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BACKGROUND: Neuroendocrine phenotype is commonly associated with therapy resistance and poor prognoses in small-cell
neuroendocrine cancers (SCNCs), such as neuroendocrine prostate cancer (NEPC) and small-cell lung cancer (SCLC). Expression
levels of current neuroendocrine markers exhibit high case-by-case variability, so multiple markers are used in combination to
identify SCNCs. Here, we report that ACAA2 is elevated in SCNCs and is a potential molecular indicator for SCNCs.
METHODS: ACAA2 expressions in tumour xenografts, tissue microarrays (TMAs), and patient tissues from prostate and lung cancers
were analysed via immunohistochemistry. ACAA2 mRNA levels in lung and prostate cancer (PC) patients were assessed in published
datasets.
RESULTS: ACAA2 protein and mRNA levels were elevated in SCNCs relative to non-SCNCs. Medium/high ACAA2 intensity was
observed in 78% of NEPC PDXs samples (N= 27) relative to 33% of adeno-CRPC (N= 86), 2% of localised PC (N= 50), and 0% of
benign prostate specimens (N= 101). ACAA2 was also elevated in lung cancer patient tissues with neuroendocrine phenotype. 83%
of lung carcinoid tissues (N= 12) and 90% of SCLC tissues (N= 10) exhibited medium/high intensity relative to 40% of lung
adenocarcinoma (N= 15).
CONCLUSION: ACAA2 expression is elevated in aggressive SCNCs such as NEPC and SCLC, suggesting it is a potential molecular
indicator for SCNCs.

British Journal of Cancer (2023) 129:1818–1828; https://doi.org/10.1038/s41416-023-02448-y

INTRODUCTION
Neuroendocrine (NE) phenotype in lung and prostate cancer
frequently correlates with an aggressive clinical course, therapy
resistance, and widespread metastasis, which contributes to worse
clinical outcomes [1, 2]. For instance, neuroendocrine prostate
cancer (NEPC) is the most lethal subtype of prostate cancer, and
small-cell lung cancer (SCLC) is also an aggressive, highly lethal
subtype of lung cancer [3]. Studies have demonstrated that these
small-cell neuroendocrine cancers (SCNCs) from different tissues
are more similar to each other than to adenocarcinomas from the
same tissue site despite differences in the tissue of origin [4]. They
share many histopathological commonalities in morphology, such
as high nuclear-to-cytoplasm ratios, poorly defined borders, and
granular chromatin [1, 5]. SCNCs also share common gene
alterations and an expression of a common set of markers,
including synaptophysin (SYP), chromogranin A (CHGA), and
CD56, suggesting common drivers and transdifferentiating path-
ways [1, 5, 6].
The cell of origin of SCNCs remains unclear. Previous studies

observed that tumours containing both NE and adenocarcinoma

features display an increase of NE phenotype over time during
disease progression and the onset of treatment resistance,
thereby suggesting that NE transdifferentiation may arise from
adenocarcinoma precursors [1, 6, 7]. SCNCs such as NEPC and
SCLC can arise from heavily treated adenocarcinoma via cancer’s
adaptive response, increased stemness, and lineage plasticity,
which enhances therapy resistance [8–10]. For instance, once
castration-resistant prostate adenocarcinoma (adeno-CRPC) gains
NE phenotype and advances to NEPC during intensive treatment
with a new generation of anti-androgen therapies, its median
survival decreases to about 7 months, and these diseases are
resistant to conventional anti-androgen therapies due to loss of
dependence on AR signalling pathways [10–16].
Current clinical identification of SCNCs relies on morphological

characteristics and histological markers such as SYP, CHGA, and
CD56. However, the expression of these markers varies based on
the patient, which limits the reliability of any single histological
markers [4, 17]. Thus, multiple markers must be used in
combination to effectively assess the presence of NE phenotypes
since SCNC tumours can express various profiles of NE markers
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[4, 17]. In addition, the search for common molecular indicators
across SCNCs may potentially lead to the discovery of new NE driver
pathways, precision oncology, and new targeted therapies [18].
A common transdifferentiation across SCNCs suggests mutual

vulnerabilities and treatment targets, rendering a shared targeted
therapy across SCNCs a possibility [6, 19, 20]. We hypothesise that
uncovering the common oncogenic pathways in SCNCs fosters
the identification of common therapeutic targets across these
aggressive tumours [19]. Therapies targeting mutual pathways of
SCNCs, such as Myc-targeting Aurora kinase inhibition [21–23] and
EZH2 inhibition (NCT03460977; NCT03480646), are currently being
explored in NEPC, SCLC, and other NE cancers [1, 24, 25].
To identify new molecular indicators and therapeutic targets for

