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Breast cancers with high proliferation and low ER-related
signalling have poor prognosis and unique molecular features
with implications for therapy
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BACKGROUND: Luminal breast cancers with high proliferation (MKShi) and low ER-related signalling (ERSlo) have a poor prognosis.
We investigated treatment responses and molecular features of MKShi/ERSlo tumours to inform potential therapies.
METHODS: Gene expression data from patients who received neoadjuvant chemotherapy (NAC) without (MDACC, N= 199) or with
pembrolizumab (I-SPY2, N= 40), or endocrine therapy (NET) without (POETIC, N= 172) or with palbociclib (NeoPalAna, N= 32)
were analyzed to assess treatment response by MKS/ERS-subgroups. TCGA was used to assess the mutational landscape and
biomarkers associated with palbociclib-resistance (Cyclin-E, RBsig, IRPR) and immunotherapy-response (TMB, TILs, T-cell inflamed)
by MKS/ERS-subgroups.
RESULTS: Compared to MKShi/ERShi tumours, MKShi/ERSlo tumours had higher pathological response rates to NAC (22% vs 8%,
p= 0.06) but a higher recurrence risk (4-year metastasis-free survival 70% vs 94%, p= 0.01). MKShi/ERSlo tumours frequently
harboured TP53 (34%) and PIK3CA (33%) mutations, and showed high expression of Cyclin-E, RBsig and IRPR, high TMB and
elevated TIL and T-cell inflamed metagene expression. MKShi/ERSlo tumours retained high proliferation after NET with or without
palbociclib but had higher pathological complete response rates when pembrolizumab was added to NAC (42% vs 21%, p= 0.07).
CONCLUSIONS: MKShi/ERSlo tumours have dismal outcomes and are enriched in chemotherapy-sensitive but ET- and palbociclib-
resistant tumours. Biomarker analysis and clinical data suggest a potential role for immunotherapy in this group.
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INTRODUCTION
Estrogen receptor-positive, human epidermal growth factor
receptor 2-negative (ER+/HER2−) breast cancers are biologically
and clinically heterogeneous [1]. Molecular tools that partially
capture this heterogeneity are currently utilized in clinical practice
to tailor adjuvant treatment [2, 3]. Genomic signatures offer
valuable prognostic information and help in estimating adjuvant
chemotherapy benefits [4]. Their use has led to treatment de-
escalation and spared a significant number of low-risk patients
from unnecessary chemotherapy. However, among patients with
high genomic risk who are candidates for both chemotherapy and
endocrine therapy, many continue to relapse, even with node-
negative disease, indicating that further improvements in treat-
ment are needed [5]. Previous studies also suggested that many
high genomic-risk cancers also show reduced sensitivity to
endocrine therapy [6], underscoring the importance of identifying
new therapeutic strategies to improve outcomes.

Previously, we showed that a combination of a proliferation-
related gene signature score (MKS) [7] and the estrogen-related
gene expression module (ERS) of the Oncotype DX recurrence
score [8] can provide prognostic information comparable to
commercially available tools [9]. Among highly proliferative ER+/
HER2− breast cancers, tumours with low ER-related signalling,
hereafter referred to as MKShi/ERSlo, exhibit the highest risk of
recurrence despite adjuvant endocrine therapy, show poor
response to neoadjuvant letrozole endocrine therapy, and account
for most of early recurrences during adjuvant tamoxifen treatment
[9]. Additionally, breast cancers with high proliferation/low ER-
related gene expression have poor long-term survival following
chemo-endocrine therapy, even though a subset of these patients
experience pathological complete response (pCR) [10].
In this study, we conducted a comprehensive analysis across

multiple ER+/HER2− breast cancer cohorts to evaluate the
sensitivity of the MKShi/ERSlo subgroup to currently available
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treatments for ER+/HER2− early breast cancer, including che-
motherapy with or without immunotherapy, and endocrine
therapy with or without CDK4/6 inhibitors (CDK4/6i). We
investigated genomic and transcriptomic differences between
the MKShi/ERSlo subgroup and other ER+/HER2− tumours and
examined markers that have been reported to predict benefit
from CDK4/6i and immune checkpoint inhibitors (ICI). Our findings
shed light on the clinical features of these high genomic-risk
cancers and suggest novel therapeutic strategies to improve
patient survival.

METHODS
Molecular classification of ER+/HER2− tumours based on MKS
and ERS metagenes
Tumour samples were classified according to MKS and ERS as previously
described [7]. Briefly, MKS was calculated as the average expression of 12
kinases involved in mitosis, spindle checkpoint, and G2-M transition [7].
ERS was defined as the average expression of the four genes in the
estrogen module of the Oncotype DX assay [8] (Table 1). The classification
of high or low expression for MKS and ERS metagenes was based on the
cohort-specific median value used as a threshold. In Affymetrix datasets,
the probe sets reported in Table 1 were included. For expression data
obtained from different microarray platforms or RNA-seq, all probes
targeting metagene members were subjected to clustering analysis to
determine correlations. Probes with a correlation <0.4 in the dendrogram
analysis were excluded from calculating the metagene expression level.

