15 nonBWS-WT. To compare pathways/molecular gene hubs
between BWS-WT and nonBWS-WT, we extracted genes associated
with those modules-trait partners and subjected them to STRING
analysis. Tables 4 and 5 show the enriched terms for both the
sample traits BWS-WT and nonBWS-WT in module enriched pattern,
respectively. This analysis clearly established the signaling
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signatures for all the traits in the study. GO terms related to Wnt
signaling pathways were enriched in BWS-WT trait as seen by
DESeq2 approach for differential gene expression studies; whereas
GO terms related to cell cycle processes mark the nonBWS-WT trait.
In aggregate, using an unbiased method, we found clear differences
existed between BWS-WT, normal-11p15 nonBWS-WT, altered-
11p15 nonBWS-WT, and control kidneys, demonstrating that, while
some similarities exist between BWS and nonBWS WT, there are
clear distinctions between the groups.

DISCUSSION
Patients with BWS have an increased risk for developing WT,
especially those with IC1 GOM and pUPD11 [56, 57]. Even in the
non-syndromic population, at least two-thirds of WT demonstrate
these BWS-like alterations across 11p15 [5, 19, 22]. While this
association is well-established, this is the first study examining the
molecular mechanisms underlying the link between BWS and WT
oncogenesis based on 11p15 status. In this study, we present the
first molecular multi-omics study of a cohort of BWS-WT. Our
results highlight the similarities and differences between these
altered-11p15 nonBWS-WT and BWS-WT tumors.
Epigenetic and genomic changes, aside from those at 11p15,

have been considered for their prognostic and molecular
contribution to WT oncogenesis. While mutation frequencies are
generally lower in pediatric tumors compared to adult tumors, in
our cohort, two of our BWS patients (BWS-WT8, BWS-WT16)
exhibited high mutation frequencies [58]. BWS-NT8, BWS-WT8 had
variants in TEP1, SMG6, and NVL genes related to telomerase

activity and BWS-NT16, BWS-WT16 had variants in MLH3 and
MCM9 gene related to DNA mismatch repair. However, further
studies are required to consider their specific contributions to
BWS-WT oncogenesis, given that only a subset of our cohort
carried these changes. While mutations in the cancer driver genes
WT1, TP53, and CTNNB1 are common and even co-occur in WT
[9, 19, 29, 59], syndromic or sporadic tumors with 11p15
alterations are less affected by these mutations [9, 25, 60]. In this
cohort of BWS-WT, we did not observe WT1 or TP53 mutations in
any samples and only one sample exhibited a mutation in
CTNNB1. Our BWS-WT cohort showed highest mutation rate in
BCORL1 followed by ASXL1, ATM and AXL genes. BCORL1 and
ASXL1 mutations are mainly seen in hematologic malignancies
and aplastic anemia [61, 62]. BCORL1 is a homolog of the
transcription factor BCOR (BCL6 corepressor) gene and a subunit
of polycomb repressive complex 1 (PRC1) complex – a major
chromatin remodeler [63]. Damm et al. reported that BCOR
mutations arise after mutations affecting genes involved in
splicing machinery or epigenetic regulation [64]. This suggests
BCORL1 mutations might be associated with epigenetic changes
seen in BWS. It has been previously suggested that 11p15 changes
are early clonal events [22, 49, 65, 66]; it is possible that 11p15-
associated overgrowth is sufficient to jumpstart WT oncogenesis
and does not require specific mutations in WT1, TP53 or CTNNB1.
Previously, we have shown that 11p15 alterations dysregulate cell
cycle restriction in BWS non-tumor liver [67].
We defined a narrow methylation range for IC1 and IC2 based

on our patient cohort and expertise in defining low-level
mosaicism in BWS [30]. This narrow range was sufficient to stratify

Table 4. GO Term enrichment analysis for BWS-WT modules.

