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miR-302/367 clusters in malignant germ cell tumours causes
growth inhibition through cell cycle disruption
Shivani Bailey1,2, Marta Ferraresso1, Luz Alonso-Crisostomo1, Dawn Ward1, Stephen Smith 1, James C. Nicholson2,3, Harpreet Saini4,
Anton J. Enright1, Cinzia G. Scarpini1,6, Nicholas Coleman1,5,6✉ and Matthew J. Murray 1,2,6✉

© The Author(s) 2023, corrected publication 2023

BACKGROUND:MiR-371~373 and miR-302/367 cluster over-expression occurs in all malignant germ cell tumours (GCTs), regardless
of age (paediatric/adult), site (gonadal/extragonadal), or subtype [seminoma, yolk sac tumour (YST), embryonal carcinoma (EC)]. Six
of eight microRNAs from these clusters contain the seed sequence ‘AAGUGC’, determining mRNA targeting. Here we sought to
identify the significance of these observations by targeting these microRNAs functionally.
METHODS: We targeted miR-371~373 and/or miR-302/367 clusters in malignant GCT cell lines, using CRISPR-Cas9, gapmer primary
miR-302/367 transcript inhibition, and peptide nucleic acid (PNA) or locked nucleic acid (LNA)-DNA inhibition targeting miR-302a-d-
3p, and undertook relevant functional assays.
RESULTS: MiR-302/367 cluster microRNAs made the largest contribution to AAGUGC seed abundance in malignant GCT cells,
regardless of subtype (seminoma/YST/EC). Following the unsuccessful use of CRISPR-Cas9, gapmer, and PNA systems, LNA-DNA-
based targeting resulted in growth inhibition in seminoma and YST cells. This was associated with the de-repression of multiple
mRNAs targeted by AAGUGC seed-containing microRNAs, with pathway analysis confirming predominant disruption of Rho-GTPase
signalling, vesicle organisation/transport, and cell cycle regulation, findings corroborated in clinical samples. Further LNA-DNA
inhibitor studies confirmed direct cell cycle effects, with an increase of cells in G0/G1-phase and a decrease in S-phase.
CONCLUSION: Targeting of specific miR-371~373 and miR-302/367 microRNAs in malignant GCTs demonstrated their functional
significance, with growth inhibition mediated through cell cycle disruption.
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INTRODUCTION
Germ cell tumours (GCTs) are a histologically diverse group of
tumours that vary by clinical presentation, tumour histology, and
clinical course. They present across all age groups, from the
neonatal period into late adulthood, and arise in midline
anatomical sites, both gonadal and extragonadal. Malignant GCTs
are broadly divided into germinomas/seminomas (Sem) and non-
germinomatous/-seminomatous GCTs (NGGCTs/NSGCTs)—the lat-
ter consisting of yolk sac tumour (YST), embryonal carcinoma (EC),
choriocarcinoma (CHC), and mixed GCTs (containing more than
one subtype). The GCT subtype teratoma (mature/immature) has
benign/intermediate behaviour, best treated by surgery alone [1].
Since the introduction of platinum-based chemotherapy [2],

most patients with metastatic malignant GCTs have excellent
overall survival. However, within this patient group, there are
cohorts with poor outcomes. First, International Germ Cell

Consensus Classification poor-risk patients [3] still only have a
progression/event-free survival of 54% despite improvements in
supportive care [4]. Second, outcomes for certain patients who
relapse are dismal, for example, those with platinum-resistant
extracranial tumours [5] and intracranial NGGCT [6]. As a result,
GCTs have the highest adult cause of average years-of-life-lost per
person dying of cancer [7]. Furthermore, for the majority who are
cured, current chemotherapy regimens cause significant long-
term effects, including myelosuppression [8], nephrotoxicity [9],
ototoxicity [10], irreversible pulmonary fibrosis [11], and second
malignancies [9]. These effects are particularly debilitating in the
predominantly young patient population which GCTs affect.
Consequently, there remains a major need for an improved
understanding of germ cell biology and the identification of new
targets for potential therapeutic intervention. Such an approach
will facilitate the development of novel agents that may improve
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survival in those with poor-risk disease and reduce late-effects in
those with good-risk disease [12], across the diverse clinical GCT
spectrum [13].
To this end, the first common biological abnormality identified

across the full clinical spectrum of malignant GCTs related to
dysregulated microRNA (miRNA) expression [14]. MiRNAs repre-
sent an abundant class of endogenous, short non-protein-coding
RNAs, typically ~21-23 nucleotides (nt) in length, which post-
transcriptionally regulate the expression of protein-coding genes,
predominantly by messenger RNA (mRNA) destabilisation and
degradation [15]. Through this mechanism, miRNAs critically
regulate development and normal physiological processes [15,
16]. Regulation is primarily determined through the miRNA ‘seed’
region, comprising nucleotides in positions 1-8 (1-8nt), which bind
to seed complementary regions (SCRs) in the 3’ untranslated
region (3’UTR) of their mRNA targets [17]. The 2-7nt core seed
sequence is considered most critical for targeting [17], but
contributions from 1-6nt and 3-8nt seed sequences are also
recognised [18]. A study of malignant GCTs identified that they are
universally characterised by over-expression of eight miRNAs
arising from just two miRNA ‘clusters’, namely miR-371~373 (at
chromosomal locus 19q13.41) and miR-302/367 (4q25), when
compared with a non-malignant cohort (comprising gonadal
controls and teratomas) [14]. Importantly, six of these eight
miRNAs share an identical 2-7nt seed region ‘AAGUGC’, and in
addition, miR-371a-3p contains the identical 1-6nt sequence.
Furthermore, certain malignant NSGCT subtypes associated with
poor outcomes are characterised by over-expression of the
‘chromosome-19-microRNA-cluster’ [C19MC, or miR-515-526 [14]]
—specifically EC [14], and in particular CHC [19, 20]. Of note,
C19MC is co-located within 100 kilobases (kb) of the miR-371~373
cluster on chromosome 19 and a proportion of the 59 miRNAs
contained within it also share the AAGUGC seed. The SCR
corresponding to this specific seed region demonstrated enrich-
ment, when compared with non-malignant controls, in the 3’UTRs
of protein-coding genes downregulated in malignant GCTs, and
importantly, pathway analysis identified that these downregulated
genes were involved in important cellular processes, such as signal
transduction and cell cycle regulation [14]. Of note, this work
suggested that miR-371~373 and miR-302/367 over-expression
plays a key role in malignant GCT tumorigenesis. Moreover,
cisplatin-resistant GCT cell lines display further over-expression of
miR-371~373 and C19MC miRNAs compared with their cisplatin-
sensitive counterparts [21]. Together, the available evidence
justifies further investigation of the functional/therapeutic role of
these over-expressed miRNAs in malignant GCTs.
To explore such roles, different strategies exist for targeting