Datasets
MD Anderson dataset. Normalized gene expression data were down-
loaded from the GEO repository (http://www.ncbi.nlm.nih.gov/geo/,
GSE25066) for 298 patients with stage II–III ER+/HER2− (gene-based
receptor assignment) breast cancer treated with taxane-anthracycline-
based neoadjuvant chemotherapy followed by adjuvant endocrine therapy
after surgery. Detailed information regarding patients’ characteristics and
treatment has been reported elsewhere [11]. The primary endpoints were

pathological response to neoadjuvant chemotherapy and distant event-
free survival (DEFS). Pathological response was defined using the residual
cancer burden (RCB) categories [12]. We identified two response groups;
the pathR group, including pCR (RCB 0) and minimal residual cancer (RCB I)
cases; and the RD group, including moderate (RCB-II) or extensive (RCB-III)
residual disease [12]. Distant event-free survival was defined as the interval
from the initial diagnostic biopsy to the occurrence of distant metastases
or death from any cause. Based on the predefined cut-off points for the
entire cohort [13], we assigned the cases into 4 molecular subgroups based
on MKS and ERS distribution; MKSlo/ERShi (n= 37), MKSlo/ERSlo (n= 62),
MKShi/ERShi (n= 68), MKShi/ERSlo (n= 131).

POETIC dataset. Gene expression profiling and clinical data from the
aromatase inhibitor (AI)-treated cohort of the POETIC trial [14] were
obtained from the GEO repository (GSE105777 and GSE126870). In POETIC,
postmenopausal patients with ER+ breast cancer were randomly assigned
to receive perioperative AI or no treatment, starting approximately 14 days
before surgery and continuing for 14 days after surgery. Additional sample
annotation from this trial was obtained from Gao et al. [15]. The efficacy
endpoint was proliferation arrest captured as the percentage of Ki67-
positive cells by immunohistochemistry (IHC) after two weeks of
preoperative AI treatment. Post-treatment Ki67 levels below 10% were
considered a response to endocrine therapy and surrogate for long-term
benefit [14]. In this dataset, we confirmed a strong correlation between the
Ki67 IHC per cent positivity and the MKS metagene expression level. We
assigned the 172 ER+/HER2− tumours into 4 molecular subgroups based
on MKS and ERS distribution; MKSlo/ERShi (n= 43); MKSlo/ERSlo (n= 43),
MKShi/ERShi (n= 43), MKShi/ERSlo (n= 43).

NeoPalAna dataset. Normalized gene expression profiles and sample
annotation of the NeoPalAna cohort [16] were obtained from GEO
(GSE93204). Missing data were imputed using the lowest expression value
in the matrix. NeoPalAna was a single-arm phase II trial that enrolled 50
patients with ER+/HER2− breast cancer to receive anastrozole for 4 weeks
(cycle 0) followed by adding palbociclib (C1D1) for up to four 28-day cycles
[16]. MKS and ERS expression was evaluated in the 32 patients who had
available samples at baseline before treatment. Samples were assigned
into 4 molecular subgroups; MKSlo/ERShi (n= 10); MKSlo/ERSlo (n= 6);
MKShi/ERShi n= 6); MKShi/ERSlo (n= 10). MKS was also calculated at cycle
1 day 15 (C1D15) for 23 samples and post-treatment subgroups were also
created; MKSlo/ERShi (n= 9); MKSlo/ERSlo (n= 3); MKShi/ERShi (n= 5); MKShi/
ERSlo (n= 6).

I-SPY2 dataset. Gene expression profiling and clinical data of patients
enrolled in the I-SPY2 trial and treated on the pembrolizumab arm of the
trial were obtained from the GEO database (GSE194040). In this treatment
arm, women with HER2-negative breast cancer were randomly assigned to
receive neoadjuvant weekly paclitaxel with (n= 40) or without (n= 94)
pembrolizumab, followed by AC chemotherapy and surgery [17]. All
hormone receptor-positive (HR+) cancers were MammaPrint high-risk.
Given that the genes included in the MammaPrint assay are primarily
associated with proliferation and metastatic processes [18], we expected
that all HR+ patients in this trial had tumours with high proliferation.
Consequently, we used only the median ERS value as a threshold to stratify
patients into ERShi (n= 51 paclitaxel arm; n= 16 paclitaxel + pembroli-
zumab arm) and ERSlo (n= 43 paclitaxel arm; n= 24 paclitaxel +
pembrolizumab arm) categories. The efficacy endpoint was pCR rate in
the two ERS categories in both treatment arms.