MEgrey

#term ID Term description Observed gene
count

Background gene
count

Strength False discovery
rate

GO:0006119 Oxidative phosphorylation 22 118 0.56 0.0156

GO:0046034 ATP metabolic process 29 204 0.44 0.0243

GO:0022904 Respiratory electron transport chain 19 107 0.54 0.0483

GO:0042775 Mitochondrial atp synthesis coupled electron
transport

17 87 0.58 0.0483

MEtan

GO:0000398 mRNA splicing, via spliceosome 20 294 0.54 Not significant

MEsalmon

GO:0006521 Regulation of cellular amino acid metabolic
process

12 64 0.67 0.0268

GO:0061418 Regulation of transcription from rna
polymerase ii promoter in response to
hypoxia

14 78 0.65 0.0178

GO:0060071 Wnt signaling pathway, planar cell polarity
pathway

17 96 0.64 0.0101

GO:1902036 Regulation of hematopoietic stem cell
differentiation

13 74 0.64 0.0255

GO:0038061 NIK/NF-kappaB signaling 14 81 0.63 0.0216

GO:0090175 Regulation of establishment of planar polarity 18 111 0.61 0.0101

GO:0033209 Tumor necrosis factor-mediated signaling
pathway

20 125 0.6 0.0101

GO:0031145 Anaphase-promoting complex-dependent
catabolic process

13 83 0.59 0.0445

GO:0010972 Negative regulation of g2/m transition of
mitotic cell cycle

14 92 0.58 0.0364

GO:0070498 interleukin-1-mediated signaling pathway 14 96 0.56 0.0445

GO:0035567 Non-canonical wnt signaling pathway 18 130 0.54 0.0216

GO:0038095 Fc-epsilon receptor signaling pathway 16 115 0.54 0.0325
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publicly available datasets with non-BWS normal and altered-
11p15 nonBWS-WT. We classified very few samples as normal-
11p15 nonBWS-WT highlighting the important role of 11p15
epigenetics in driving WT oncogenesis. After performing this
stratification, we studied the methylation pattern of these samples
across the genome. The PCA of DMRs clearly showed that our
stratification was effective in separating normal-11p15 nonBWS-
WT samples from other groups in study. The DMR study using the
methylation data showed that the most significant DMR was on
chromosome 11p15 corresponding to IC1. This finding demon-
strates the importance of the 11p15 region in global gene
regulation. A previous clinical report supports the WT risk
associated with constitutional abnormalities at the imprinted
11p15 growth regulatory region [68].
The gene ontology study of DMRs showed that the Wnt

signaling pathway played a significant role in BWS-WT and
altered-11p15 nonBWS-WT oncogenesis. A recent study on WT by
Brzezinski et al. also showed differential methylation of genes in
the Wnt signaling pathway [29]. Thus, differential methylation of
genes has a major role to play in WT oncogenesis [69]. This
observation was further validated by transcriptome studies. BWS-
WT showed dysregulation of Wnt signaling along with other
distinct pathways including Notch signaling, BMP signaling, PPAR
signaling and, NIK/NF-kappaB signaling pathways. These findings
are in line with a potential defect in stem/progenitor cell biological
processes and nephron patterning [53], which may drive BWS-WT
initiation and/or tumor survival. WT is embryonic-derived tumor
[70] resembling fetal kidney with disorganized nephrogenic
structures [71]. Since WT development is tightly linked to its
developmental process [71], understanding of tissue-residing
progenitor cell regulation is imperative. By studying signaling
pathways, we provide a mechanistic rationale for molecular
mechanisms of WT oncogenesis that comprise dysregulation of
nephron progenitor cells in WT. However, a dedicated model is
required to explain the combinatorial role of these pathways in
the earliest events of WT tumorigenesis.

Both methylation and transcriptome data showed that cell cycle
and DNA replication-related processes are shared features for
BWS-WT and altered-11p15 nonBWS-WT, which is supported by
other studies as well [72, 73]. We also studied the protein-protein
interaction network of the genes in the BWS-WT oncogenesis
pathway. The generated interactome from this protein network
showed that CTNNB1, a major Wnt signaling molecule, had the
most interactions with genes from different pathways. There are
numerous reports on CTNNB1mutations in sporadic WT [9, 74–76].
These studies indicate that CTNNB1 and other mutations, underlie
the genetic basis for WT oncogenesis. However, in our cohort of
BWS-WT, only one patient carried a CTNNB1 mutation. Overall, we
observed upregulation of wildtype CTNNB1 in BWS-WT, with
broadest range of CTNNB1 interactions with genes across other
signaling pathways. This observation suggests that BWS-WT has a
unique signature of Wnt signaling driven by CTNNB1 over-
expression which also has a major role in nephron patterning
[53]. Further work will be required to understand the implication
of CTNNB1 overexpression and activity in BWS-WT oncogenesis.
WGCNA, a scale-free network distribution approach, is powerful