these miRNAs at a genomic [e.g., clustered regularly interspaced
palindromic repeats (CRISPR)/CRISPR-associated nuclease 9
(Cas9) systems [22, 23]], transcriptional [e.g., ‘gapmer’ inhibition
targeting primary miRNAs, e.g., [24]], and mature miRNA level
[e.g., peptide nucleic acid (PNA) [25] or locked nucleic acid (LNA)
[26] approaches]. LNAs are modified RNA or DNA molecules with
increased miRNA binding affinity [26]. For example, ‘tiny’ LNAs
(8-10nt length) designed against seed-sharing miRNA families
have been used in models of breast cancer [27], B-cell
lymphoma [28], and medulloblastoma [29]. Furthermore, LNA/
DNA ‘mixmers’ may be used experimentally, which balance
affinity with specificity, reducing off-target effects seen with
shorter, all-LNA inhibitors [30, 31]. Here, we sequentially
targeted AAGUGC seed-containing miRNAs from the miR-
371~373 and miR-302/367 clusters in malignant GCTs at the
genomic, transcriptional, and mature miRNA level, including
with LNA/DNA mixmers. Work is now warranted to explore the
effects of targeting these oncogenic miRNAs in further pre-
clinical studies, with the ultimate aim of improving outcomes for
patients with malignant GCTs.

MATERIALS AND METHODS
Patient samples
The study was performed under Multicentre generic Children’s Cancer and
Leukaemia Group (CCLG) Tissue Bank approval (East-Midlands/Derby REC
reference 08/h0405/22+5, covering Biological Studies CCLG-2002-BS03
and CCLG-2020-BS02; formerly Trent-REC reference 02/4/071) and Cam-
bridge Local Research Ethics Committee (reference 01/128) approval.
Written informed consent was obtained from all subjects. Further analysis
of published miRNA microarray expression profiling data was undertaken
on 42 clinical samples, comprising 32 paediatric GCTs from 22 female and
10 male patients (12 YSTs, 11 seminomas, three ECs and six teratomas),
two testicular seminomas from young adults and eight control samples, as
described [14, 32]. One teratoma sample (MT-34) was excluded as it was
derived from a mixed GCT and clustered with malignant GCTs, as
described [32]. Messenger RNA (mRNA) array data for 45 clinical samples,
comprising 37 malignant GCTs (17 paediatric, 20 adults) and eight non-
malignant controls [14, 32], was used for clinical correlation of functional
investigations in cell lines. These array data are publicly available at Gene
Expression Omnibus, accession no. GSE18155.

GCT cell lines
Four representative human malignant GCT cell lines were selected for
in vitro studies, as previously described [32], namely 2102Ep (EC) [ExPASy
Cellosaurus online cell line knowledge resource (https://web.expasy.org/
cellosaurus/) Research Resource Identifier (RRID):CVCL_C522] [33], 1411H
(RRID:CVCL_2268) [34] and GCT44 (RRID:CVCL_A346) [35] (both YST), and
TCam-2 (Sem) (RRID:CVCL_T012) [36]. Three further authenticated cell lines
were obtained from American Type Culture Collection (ATCC; Manassas,
VA) for study. These were the EC cell line NCCIT (ATCC number CRL-2073:
RRID:CVCL_1451), and two cell lines derived from placental CHC (in the
absence of available GCT-derived CHC lines), specifically BeWo (ATCC CL-
98: RRID:CVCL_0044) and JAR (ATCC HTB-144; RRID:CVCL_0360). All cells
were cultured at 37 °C in 5% CO2 in appropriate medium containing 10%
fetal calf serum and 1% penicillin/streptomycin, as described [32]. All cell
lines were authenticated by short-tandem-repeat profiling [37] within the
last 3 years and all experiments were performed with mycoplasma-free
cells. Further analysis of published miRNA microarray expression profiling
data was undertaken on six GCT cell lines [namely TCam-2 (Sem), 1411H
(YST), GCT44 (YST), 2102Ep (EC), Tera-2 (EC/teratoma; RRID:CVCL_2777) and
PA-1 (immature teratoma; RRID:CVCL_0479)], as described [14, 32].

MiRNA microarray analysis and calculation of overall 2-7nt
AAGUGC seed abundance
To calculate this, median normalised microarray expression values were
calculated and summated for all miRNAs on the published array [14, 32]
containing the 2-7nt seed region AAGUGC (n= 12 of 615 total miRNAs), for
different malignant GCT subtypes and cell lines, and non-malignant control
samples (gonadal controls and teratomas). Specifically, these miRNAs were
from the miR-371~373 cluster (n= 2; miR-372-3p, miR-373-3p), the miR-
302/367 cluster (n= 4; miR-302a-d-3p), and C19MC (n= 6; miR-519b-3p,
miR-520a-e-3p).