TCGA dataset. Whole-exome sequencing (WES), RNA sequencing (RNA-
seq) and clinical information of the TCGA breast cancer cohort were
obtained from the TCGA public access portal (http://
cancergenome.nih.gov/) (accessed on 22 September 2021). Individual
patient files were merged into a single database using the TCGAbiolinks R
package [19]. Receptor status was assigned based on ER and HER2
determined by routine pathology. For samples with missing ER and
HER2 status, we assigned receptor status based on mRNA expression of
ESR1 and ERBB2 genes as previously described [7, 20]. ER positivity was
defined as log2 FPKM > 2.145, and HER2 positivity as log2 FPKM > 6.32.
MKS and ERS median values were defined within all ER+ tumours
(n= 852). For our analysis, we selected only tumours with both WES and
RNA-seq data available including 640 ER+/HER2−, 174 triple-negative
(TNBC), and 158 HER2+ cancers. The 640 ER+/HER2− tumours were then
classified into four MKS/ESR subgroups: MKSlo/ERShi (n= 209), MKSlo/ERSlo,
(n= 129), MKShi/ERShi (n= 146), MKShi/ERSlo (n= 156).

Table 1. Genes and probe sets used to define the MKS and ERS.

Symbol Probe set Description

Mitosis Kinase Score (MKS)

PLK1 202240_at polo-like kinase 1 (Drosophila)

CDK1 203213_at cyclin-dependent kinase 1

BUB1B 203755_at budding uninhibited by
benzimidazoles 1 homolog beta
(yeast)

NEK2 204641_at NIMA (never in mitosis gene a)-
related kinase 2

TTK 204822_at TTK protein kinase

MELK 204825_at maternal embryonic leucine zipper
kinase

PLK4 204887_s_at polo-like kinase 4 (Drosophila)

CHEK1 205394_at CHK1 checkpoint homolog (S.
pombe)

AURKA 208079_s_at aurora kinase A

AURKB 209464_at aurora kinase B

BUB1 209642_at budding uninhibited by
benzimidazoles 1 homolog (yeast)

PBK 219148_at PDZ binding kinase

Estrogen-related score (ERS)

BCL2 203685_at B-cell CLL/lymphoma 2

ESR1 205225_at estrogen receptor 1

PGR 208305_at progesterone receptor

SCUBE2 219197_s_at signal peptide, CUB domain, EGF-like
2
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Genomic and transcriptomic analyses
WES data from TCGA were used to compare the mutational landscape
among the four MKS/ERS subgroups of ER+/HER2− breast cancers. Since
targeting rare mutations in the early setting could be challenging, the top
15 most frequently mutated genes were included in the analysis.
Frequently mutated genes that are not considered to be driver genes
were also excluded [21]. The tumour mutational burden (TMB) was
computed as the number of synonymous and non-synonymous mutations
in the whole exome [22].
RNA-seq data were used to assess the expression of candidate predictive

biomarkers of response to CDK4/6 inhibition including the Rb1 loss-of-
function signature (RBsig) [23], the Interferon-Related Palbociclib-Resis-
tance Signature (IRPS) [24] and expression of CCNE1 (cyclin E) gene [25].
We also assessed the expression of an immune metagene associated with
T cell infiltration (TILs metagene) [26], and the T cell–inflamed gene
expression signature (T cell–inflamed GEP) that is predictive of response to
immune-checkpoint blockade [27].

Statistical analysis
Statistical analyses were performed using R software v3.5.3 (R Develop-
ment Core Team, Vienna, Austria). Significance was based on P < 0.05 and
95% confidence interval (CI) estimates.
Biomarker expression among molecular groups was compared using a

two-sided Student’s t-test. The frequency distribution of mutations among
groups was compared using the Cochran-Mantel-Haenszel χ2 test. Survival
analysis was performed using the Kaplan-Meier method and the difference
among groups was estimated by log-rank test. The Cox proportional
hazard model (univariate analysis) was used to estimate hazard ratios (HRs)
and corresponding 95% CIs. In the evaluation of pCR rates, the Odds ratio
and 95% CI were evaluated through the median-unbiased estimation
method.