data-driven tool to study gene expression pattern in samples from
different cohorts [77]. Using WGCNA, we were able to validate the
DEG pathway signatures in BWS-WT. We identified 27 modules,
most related to BWS-WT showing enrichment of the Wnt, NIK/NF-
kappaB, cell cycle, and TNF-mediated signaling pathways. Other
modules were enriched for regulatory/metabolic processes.
Modules enriched for altered-11p15 nonBWS-WT trait mainly
showed enrichment of cell cycle and metabolic processes. Many
other studies on WT using the WGCNA approach have showed
enrichment of cell cycle related processes, indicating it as a major
molecular signature for WT [77–79]. Along with metabolic
pathway enrichment, Wang et al. have also shown enrichment
of PI3K-Akt, FoxO, p53, and TNF signaling pathways, along with
many other cancer related pathways in WT, using the WGCNA
approach [78]. This indicates that altered-11p15 nonBWS-WT and
BWS-WT have some common features but also have unique gene

Table 5. GO term enrichment analysis for altered-11p15 nonBWS-WT modules.

MEturquoise

#term ID Term description Observed gene
count

Background gene
count

Strength False discovery
rate

GO:0090307 Mitotic spindle assembly 14 43 0.61 0.02

GO:0007052 Mitotic spindle organization 22 81 0.53 0.0061

GO:0051225 Spindle assembly 21 88 0.47 0.0199

GO:0007051 Spindle organization 33 145 0.45 0.0024

GO:1902850 Microtubule cytoskeleton organization
involved in mitosis

24 112 0.43 0.0214

GO:0140014 Mitotic nuclear division 30 156 0.38 0.0199

MEgreen

GO:0071704 Organic substance metabolic process 486 7755 0.08 0.0011

GO:0044238 Primary metabolic process 459 7332 0.08 0.0023

GO:0044237 Cellular metabolic process 467 7513 0.08 0.0025

GO:0008152 Metabolic process 504 8298 0.07 0.0074

GO:0000278 Mitotic cell cycle 70 695 0.26 0.0499

GO:1903047 Mitotic cell cycle process 63 616 0.27 0.0499

MEbrown

GO:0043603 Cellular amide metabolic process 84 773 0.24 0.0257

GO:0000278 Mitotic cell cycle 76 695 0.25 0.0323

GO:0034641 Cellular nitrogen compound metabolic
process

264 3282 0.11 0.0323

GO:1903047 Mitotic cell cycle process 68 616 0.25 0.0385
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signatures attributed to the epigenetic predisposition in BWS. WT
oncogenesis can be seen as spectrum of molecular signaling
signatures and differential tumor mutational burden (Fig. 5) seen
in BWS and nonBWS cohorts. This is the first study that highlights
these features on WT oncogenesis based on 11p15 alterations.
However, there are some limitations in this study. A major

limitation is its sample size due to the rarity of this syndrome and
sample type. When possible, we have included data from the
TARGET and Murphy cohorts to increase the robustness of our
study. Additionally, while some patient-specific variation existed in
our cohort, the main findings were supported across the entirety of
the cohort, suggesting that our findings would be comparable to a
larger study. Another limitation is the lack of matched normal
kidney samples for RNA-Seq, as we were unable to generate the
required cDNA sequencing libraries, since the patients were
subjected to chemotherapy and the quality of the samples was
poor. Also, the publicly available cohort did not have matched
normal kidney samples. However, by combining different
approaches, including whole exome sequencing, methylation, and
transcriptome studies, we successfully captured the intricate
molecular signaling that drives WT oncogenesis. Our identification
of dysregulated signaling pathways for cell differentiation, growth-
promotion, and cell cycle regulation require additional evaluation in
larger cohorts for their application as diagnostic or therapeutic
targets in patient WT oncogenesis. However, we have successfully
stratified WT based on 11p15 alterations, which will be the subjects
of future mechanistic studies in patient-derived tissues, as well as for
early stage in vitro screening of therapeutic drugs.
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