Quantitative reverse-transcription PCR (qRT-PCR) for miRNAs
Total RNA was isolated from clinical GCT samples and cell lines using
TriReagent (Sigma-Aldrich, St Louis, Missouri, USA), following the protocol
described [32]. Levels of miRNAs were then quantified in triplicate using
Taqman qRT-PCR reagents and proprietary primer/probe assays (Applied
Biosystems), as per the manufacturer’s instructions, with 25 nanograms
(ng) of total RNA used for copy DNA synthesis and 2 µl of the resultant
15 µl product used for the final PCR step. Levels were calculated using the
delta-delta-Ct method and normalised to RNU24, as described [14, 32].

Calculation of individual miRNA cluster contribution to overall
AAGUGC seed abundance in malignant GCT cell lines
Derived array or qRT-PCR expression values for representative miRNAs
from the three AAGUGC seed-containing miRNA clusters (miR-371~373,
miR-302/367, and C19MC) were summated and contributions from each
cluster calculated. Specifically, these were miR-371a-3p, miR-372-3p, and
miR-373-3p for miR-371~373 (n= 3), miR-302a-d-3p for miR-302/367
(n= 4), and miR-519b-3p and miR-520b-3p for C19MC (n= 2). For this
work, miR-371a-3p was included as it contained 1-6nt AAGUGC, a seed
position known to contribute to mRNA targeting [18]. For consistency, as
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only six of the eight 2-7nt AAGUGC seed-containing miRNAs from C19MC
were present on the array, the two C19MC miRNAs listed above were
selected for both platforms and proportionally scaled to represent the total
of eight such miRNAs from C19MC.

Genomic copy number determination for the miR-371~373
and miR-302/367 region
Primers to assess genomic copy number were designed using the website
‘Primer3’ (https://bioinfo.ut.ee/primer3/) [38] and ordered from Sigma-
Aldrich (Supplementary Table S1). The genomic regions from which these
miRNAs arise were 1098 base pairs (bp) and 544bp in length for the miR-
371~373 (chromosome 19q13.41) and miR-302/367 (chromosome 4q25)
clusters, respectively. C19MC (chromosome 19q13.41) was excluded from
this analysis as it is not universally over-expressed in all malignant GCT
subtypes [14], its genomic region is substantially larger at over 100,000 bp
(and thus more challenging to comprehensively assess), and it contains at
least 59 characterised miRNAs, of which only eight contain the 2-7nt
AAGUGC seed [39]. The sequence for each cluster was obtained from the
Ensembl Genome Browser (https://www.ensembl.org/index.html), Human
Genome Assembly GrCh38.p10. Primer pairs were then screened using
Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/), which
uses the Basic Local Alignment Search Tool (BLAST) and a global alignment
algorithm to avoid pairs that could result in non-specific amplification. Two
sets of primers were designed per cluster, in the upstream and
downstream regions. Quantitative PCR was performed on genomic DNA
(gDNA) extracted from the cell lines, as described [40], with levels
normalised to four established gDNA housekeeping genes (B2M, GAPDH,
18A, and 18B) and compared with human testicular gDNA (ThermoFisher
Scientific Inc, USA) levels.

Targeting the miR-371~373 and miR-302/367 clusters in
malignant GCT cells
A number of approaches were taken in order to target miRNAs from the
miR-371~373 and miR-302/367 clusters and demonstrate functional
significance in malignant GCT cells. For CRISPR-Cas9 targeting of these
two clusters at a genomic level, ‘gapmer’ inhibition of primary miRNA (pri-
miR-302/367) transcripts, and PNA inhibition of mature miR-302/367
miRNAs (miR-302a-d), see Supplementary Methods, Supplementary
Results, and Supplementary Tables S2–S4. The approach using LNA/DNA
mixmer inhibitors is described below.

LNA/DNA inhibitors targeting mature miR-302/367 cluster
miRNAs (miR-302a-d-3p)
For this work, two LNA/DNA inhibitors were used, namely a 16nt, 69%
(11nt) LNA content miR-302a-d-3p inhibitor (miR-302 super-family-
inhibitor, ‘miR-302-SFI’; sequence: AAACATGGAAGCACTT) and a 10nt,
70% (7nt) LNA content miRNA inhibitor (‘short-SFI’; GGAAGCACTT), along
with a 20nt, 70% (14nt) LNA content mismatch control (MMC; TTAA-
CACGTCTATACGCCCA), (Exiqon, now Qiagen). Of note, due to its shorter
length, the short-SFI was designed to target AAGUGC seed-containing
miRNAs more widely, including those from the miR-371~373 cluster
(predominantly miR-372-3p/miR-373-3p), and C19MC, in addition to the
miR-302/367 cluster. Following optimisation to determine the greatest
transfection efficiency with minimal toxicity, TCam-2 and 1411H cell lines
received 37nM of inhibitor/MMC, and 2102Ep 50nM. Cells were seeded in
6-well plates to ensure ~40% confluence on the day (d) of transfection (d0).
The transfection media, containing the cell-line specific inhibitor/MMC
doses and the transfection reagent Viromer Blue (1 µl per 500 µl
transfection solution), was replaced with standard media at 4–6 h post-
transfection to minimise toxicity, and then subsequently changed every
24 h. Experiments were performed in biological triplicate. Cells were
harvested for further experimental studies at set timepoints up until d7.
Cell numbers were quantified using Trypan blue dye on a Countess
automated-cell-counter, which gave live and dead cell counts, as described
[32].