RESULTS
Among highly proliferative ER+/HER2− breast cancers, ER-
related gene expression influences response to neoadjuvant
chemotherapy and prognosis
Among ER+/HER2− breast cancers, highly proliferative tumours
are considered primary candidates for systemic chemotherapy in
addition to adjuvant endocrine therapy. In the MDACC dataset, we
examined pathR and metastases-free survival (DEFS, defined as
the time from randomization to the development of any distant
metastasis or death) by MKS/ERS categories. Among 298 ER+/
HER2− breast cancers, 199 were classified as MKShi [11]. Out of
these, 68 were MKShi/ERShi and 131 were MKShi/ERSlo. The median
follow-up was 3.1 years. Patients’ baseline characteristics were
reported in Supplementary Table 1.
The pathR rate was numerically higher in the MKShi/ERSlo group

compared to the MKShi/ERShi group (22% vs 8%, p= 0.06) (Fig. 1A).
Importantly, the pathR rates in MKShi/ERShi cancers were similar to

the those in the MKSlo cancers, and within the MKSlo group, ERS
had no impact on pathR rates (Supplementary Fig. S1A). Overall,
the MKShi/ERSlo group had a significantly worse 4-year DEFS (70%
vs 94% in MKShi/ERSlo and MKShi/ERShi groups, respectively;
Logrank p= 0.01) (Fig. 1B, and Supplementary Fig. S1B), driven by
the poor outcome of those with residual disease (RD). All distant
recurrences during the first 2 years of adjuvant endocrine therapy
occurred in the MKShi/ERSlo group. Among patients with MKShi/
ERShi tumours, the risk of distant recurrence in the RD and pathR
groups were similar (4-year DEFS 93% and 100% respectively;
p= 0.6). In contrast, among patients with MKShi/ERSlo tumours,
those with RD had a significantly worse outcome than those with
pathR (4-year DEFS 61% and 100%, respectively; HR 9.1; 95% CI:
1.23–67.4; p= 0.005) (Supplementary Fig. S1C, D). These findings
indicate that the MKShi/ERSlo cancers represent the most
chemotherapy-sensitive subset of ER+/HER2− cancers, but if they
fail to achieve a pathR, their prognosis is poor. The prognostic
value of RD varies by ERS status, with 4-year DEFS of 93% in MKShi/
ERShi compared to 61% in MKShi/ERSlo cancers (p= 0.0005).

Highly proliferative ER+/HER2− breast cancers with low ER-
related gene expression have lower proliferation suppression
after neoadjuvant endocrine therapy
In the neoadjuvant endocrine therapy dataset (POETIC [14]) we
assessed proliferation suppression after two weeks of AI therapy in
the different MKS/ERS subgroups. The MKShi/ERSlo tumours
exhibited significantly higher Ki67 levels compared to MKShi/ERShi

tumours at surgery (p= 0.0028, Fig. 1c). Among the MKShi/ERSlo

cancers, 21 out of 42 (50%) had Ki67 > 10% at surgery, whereas
only 10 out of 41 (24.4%) MKShi/ERShi cancers showed similar high
Ki67 levels, indicating lower responsiveness to endocrine therapy
in MKShi/ERSlo cancers. We also assessed the post-treatment
proliferation suppression after two weeks using the MKS signature
itself. Consistent with the Ki67 IHC results, the MKS expression
levels were significantly higher in the MKShi/ERSlo compared to
MKShi/ERShi cancers (p= 0.022, Fig. 1d and Supplementary
Fig. S1E, F).

Clinical, genomic, and transcriptomic features of the MKShi/
ERSlo tumours in the TCGA dataset
Survival analysis. First, we assessed the prognosis of MKShi/ERSlo

tumours using data from the TCGA. We found that the 5-year OS
rates were 86% in MKShi/ERShi tumours (n= 143) and 77% in
MKShi/ERSlo tumours (n= 152) (HR: 0.42; 95% CI: 0.18–0.97;
p= 0.04) (Fig. 2a). We then extended the survival analysis to
include also MKSlo/ERSlo (n= 125) and MKSlo/ERShi (n= 208)
tumours. The MKShi/ERSlo tumours retained the poorest survival
among all ER+/HER2− breast cancers (p= 0.008, Supplementary
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Fig. S2A). These findings confirm the observation made in the
MDACC dataset and define a particularly poor prognosis subset of
ER+/HER2− breast cancers that need further improvements in
therapy.

Mutational landscape by MKS/ERS subgroups. To identify poten-
tially therapeutically targetable genomic alterations, we examined
genomic and transcriptomic differences between the MKShi/ERSlo

subgroup and other ER+/HER2− tumours. We report the top 15
most frequently mutated genes in ER+/HER2− tumours in the
different MKS/ERS subsets (Supplementary Table 2). TheMKShi/ERSlo

cancers had significantly higher mutation rates in TP53 and PTEN,
and a lower mutation rate in MAP3K1 compared to MKShi/ERSlo

cancers (Fig. 2b). To gain a more comprehensive understanding of
the mutational landscape across the MKS/ERS subgroups, we
expanded our analysis to MKSlo/ERShi and MKSlo/ERSlo tumours.
Among the four subgroups, we identified 5 genes that were
significantly differentially mutated: PIK3CA, TP53, CDH1, MAP3K1 and
MLL3 (Supplementary Fig. S2B). The most frequently mutated gene
overall was PIK3CA (39%), with a significantly higher mutation rate in
MKSlo/ERShi tumours compared to the three other MKS/ERS
subgroups (52% vs 32–33%, p= 6.47 × 10−5, Supplementary
Table 2). TP53 mutations were significantly more prevalent in
MKShi/ERSlo tumours (34%) than in other subgroups (6%, 12% and
16% in MKSlo/ERShi, MKSlo/ERSlo and MKShi/ERShi, respectively)
(p= 8.28 × 10−11) (Supplementary Table 2). Mutations typically
associated with an indolent ER+/luminal A phenotype, such as
CDH1 andMAP3K1 [28], were more frequent in MKSlo/ERShi tumours,
consistent with previous data [28, 29].

CDK4/6 inhibitors response marker expression by MKS/ERS subgroup.
To assess the potential CDK4/6i sensitivity of MKShi/ERSlo tumours,
we examined the Rb loss-of-function signature (RBsig), which
consists of E2F-associated genes and has been linked to poor
prognosis and resistance to palbociclib [23]. The RBsig expression
levels were significantly higher in MKShi/ERSlo tumours compared
to MKShi/ERShi tumours (p= 9.2 × 10−9, Fig. 3a). The MKShi cancers

generally showed significantly higher RBsig expression compared
to MKSlo/ERSlo and MKSlo/ERShi tumours (p= <2.2 × 10−16) (Sup-
plementary Fig. S3A).
Next, we evaluated another potential CDK4/6i resistance

signature, the IFN-Related Palbociclib-Resistance Signature (IRPS).
The IRPS includes 35 genes INF-γ and INF-α regulated genes and
was shown to predict CDK4/6i resistance in vitro and in vivo [24].
We found no significant difference in IRPS expression between
MKShi/ERShi and MKShi/ERSlo tumours (p= 0.63, Fig. 3b). However,
both MKShi subgroups exhibited significantly higher IRPS expres-
sion than MKSlo/ERShi tumours (p= <0.01, Supplementary
Fig. S3B).
High CCNE1 mRNA levels, that code for the Cyclin E protein [30],

were also linked with poor benefit from the addition of CDK4/6i to
endocrine therapy [25]. The MKShi/ERSlo tumours had significantly
higher CCNE1 mRNA expression than MKShi/ERShi tumours
(p= 2.0 × 10−7) (Fig. 3c), and exhibited the highest CCNE1 mRNA
expression among all ER+/HER2− tumours (Supplementary
Fig. S3C). These data raise the possibility that MKShi/ERSlo tumours
might derive less benefit from CDK4/6i than other subtypes of ER
+/HER2− breast cancers.

Immunotherapy response marker expression by MKS/ERS subgroup.
A series of reports from the I-SPY neoadjuvant trial has shown
improvement in pCR (RCB0) rates by adding ICI to paclitaxel in the
MammaPrint-high subset of ER+/HER2− cancers [17, 31]. There-
fore, we assessed potential immunotherapy response markers
expression in the MKS/ERS subgroups. High TMB has been
associated with benefits from ICI in various cancer types [32].
We observed significantly higher median TMB in MKShi/ERSlo

compared to MKShi/ERShi tumours (43 vs 27 synonymous and non-
synonymous mutations in the whole exome [mut], p= 7.4 × 10−8)
(Fig. 3d). We also evaluated TMB in MKSlo ER+/HER2− tumours
and in HER2+ and TNBC. Among all ER+/HER2− tumours, the
MKShi/ERSlo subgroup consistently showed the highest TMB
(Supplementary Fig. S4A). Across the entire breast cancer cohort,
the median TMBs were 27.0 mut in ER+/HER2−, 37.5 mut in

O
ve

ra
ll 

su
rv

iv
al

0.
0

0.
2

0.
4

0.
6

1.
0

143 124 86 65 45 32 MKShi/ERShi

MKShi/ERShi

MKShi/ERSlo

MKShi/ERShi

MKShi/ERSlo

MKShi/ERSlo152 130 79 58 39 33

0 1 2 3 4 5

1.0

0.8

0.6

0.4

0.2

0.0

Logrank p value
0.04

PIK3CA
ba

TP53

CDH1

MAP3K1

MLL3

MUC12

MAP2K4

NCOR1

SPEN

MUC4

PTEN

DMD

RUNX1

TBX3

0 20 40
Mutation rate (%)

p = 3.72e–02

p = 2.51e–02

p = 5.58e–04

60

GATA3

Fig. 2 Clinical outcomes and genomic alterations of MKShi tumours in TCGA. a 5-year Overall Survival in patients with MKShi/ERShi and
MKShi/ERSlo tumours. b Most frequently mutated genes in MKShi/ERShi and MKShi/ERSlo tumours.