Global messenger RNA (mRNA) microarray of cells transfected
with miR-302-SFI
At d2, when direct mRNA changes following miRNA perturbation
experiments are typically maximal [41], we undertook mRNA profiling in
biological triplicate on miR-302-SFI-treated, MMC-treated, and untreated
TCam-2, 1411H, and 2102Ep cells. RNA concentration and quality were

assessed using SpectroStar (BMG Labtech, Aylesbury, UK) and Bioanalyser
(Agilent Technologies, Cheadle, UK) machines. Microarray experiments
were performed at Cambridge Genomic Services, Department of
Pathology, University of Cambridge, using a species-specific Gene 2.1 ST
Array Plate (Affymetrix, Wooburn Green, UK), according to the manufac-
turer’s instructions. Briefly, 100 ng total RNA was amplified along with in-
line PolyA spike-in control RNA, using the WT PLUS amplification kit
(Affymetrix). Successfully amplified samples were labelled using the
GeneChip WT terminal labelling kit (Affymetrix) using in-line hybridisation
controls. Plate arrays were processed on the GeneTitan instrument
(Affymetrix) with GeneTitan ‘Hybridization, Wash, and Stain’ kit (Affyme-
trix). Samples were hybridised to the array, washed, stained, and scanned
using the array-specific parameters provided by Affymetrix to generate raw
CEL files, which underwent basic visual quality control using Command
Console Viewer (Affymetrix). The resultant CEL files were loaded in the
statistical language R using the oligo package from Bioconductor [42]. Data
quality was assessed through the generation of control probe plots,
boxplots, MA, and intensity distribution plots. Variation within biological
replicates was investigated using clustering methods. The raw data were
then pre-processed using the Robust Multichip Analysis method [43]. The
data were background corrected, quantile normalised, and summarised.
Following pre-processing, comparisons were performed using limma and
results corrected for multiple-testing using the false discovery rate method
[44]. Raw microarray data from these analyses is deposited at EBI
Array Express (https://www.ebi.ac.uk/biostudies/arrayexpress), accession
no. E-MTAB-13323.

Assessing effects of miR-302-SFI treatment on global mRNA
levels using Sylamer
As each miRNA can target hundreds of mRNAs, changes in expression
levels of individual mRNAs following miRNA perturbation are very subtle
[16]. Accordingly, such multiple shifts in mRNA expression levels are best
assessed by global and pathway analyses. Thus, in brief, Sylamer [45] was
used to assess enrichment and/or depletion of nucleotide ‘words’ of
specific length (SCRs) complementary to elements of the seed region of
miRNAs of interest within the 3’UTRs of genes within ranked lists, as
described [45], derived from miR-302-SFI-treated, MMC-treated, and
untreated cells. The output was visualised as a landscape plot of p values
for each SCR (y-axis), plotted against the ranked gene list (x-axis),
and segregated into ‘bins’ containing 200 genes in each [14, 45]. The
derived single summed significance score (SSSS) was an integration of
Sylamer significance scores for different elements that comprised the SCR
and served as an overall evaluation of the enrichment or depletion of
nucleotide sequences [32]. For this work, the scores were calculated by
combining the Sylamer results for four SCR elements, all complementary to
the key 2-7nt seed region of miR-302a-d-3p, namely one hexamer (2-7nt
GCACTT), two heptamers (1-7nt AGCACTT and 2-8nt GCACTTA) and one
octamer (1-8nt AGCACTTA). Following the generation of SSSS landscape
plots, a change-point detection algorithm was employed to identify the
most appropriate enrichment peak for selecting gene lists for further
analyses. This algorithm computed a change-point delta value (CPDV) for
each bin of 200 genes, based on the difference between its –log10(p value)
and the minimum –log10(p value) across the next five bins (progressing
from left to right). CPDV curves were plotted for the SCR of interest
(corresponding to the 2-7nt AAGUGC miRNA seed) and the bin with the
maximum CPDV selected.

Metascape pathway analysis
In brief, the SCR-containing de-repressed gene lists derived from miR-302-
SFI-treated cell lines, identified using the CPDV approach above, under-
went pathway analysis using Metascape software (https://metascape.org/)
[46]. For global mRNA data from clinical samples, we conversely selected
the 1134 downregulated (repressed) targets in malignant GCT cases (log2
fold change <–1), of which 362 (31.9%) contained the SCR to the 2-7nt
AAGUGC seed. These 362 downregulated genes were then analysed using
Metascape.

Flow cytometry
For cell cycle analysis, cells were analysed at d1-d4 post-transfection
using Click-iT-EdU-Alexa-Fluor-647 Flow Cytometry Assay Kit (Thermo-
Fisher Scientific). In brief, cells were incubated for up to 3 h with 10 µM
of 5-ethynyl-2-deoxyuridine (EdU) dye. Cells (1 × 106) were then
collected and treated as per the manufacturer’s instructions. TCam-2
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(Sem) and GCT44 (YST) cells were utilised for this work as 1411H (YST)
cells did not adequately incorporate EdU dye. One µl of FxCycle Violet
(ThermoFisher Scientific) was then added to the final mixture to stain
cellular DNA and samples were analysed using a flow cytometer BD-LSR-
Fortessa machine (BD Biosciences) at the Wellcome-MRC Cambridge
Stem Cell Institute. For the detection of EdU with Alexa-Fluor-647, azide
633/635 nm excitation with a red emission filter (660/20 nm) was used.
Flow cytometer data were analysed using FlowJo (FlowJo LLC, Becton
Dickinson) (version 10.5.0).

Statistics
Statistical analyses were performed using GraphPad Prism 6 software
(GraphPad Software, La Jolla, US). As the variance between comparison
groups was similar, an unpaired, two-tailed Student’s t-test was used for
analyses. P values <0.05 were considered statistically significant unless
otherwise stated. Data presented are mean values ± standard error of
the mean.