L. Licata et al.

2028

British Journal of Cancer (2023) 129:2025 – 2033



HER2+/ER+, 40.0 mut in HER2+/ER− and 49.5 mut in TNBC
(Supplementary Fig. S4B). Notably, TMB was similar between
MKShi/ERSlo ER+/HER2− tumours and TNBC (p= 0.68).
TMB was inversely correlated with ERS in all ER+/HER2− tumours

(Supplementary Fig. S4C) and also in MKShi tumours (Supplemen-
tary Fig. S4D). Furthermore, we investigated whether TMB differed
between tumours with or without PIK3CA and TP53 mutations in
ER+/HER2− breast cancer. TMB was similar between PIK3CA-wild
type and PIK3CA-mutated tumours in the entire cohort and within
each MKS/ERS subgroup (Supplementary Fig. S4E). However, TP53-
mutated tumours exhibited significantly higher TMB in the entire
cohort (p= 5.1 × 10−11) and in the MKS/ERS subgroups, except for
MKShi/ERSlo, where TMB was similar between TP53-mutated and
TP53-wild type tumours (Supplementary Fig. S4F).
Another biomarker associated with higher ICI response is the

infiltration of T cells in the tumour, which can be quantified by the
TILs metagene consisting of T cell-related genes [26]. MKShi/ERSlo

tumours exhibited significantly higher expression of the TILs
metagene compared to MKShi/ERShi tumours (p= 5.4 × 10−4)
(Fig. 3e). A higher expression of the TILs metagene was also
observed in the MKSlo/ERSlo compared to MKSlo/ERShi cancers
(Supplementary Fig. S5A), indicating an inverse correlation between
TILs and the ERS metagene (Supplementary Fig. S5B, C).
Lastly, we investigated the T cell-inflamed GEP, a gene signature

composed of IFN-γ- and T cell-related genes, which has been shown
to predict response to pembrolizumab across tumour types [27].
Within the MKShi group, MKShi/ERSlo tumours showed significantly
higher expression of the T cell–inflamed GEP compared to MKShi/
ERShi tumours (p= 1.1 × 10−4) (Fig. 3f). Within the MKSlo group,
MKSlo/ERSlo tumours had higher expression of the T cell–inflamed
metagene than MKSlo/ERShi tumours (Supplementary Fig. S5D). This
negative correlation with ERS was also observed across all ER+/
HER2− (Supplementary Fig. S5E) and specifically in MKShi tumours
(Supplementary Fig. S5F). Overall, these results consistently

demonstrate that the MKShi/ERSlo tumours have high expression
of immune markers that predict potential sensitivity to ICI therapy.

Clinical outcomes in patients receiving neoadjuvant AI plus
palbociclib
To evaluate the extent of proliferation suppression with neoadju-
vant CDK4/6i plus endocrine therapy in the MKS/ERS subgroups,
we analyzed proliferation metrics in C1D15 samples obtained from
the NeoPalAna trial, which enrolled patients receiving neoadju-
vant anastrozole and palbociclib. After 14 days of preoperative
CDK4/6i and endocrine therapy, the expression of the MKS
metagene was significantly higher in MKShi/ERSlo compared to
MKShi/ERShi tumours (p= 0.015, Fig. 4a). This observation indicates
lower treatment sensitivity to the combination therapy in MKShi/
ERSlo cancers, which is consistent with the high expression of
CDK4/6i resistance markers observed in this subgroup.

Clinical outcomes in patients receiving neoadjuvant
chemotherapy with or without pembrolizumab
Publicly available gene expression data of ER+/HER2− breast
cancers from the pembrolizumab arm and corresponding controls
of the I-SPY2 trial [17] enabled us to asses the pathologic response
rate to ICI therapy based on MKS/ERS classification. All of these
tumours were MammaPrint high risk, indicating high proliferation
and assumed MKShi. Among these, 24 (60%) and 43 (48%) were
classified as ERSlo in the pembrolizumab plus chemotherapy and
chemotherapy alone arms, respectively. Within the ERShi group,
the pCR rates were similar between the treatment arms, 9.8% in
the chemotherapy alone group and 12.5% in the chemotherapy
plus pembrolizumab group (odds ratio: 1.36; 95% CI: 0.16–7.44;
p= 0.758) (Fig. 4b). In contrast, within the ERSlo group, the
addition of pembrolizumab to paclitaxel resulted in a doubling of
the pCR rate, from 20.9% in the chemotherapy alone group to
41.7% in the chemotherapy plus pembrolizumab group (odds
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ratio: 2.65; 95% CI: 0.88–8.22; p= 0.071) (Fig. 4b). The P value for
the interaction test between ERS and treatment arm (chemother-
apy plus pembrolizumab) was 0.494.