RESULTS
High overall 2-7nt AAGUGC seed abundance is universally
present in malignant GCT clinical samples and cell lines
Microarray data analysis demonstrated that intensity ratios for
miRNAs containing the 2-7nt sequence AAGUGC, corresponding
to the seed region of miR-371~373, miR-302/367, and specific
C19MC miRNAs, were substantially higher in malignant GCT
samples and cell lines than in non-malignant control tissues,
comprising gonadal and teratoma tissues (Fig. 1a). Of note, the
AAGUGC seed intensity for the non-seminomatous GCT subtypes
YST and EC was higher than that observed for Sem samples
(Fig. 1a). Malignant GCT cell lines had the highest overall 2-7nt
AAGUGC seed abundance (Fig. 1a and Supplementary Fig. S1),
highlighting their suitability for subsequent downstream func-
tional assays. Intensity ratios for 10 miRNAs from these three
malignant GCT-associated clusters, for each individual clinical
sample (malignant GCTs and non-malignant controls) and cell
lines, are shown in Supplementary Fig. S2. High levels of miRNAs
contributing to the overall AAGUGC seed abundance in Sem, YST,
and EC cell lines were next confirmed by qRT-PCR, compared with
other cell lines and normal gonadal control samples (Supplemen-
tary Fig. S3), as exemplified by the representative miR-372-3p from
the miR-371~373 cluster (Fig. 1b) and miR-302a-3p from the miR-
302/367 cluster (Fig. 1c). We observed that although the very rare
malignant GCT subtype CHC displayed high levels of miR-371~373
miRNAs, it demonstrated lower levels of miR-302/367 miRNAs and
higher levels of C19MC miRNAs (miR-519b-3p; Fig. 1d), compared
with the other common malignant GCT cell line subtypes Sem,
YST, and EC. Whilst these cell line data are consistent with the
presence of highly elevated levels of circulating miRNAs from the
miR-371~373 cluster and C19MC at the time of CHC diagnosis in
patient serum [20], it should be noted that these CHC cell lines
were derived from placental CHC. In the absence of available GCT-
derived CHC lines, these CHC cell lines were therefore not pursued
further for in vitro analyses.

MiR-302/367 cluster miRNAs individually make the largest
relative contribution to high 2-7nt AAGUGC seed abundance
in malignant GCTs
From the array intensity ratios, miRNAs from the miR-302/367
cluster made the largest overall contribution to AAGUGC seed
abundance in malignant GCT cell lines, namely TCam-2 (Sem;
85.30%), 1411H (YST; 99.60%), and 2102Ep (EC; 79.43%) (Fig. 1e
and Supplementary Table S5). Importantly, almost identical
findings were confirmed by qRT-PCR (Fig. 1f and Supplementary
Table S5), highlighting their appropriateness for further experi-
mental study. Together, these data supported primarily targeting
miR-302/367 cluster miRNAs, specifically miR-302a-d-3p (all
containing the 2-7nt seed AAGUGC), in subsequent functional
work in malignant GCT cells.

Expression of miRNAs from the miR-371~373 and miR-302/
367 clusters in malignant GCTs is positively correlated
Linear regression analysis of miRNA qRT-PCR data showed a very
strong positive correlation of expression levels for miRNAs within
the two miRNA clusters, which are universally found at high levels
in malignant GCTs (Sem, YST, and EC), namely miR-371~373 and
miR-302/367 (Fig. 2a). R2 values for miRNAs from the miR-371~373
and miR-302/367 clusters, respectively, were 0.958–0.997 and
0.804–0.969 (p < 0.001 for all comparisons), with one exception
(miR-302d-3p vs. miR-367-3p, R2= 0.637, p= 0.002) (Fig. 2a). Next,
miRNA expression was aggregated from the miR-371~373 cluster
(n= 3 miRNAs), miR-302/367 cluster (n= 5), and C19MC (n= 2) to
provide overall inter-cluster graphical comparisons (Fig. 2b–d).
This was only significant for the miR-371~373 vs. miR-302/367
cluster comparison (R2= 0.43, p= 0.021) (Fig. 2b), but not for miR-
371~373 vs. C19MC nor miR-302/367 cluster vs. C19MC (Fig. 2c, d),
as expected given high expression of C19MC only in the CHC
malignant GCT subtype [14]. These highly significant positive
intra-cluster and inter-cluster correlations for miR-371~373 and
miR-302/367 suggested a potential single co-regulatory mechan-
ism in malignant GCTs (Supplementary Fig. S4 and Supplementary
Results/Discussion).

Targeting the miR-371~373 and miR-302/367 clusters in
malignant GCT cells
It was not possible to reliably target these two highly over-
expressed miRNA clusters in malignant GCTs using CRISPR-Cas9
targeting at a genomic level, ‘gapmer’ inhibition of pri-miR-302/
367, and PNA inhibition of mature miR-302/367 miRNAs (miR-
302a-d). In short, CRISPR/Cas9 was challenging for multiple
reasons. First, optimal design/selection of CRISPR RNAs (crRNAs,
i.e., guide RNAs) was challenging because it was difficult to
accurately identify the precise promoter location and transcrip-
tional start sites for miRNAs [47]. Second, the selected crRNA
guides proved inefficient in excising the relevant regions of DNA.
Third, as a consequence of low excision efficiency (2-12%;
Supplementary Table S2), an additional process was subsequently
required to select individually excised cells, but unfortunately,
these were not viable for long-term growth. We next attempted
miRNA depletion testing multiple gapmers individually against the
pri-miR-302/367 sequence, but at best, only modest depletion of
mature miR-302/367 miRNA expression was obtained
(15.4–26.7%), and this was not associated with any observed
reduction in cell numbers (data not shown). Finally, with PNA
inhibition, after initial success, a lack of reproducibility of results
was observed due to batch-to-batch variation; after further
enquiry with the manufacturer, they confirmed they had altered
the proprietary chemistry of the PNA, which meant that this
inhibition approach was not pursued further (data not shown).

Mature miRNA targeting approach: miR-302-SFI LNA-based
targeting of miR-302a-d-3p miRNAs
Following miR-302-SFI transfection in three representative malig-
nant GCT cell lines, cell growth was assessed by cell counts
(Fig. 3a). Importantly, no difference was observed between
untreated and control (MMC) treated groups. In TCam-2 (Sem)
and 1411H (YST) cell lines, a reduction in cell numbers was
observed at d7 in the miR-302-SFI-treated group (Fig. 3a, upper/
central panels, respectively), but not in 2102Ep (EC) cells (Fig. 3a,
lower panel). In all experimental conditions (miR-302-SFI-treated,
MMC-treated, and untreated cells), live cells ranged from 93.0%
to 96.3% of the total cell population counted (Supplementary
Table S6). It was therefore concluded that the reduction in cell
numbers seen was due to reduced cell proliferation rate rather
than due to apoptosis/cell death. Subsequent study therefore
sought to explore in more detail the reduced cell proliferation rate
observed following miR-302-SFI treatment through genotypic/
pathway analyses.
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Global mRNA microarray expression profiling of miR-302-SFI-
treated cells
Profiling was undertaken at 48 h post-transfection for miR-302-SFI-
treated cells compared with MMC-treated and untreated cells, and
data used to produce Sylamer landscape plots (Fig. 3b). In the
TCam-2 plot, the most significant peak was that for the key SCR
(GCACTT) corresponding to the shared 2-7nt AAGUGC seed of
miR-302a-d-3p (Fig. 3b, upper panel). In addition, significant
signals were obtained for other miRNAs that contain the AAGUGC
seed, namely miR-520f-3p (3-8nt), miR-519a-3p (2-7nt) (both
C19MC miRNAs), and miR-17-5p (1-6nt; from the oncogenic miR-
17~92 cluster) (Fig. 3b, upper panel). For 1411H, the miR-302a-d-
3p peak was again the most significant (Fig. 3b, central panel), and
the other significant peaks corresponded to C19MC miRNAs miR-

520f-3p and miR-519a-3p. In the 2102Ep (EC) plot (Fig. 3b, lower
panel), there were no significantly enriched signals for the core
SCR GCACTT corresponding to the 2-7nt AAGUGC seed, consistent
with the lack of phenotype observed on d7. Only a weak signal,
corresponding to the single C19MC miRNA miR-520f-3p (3-8nt
AAGUGC), was seen. Accordingly, only seminoma and YST cells
were taken forward for further downstream analyses.

Identification of de-repressed genes following miR-302-SFI
transfection using Sylamer assessment of global mRNA
expression data
Using the CPDV algorithm, bin 8, corresponding to the first 1600
de-repressed genes on the left of the x-axis, was identified as the
optimal Sylamer cut-off for both TCam-2 and 1411H cells (Fig. 3b,
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upper/central panels). For TCam-2, of these 1600 genes, 881
(55.1%) were found to have one or more SCRs for AAGUGC in their
3’UTRs. As 16% of all human mRNAs contain the SCR GCACTT
corresponding to the 2-7nt AAGUGC seed in their 3’UTRs [14], this
represented significant enrichment of the SCR in upregulated (de-
repressed) genes following miR-302-SFI treatment (χ2 statistic 57.6,
p < 0.01). Similarly, for 1411H, 775 genes (48.4%) out of 1600
contained the SCR of interest (χ2 statistic 39.8, p < 0.01). Of note,
188 SCR-containing mRNA targets (24.2% overlap) were common
to both TCam-2 and 1411H (Supplementary Table S7).

Metascape pathway analysis and clinical correlation of
malignant GCT cell line findings
The lists of SCR-containing, de-repressed genes in TCam-2
(n= 881) and 1411H (n= 775) next underwent pathway analysis
using Metascape; multiple significant biological processes were
identified (Fig. 4a, b, respectively). In particular, three cellular
processes were recurrently involved through AAGUGC seed-
containing miRNA targeting, namely molecular signal transduction
via Rho-GTPases, vesicle organisation/transport, and cell cycle
regulation/division (Fig. 4a, b). Next, we interrogated the 188
common targets to both TCam-2 and 1411H (Fig. 4c) and
identified that this core set also contained these three key
processes (Fig. 4d). Next, to establish the clinical relevance of
these findings, we interrogated the corresponding downregulated
(repressed) genes (n= 362) derived from clinical malignant GCT
cases. Importantly, these three processes all featured prominently

(Fig. 4e), demonstrated in the associated network analysis (Fig. 4f).
Together, these data confirm the clinical relevance of our miR-302-
SFI approach in malignant GCT cell lines.

Cell cycle analysis
Next, cell cycle regulation was assessed directly, due to growth
inhibition (Fig. 3a) and affected cell cycle pathway regulation
following miR-302-SFI treatment (Fig. 4). In initial optimisation
experiments using TCam-2, use of the longer, standard miR-302-SFI
resulted in subtle decreases in the proportion of cells in S-phase and
concomitant increases in those in G0/G1-phase at d2, d3, and d4
compared with MMC-treated cells (Supplementary Table S8).
However, the identification from Sylamer analysis of the presence
of signals for other miRNAs such as miR-519a-3p (2-7nt AAGUGC)
and miR-520f-3p (1-6nt AAGUGC) from C19MC following miR-302-
SFI treatment (Fig. 3b) led to the hypothesis that inhibition, and thus
effects on cellular processes, could be enhanced by use of a shorter
inhibitor that could more widely target AAGUGC seed-containing
miRNAs from miR-302/367, miR-371~373, and C19MC. Accordingly,
cell cycle analysis was undertaken on 10nt ‘short-SFI’ treated TCam-
2 (Sem) and GCT44 (YST) cells and compared with MMC-treated
cells. Short-SFI treatment resulted in a decrease in the proportion of
cells in S-phase and an increase in those in G0/G1-phase at d2 and
d3 (Fig. 5 and Supplementary Table S9). Together, these data
suggest that inhibition of 2-7nt AAGUGC seed-containing miRNAs
results in increased cell cycle arrest at the G0/G1 checkpoint and
reduced G1/S transition.