DISCUSSION
Proliferation and ER-related signalling recapitulate most of the
prognostic heterogeneity of ER+/HER2− breast cancer. Since
these two variables provide independent prognostic and che-
motherapy and endocrine therapy predictive information [8],
taking into account their interactions could improve prognostic
and predictive categorization. Previous studies have demon-
strated that among highly proliferative ER+/HER2− breast
cancers, tumours with low ER-related signalling (i.e. MKShi/ERSlo)
exhibit poor response rates to neoadjuvant AI and high rates of
early relapse during adjuvant tamoxifen, indicating an enrichment
of primary endocrine-resistant tumours in this group [9].
In this study, using gene expression and clinical data from the

POETIC trial [14], we confirmed in an independent dataset that
MKShi/ERSlo tumours respond poorly to neoadjuvant endocrine
therapy, as evidenced by the persistently high Ki67 values after
neoadjuvant AI therapy. We also showed that MKShi/ERSlo

tumours have a high risk of relapse even when treated with
neoadjuvant chemotherapy followed by adjuvant endocrine
therapy. Although approximately 20% of these cancers achieve a
pCR with neoadjuvant chemotherapy, which is associated with
excellent recurrence-free survival, those with RD have a high risk
of recurrence despite subsequent adjuvant endocrine therapy.
The relative resistance of MKShi/ERSlo tumours to endocrine
therapy is further supported by the notable difference in the
4-year DEFS between MKShi/ERSlo tumours and MKShi/ERShi

tumours with RD, with rates of 61% and 93%, respectively. The
poor prognosis of MKShi/ERSlo tumours was also confirmed in
TCGA, where they exhibited the worst overall survival among ER
+/HER2− breast cancers. The worse prognosis and increased
endocrine resistance of MKShi/ERSlo tumours cannot be
explained by different ER expression in immunohistochemistry,
as the ER expression of these tumours in TCGA was not
significantly different from that of MKShi/ERShi tumours (Supple-
mentary Fig. S6). Thus, novel treatment strategies are needed to
improve survival for these patients.
Adjuvant abemaciclib and ribociclib added to standard-of-care

endocrine therapy were recently shown to improve recurrence-
free survival in ER+/HER2− clinically high-risk breast cancers
[33, 34]. However, if the benefit extends equally to all molecular

subsets of ER+/HER2− breast cancers remains unknown. We
investigated whether MKShi/ERSlo tumours displayed molecular
features predictive of response to CDK4/6i therapy. The Rb loss-of-
function signature (RBsig) derived by Malorni et al. has been
shown to discriminate palbociclib-resistant versus sensitive breast
cancer cell lines [23] and to be enriched in palbociclib-resistant
tumours of patients treated in the NeoPalAna trial [24]. The
Interferon-Related Palbociclib-Resistance Signature (IRPS) is a gene
signature capturing different biological pathways and providing
prognostic information independent to RBsig that has been
shown to be correlated with resistance to CDK4/6i in both the
NeoPalAna and neoMONARCH trials [24]. High expression levels of
CCNE1, the gene encoding for cyclin E, were associated with
resistance to palbociclib in three independent clinical trials: the
PALOMA-3 study and the neoadjuvant NeoPalAna and POP
studies [16, 25]. We observed that both RBsig and CCNE1
predicted low sensitivity to CDK4/6i in MKShi/ERSlo tumours,
whereas the IRPS did not provide informative results. These
findings were consistent with our analysis of samples from the
NeoPalAna study, where MKShi/ERSlo tumours displayed persis-
tently high proliferation levels on Day 15 of neoadjuvant
endocrine therapy plus palbociclib, indicating poor response to
the doublet therapy.
These results raise the possibility that MKShi/ERSlo tumours may

not derive optimal benefit from adjuvant CDK4/6i therapy.
However, it should be noted that generalizing these findings to
other CDK4/6i may not be justified, as different CDK4/6i have
shown varying efficacy in different clinical settings. Indeed,
abemaciclib has demonstrated single-agent activity in
endocrine-resistant metastatic breast cancer [35], and abemaclib
and riboclib improved overall survival in the metastatic setting
and decreased invasive recurrences in stage IIB/III cancers [33, 34],
while palbociclib did not. Therefore, the potential role of
abemaciclib or ribociclib in improving the poor outcome of
MKShi/ERSlo tumours cannot be excluded.
We also found that MKShi/ERSlo tumours had high rates of TP53

gene mutations, approximately twice the rate seen in ER+
tumours in general [36]. TP53 mutations in ER+/HER2− breast
cancers are known to be associated with poor prognosis and
resistance to endocrine therapy [37], and TP53-mutated tumours
more frequently have high Oncotype DX recurrence score results
than wild-type tumours [38]. Additionally, we found that PIK3CA
mutations were present in about one-third of MKShi/ERSlo