m
iR

-3
02

b-3
p

m
iR

-3
02

c-
3p

m
iR

-3
02

d-3
p

m
iR

-3
67

-3
p

m
iR

-3
71

a-
3p

m
iR

-3
72

-3
p

m
iR

-3
73

-3
p

m
iR

-5
19

b-3
p

m
iR

-5
20

b-3
pm

iR-302a-3p
m

iR-302b-3p
m

iR-302c-3p

m
iR-302d-3p

m
iR-367-3p

m
iR-371a-3p

m
iR-372-3p

m
iR-373-3p

m
iR-519b-3p

R2 � 0.9

R2=0.001
p=NS

R2=0.082
p=NS

R2=0.010
p=NS

R2=0.002
p=NS

R2=0.032
p=NS

R2=0.032
p=NS

R2=0.009
p=NS

R2=0.692
p=0.001

R2=0.958
p<0.001

R2=0.972
p<0.001

R2=0.997
p<0.001

R2=0.772
p<0.001

R2=0.773
p<0.001

R2=0.867
p<0.001

R2=0.820
p<0.001

R2=0.986
p<0.001

R2=0.877
p<0.001

R2=0.969
p<0.001

R2=0.904
p<0.001

R2=0.827
p<0.001

R2=0.975
p<0.001

R2=0.804
p<0.001

R2=0.637
p<0.001

R2=0.534
p=0.007

R2=0.566
p=0.005

R2=0.299
p=NS

R2=0.214
p=NS

R2=0.311
p=NS

R2=0.418
p=NS

R2=0.690
p=001

R2=0.267
p=NS

R2=0.406
p=0.026

R2=0.430
p=0.020

R2=0.382
p=0.032

R2=0.532
p=0.007

R2=0.493
p=0.011

R2=0.001
p=NS

R2=0.032
p=NS

R2=0.073
p=NS

R2=0.010
p=NS

R2=0.072
p=NS

R2=0.001
p=NS

R2=0.004
p=NS

R2=0.069
p=NS

R2=0.085
p=NS

R2 � 0.1

R2=0.051
p=NS

0.6 ��R2 � 0.7

0.1 ��R2 � 0.2

0.2 ��R2 � 0.3

0.3 ��R2 � 0.4

0.4 ��R2 � 0.5

0.5 ��R2 � 0.6

0.7 ��R2 � 0.8

0.8 ��R2 � 0.9a

10–3

10–2

10–2

10–1

10–1

100

100

101

101

102

102

103

103
10–3

10–2

10–2

10–1

10–1

100

100

101

101

102

102 103 104 104105 105

10–1

10–1
10–2

10–2

100

100

101

101

102

102

103

103

103

104

104

105

105

R2=0.022
p=NS

R
2

=0.430
p=0.021

miR-302/367 cluster miR-302/367 clustermiR-302–367 cluster

miR-371–373 cluster vs. C19MC miR-302/367 cluster vs. C19MCmiR-302/367 cluster vs. miR-371–373 cluster

C
19

M
C

C
19

M
C

b c d

m
iR

-3
71

–3
73

 c
lu

st
er

Fig. 2 Correlation between expression levels of representative miRNAs within and across the miRNA clusters miR-371~373, miR-302/367,
and C19MC. a Triangle plot showing the R2 and p values from linear regression analysis of individual qRT-PCR miRNA expression data from
malignant GCT and non-GCT cell lines, Universal Reference RNA, and gonadal controls within and across the clusters miR-371~373, miR-302/
267, and C19MC. Colour coding as per the R2 value key. b–d Comparison of aggregated qRT-PCR miRNA expression within a miRNA cluster
versus other clusters. Aggregated expression from b miR-302/367 cluster (n= 5 miRNAs) vs. miR-371~373 cluster (n= 3), c miR-371~373
cluster vs. C19MC (n= 2), and d miR-302/367 cluster vs. C19MC. Colour coding: blue = SEM, yellow = YST, red = EC, purple = CHC, green =
ovary/testes, light grey = non-GCT cell lines, dark grey = Universal Reference RNA. R2 and p values are shown for each comparison.

S. Bailey et al.

1456

British Journal of Cancer (2023) 129:1451 – 1461



DISCUSSION
Here, we extend our previous observations demonstrating
universal over-expression of the miR-371~373 and miR-302/367
clusters in all malignant GCTs, regardless of patient age, tumour
site, and subtype, associated with global downregulation of mRNA
targets [14]. We confirmed that the cell line panel was
representative of miRNA changes in clinical malignant GCT tissues,
and therefore suitable for use in experimental studies. However,

the ability to demonstrate the functional significance of the over-
expressed miR-371~373 and miR-302/367 clusters is challenging.
First, six of the eight main miRNAs from these two clusters contain
an identical 2-7nt AAGUGC seed region, which principally
determines mRNA target binding [14], and furthermore, miR-
371a-3p contains 1-6nt AAGUGC which also contributes to
targeting [18]. Consequently, substantial redundancy exists, which
needs to be overcome in order to reliably demonstrate a
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functional role for these miRNAs. A second challenge is that these
six 2-7nt AAGUGC-containing miRNAs derive from two different
genomic loci, namely chromosomes 19q13.41 (miR-371~373) and
4q25 (miR-302/367). Different experimental approaches were
attempted to overcome this redundancy, including use of
CRISPR-Cas9, gapmer, and PNA systems, which were not pursued
further due to limitations (Supplementary Discussion).
Ultimately, we used an LNA/DNA combination miRNA inhibitor

(miR-302-SFI) to demonstrate a negative growth phenotype in
malignant GCT cells, resulting in de-repression of multiple mRNA
targets. This inhibitor predominantly targeted miR-302a-d-3p from
the miR-302/367 cluster, which made up the largest contribution

to 2-7nt AAGUGC seed abundance in malignant GCT cells.
Pathway analysis identified three key cellular processes that were
recurrently affected by inhibition, namely Rho-GTPase signalling,
vesicle organisation/transport, and cell cycle regulation, processes
importantly corroborated in clinical samples. Of note, we
previously identified miR-371~373 and miR-302/367 mediated
intracellular signalling, including through GTPases, as fundamental
in malignant GCT tissues [14]. In addition, miR-302-SFI treatment
affected pathways involved in vesicle organisation and transport,
critical in the production of extracellular vesicles (EVs) that allow
miRNAs, particularly miR-371a-3p, to be released into the tumour
microenvironment (TME) and then into the circulation, with
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division (purple). All related GO terms are highlighted, e.g., for vesicle organisation/transport, relevant GO pathways were identified by
searching for ‘vesicle’ in the main and related ‘child’ GO terms, and highlighted accordingly.
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biomarker potential. Importantly, malignant GCT cells commu-
nicate with non-tumour stromal cells of the TME through the
release of EVs enriched in oncogenic miRNAs, with miR-371a-3p/-
5p the most abundant, likely contributing to tumour progression
[48]. Accordingly, miR-371a-3p/-5p effects on TME cells included
increased collagen contraction in fibroblasts and angiogenesis in
endothelial cells [48].
MiR-302-SFI effects on malignant GCT cells were mediated at

least in part through cell cycle disruption, in particular G0/G1 and
G1/S transition, consistent with miR-302/367 inhibition in human
embryonic stem cells (ESCs), where modest changes in individual
expression of multiple genes were also observed [49, 50], as
expected in miRNA perturbation experiments [16]. Indeed, in
Dicer1 knockout human ESCs, re-introduction of individual 2-7nt
AAGUGC seed-containing miRNAs from the miR-371~373 and
miR-302/367 clusters alone was sufficient to promote cell growth
and survival [51], in addition to similar findings in murine ESCs
[52–54] via regulation of G1/S transition. In addition, the
oncogenic miR-17~92 cluster (known as OncomiR1) has been
extensively studied, and many miRNA members of this cluster,
through the common AAGUGC seed, share mRNA targets with
miR-302a-d-3p. Indeed, following miR-302-SFI treatment, our data
showed enrichment in upregulated mRNAs for miR-17-5p (3-8nt
AAGUGC) from the miR-17~92 cluster in TCam-2 cells (Fig. 3b).
Furthermore, experimentally proven effects of miR-17~92 miRNAs
include the promotion of proliferation and maintenance of cell
survival through repression of key cell cycle associated targets
such as P21, BIM, PTEN and CTGF [55, 56]. Of note, miR-302/367
miRNAs also directly contribute to the regulation of P21
expression in human ESCs [57]. Taken together, these data from
similar systems reinforce our findings here for malignant GCTs that
AAGUGC seed-containing miRNAs alter cell cycle regulation in G1/
S transition, summarised in Fig. 6. Inhibiting these key AAGUGC

seed-containing miRNAs in malignant GCTs, which recapitulate
the ESC-associated miRNA environment, therefore represents a
rational therapeutic strategy. Moreover, cisplatin resistance in
malignant GCTs is mediated through further over-expression of
miR-371~373 miRNAs [21] (and thus cellular AAGUGC seed
abundance levels), lending further weight to this approach.
This work represents an important foundation for future studies.

As there is minimal/no expression of miR-371~373 nor miR-302/
367 miRNAs in normal, differentiated tissues [14], we anticipate
minimal/no unexpected inhibitor off-target effects in vivo [1]. An
inhibitor could be used clinically as monotherapy or in combina-
tion with reduced-dose platinum-based chemotherapy, to
improve outcomes, of relevance as GCTs affect a predominantly
young population [12]. Importantly, miRNA therapeutics are
already in clinical use. For example, the 15nt LNA miR-122
inhibitor miravirsen has completed Phase-II trials in hepatitis-C
patients, showing sustained and dose-dependent decreases in
viral load [58] with no long-term safety issues [59]. A recent phase-
I trial of miR-16 replenishment for mesothelioma patients [60]
further demonstrates their potential clinical use [61].
Our current study has a number of limitations. First, we used an

LNA/DNA mixmer containing the maximal LNA content possible
(70%), as per Santaris Pharma intellectual property rights, with
effects in Sem/YST but not EC cells. A fully 100% LNA inhibitor,
with an even higher affinity for target miRNAs, could potentially
yield greater inhibition and therefore wider and more substantial
cellular effects, but we were unable to test this. We acknowledge
that further work is now necessary and warranted in malignant
GCTs, including in further EC cell lines and in vivo models, and
combinatorial treatments using miRNA inhibition with platinum
agents such as cisplatin, outside the remit of this study. In
summary, we demonstrate the functional significance of miR-
371~373 and miR-302/367 over-expression in malignant GCTs
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in vitro. This serves as a platform for further work, with the
ultimate aim of improving clinical outcomes.

DATA AVAILABILITY
Data that support the findings of this study are available from the corresponding
authors upon request.
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