tumours, indicating a potential therapeutic option with PI3Kα-
specific inhibitors such as alpelisib in this subgroup.
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Initial studies including all ER+/HER2− breast cancers con-
cluded that these tumours are immune infiltration poor, or
“immunologically cold”, and have lower TMB compared to other
breast cancer subtypes [39, 40]. However, more recent analyses
have indicated that a subset of ER+/HER2− breast cancers have
high tumour infiltration and immune cell activation similar to
those seen in TNBC [41]. Furthermore, accumulating clinical trial
evidence suggests a potential benefit of immunotherapy in a
subset of ER+/HER2− tumours. Pembrolizumab monotherapy has
been shown to be effective in a small cohort of heavily pretreated
patients with ER+/HER2− metastatic breast cancer [42] and
demonstrated meaningful antitumor activity in cancers with high
TMB, including ER+/HER2− breast cancers [43]. Moreover, the
addition of pembrolizumab to neoadjuvant chemotherapy has
significantly improved the pCR rate in MammaPrint ultrahigh
(MP2) ER+/HER2− breast cancers in the I-SPY2 trial [17]. The
benefit from ICI therapy in ER+/HER2− MP2 breast cancers was
further demonstrated in the durvalumab and olaparib arm of the
I-SPY2 trial, where the pCR rate improved from 22% with standard-
of-care chemotherapy to 64% with the addition of durvalumab
and olaparib [31]. We evaluated potential biomarkers of immu-
notherapy benefit in MKShi/ERSlo tumours to determine whether
these tumours might represent the subgroup that could benefit
from ICI therapy. Although MammaPrint results were not available
in our patient cohorts, we found that MKShi/ERSlo tumours have
the highest TMB among ER+/HER2− cancers, with a mutation
load similar to that of TNBC. In MKShi cancers, TMB inversely
correlated with ERS, which aligns with previous studies indicating
a twofold higher mutation rate in AI-resistant compared to AI-
sensitive ER+/HER2− breast cancers [44].
The high TMB observed in MKShi tumours provides a possible

mechanistic explanation for their endocrine resistance and
increased immunogenicity, as indicated by the elevated expres-
sion of TIL and T-cell inflamed metagenes, both associated with a
greater benefit from ICI therapy [45].
Our findings are also consistent with earlier reports that

demonstrated that ER+/HER2− tumours with high TILs often
exhibit grade 3, lower ER expression, higher Ki67 expression and
high recurrence scores [46, 47]. The high expression of immune
markers in MKShi/ERSlo tumours, along with the inverse relation-
ship between ER-related genes and immune gene signatures,
suggests that the least endocrine-sensitive cancers may be the
most responsive to immunotherapy. Others have also shown that
endocrine-resistant luminal B tumours display upregulation of the
INF-γ signalling pathway [48]. Our analysis of ER+/HER2− tumours
included in the pembrolizumab arm and corresponding controls
in the I-SPY2 trial, which specifically focused on MammaPrint-high
tumours, supports this hypothesis.
We observed that in the ERShi group, the pCR rates were

approximately 10% to 12% in both treatment arms, while in the
ERSlo group, the pCR rate was significantly higher with pembro-
lizumab than with chemotherapy alone, with rates of approxi-
mately 42% versus 21%, respectively. However, likely due to the
small sample size, the interaction test between ERS and treatment
with chemotherapy plus pembrolizumab was not statistically
significant. Results from the GIADA trial also suggest that ER+/
HER2− breast cancers with an immune-activated state and
downregulation of hormone receptor pathways respond favour-
ably to sequential chemotherapy and anti–PD–1 therapy [49].
Nonetheless, the absence of baseline characteristics for the
patients included in this and the other datasets we utilized
hinders our ability to evaluate how these variables might have
influenced our results.
In summary, our findings demonstrate that MKShi/ERSlo

tumours represent a distinct molecular subset within ER+/
HER2− breast cancers. These tumours are characterized by
frequent TP53 mutation, high proliferation, low expression of ER-
related genes, and elevated expression of immune metagenes

and markers of CDK4/6i resistance. These molecular character-
istics provide an explanation for the higher rate of endocrine
resistance and overall poorer prognosis observed in these
tumours. Importantly, a subset of MKShi/ERSlo tumours exhibits
high chemotherapy sensitivity, as indicated by the relatively
high pCR rate of approximately 20%, which appears to be
further improved by the addition of pembrolizumab to
neoadjuvant chemotherapy. Additionally, around 30% of these
cancers harbour PIK3CA mutations, suggesting that adjuvant
PIK3CA inhibitors may represent a class of drugs worth
investigating in prospective clinical trials. The benefit from
immunotherapy is also based on small studies and will need
independent confirmation in larger randomized trials.
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