SCNCs, we analysed a previously published proteomic dataset
containing SCNC and non-SCNC tumours [26]. We demonstrated
that Acetyl-CoA acyltransferase 2 (ACAA2) is highly upregulated in
a Trop2-driven NEPC (TD-NEPC) model [26]. ACAA2, also known as
3-ketoacyl-CoA thiolase, is a rate-limiting enzyme in the mito-
chondria that is responsible for catalysing the last step of the
mitochondrial beta-oxidation pathway [27–29]. ACAA2 is asso-
ciated with cardiovascular risks and lipid metabolism, but its role
in cancer has not been fully elucidated [30–33]. A previous study
suggests that SCNCs are susceptible to disruptions of genes in the
lipid metabolism pathway through genome-wide functional RNA
interference screens [4]. Here, we report that ACAA2 expression is
increased in SCNCs relative to non-SCNCs in cell lines, tumour
xenografts, and patient transcriptomic datasets, suggesting
ACAA2 as a potential molecular indicator for these malignancies.

MATERIALS AND METHODS
Cell culture
The human prostate cancer cell lines used, including LNCaP, C4-2, 22RV1,
DU145, PC3, ARCaP, and NCI-H660 were purchased from the American
Type Culture Collection (ATCC). Castration-sensitive prostate cancer (CSPC)
cell line, LNCaP, was used to overexpress Trop2 to generate the Trop2-
driven NEPC (TD-NEPC) as described in Hsu et al. (2020) [26]. LNCaP, C4-2,
22RV1, DU145, PC3, ARCaP, and TD-NEPC cells were maintained in RPMI
1640 medium (Thermo Fisher Scientific), which was supplemented with
10% FBS, 100 U/ml penicillin, and 100X GlutaMAX. NCI-H660 cells were
cultured in RPMI 1640 medium with 5% fetal bovine serum, 0.005mg/ml
insulin, 0.01mg/ml transferrin, 30 nM sodium selenite, 10 nM hydrocorti-
sone, 10 nM beta-estradiol, 4 mM L-glutamine.

Western blot (WB)
Cells were collected from culture and lysed using RIPA lysis buffer with
protease and phosphatase inhibitors (Thermo Fisher Scientific). BCA assay
was performed to measure protein concentration of the lysate, and equal
amounts of protein (40 μg/20 μl) were added for each sample. SDS buffer
was added to samples, and heat denaturation was performed at 95 °C for
5 min. Samples were loaded and separated by 8–16% SDS-PAGE gel
(Invitrogen™ XP08165BOX), transferred onto a 0.22 μm nitrocellulose
membrane (GVS Life Sciences, 1212632), and blocked for an hour under
room temperature with 5% non-fat milk. The blocked membrane was then
incubated with primary antibodies overnight at 4 °C. Anti-ACAA2 was
purchased from Abcam (ab128929, 1:1000 dilution), and GAPDH (sc-47724,
1:2000 dilution) was used as an internal control. After overnight incubation,
blots were washed with TBST 3 times, 5 min each. Then, blots were
incubated for an hour in secondary antibodies, purchased from Fisher
Scientific, with HRP conjugation (PI31432 and PI31462, 1:5000 dilution).
The signal was detected using PierceTM ECL Western Blotting Substrate
(Thermo Fisher Scientific).

Xenografts
For all the prostate cancer cell lines, 106 cells were mixed with Matrigel
(100 μL) and implanted into the flanks of 6-to-8-weeks old male NSG (NOD-
SCID-IL2Rγ-null) mice via subcutaneous injection. Xenografts were then
harvested from these mice, fixed, and paraffin-embedded for sectioning
into 4-microns thick sections with Epredia™ HM 355S Automatic
Microtome.

Animals
All animal work was performed in accordance with protocols approved by
the Institutional Animal Care and Use Committee (IACUC) at Stanford
University, the USAMRMC Animal Care and Use Review (ACURO), and the
laws and regulations of the Department of Agriculture in the United States.

Immunohistochemistry (IHC)
All tumours used for IHC were sectioned to 4 microns in thickness from
formalin-fixed, paraffin-embedded tissues. The antibody used for
ACAA2 staining was purchased from Abcam (ab128929, 1:100 dilution).
The antibody used for CHGA staining was purchased from Santa Cruz
Biotechnology (sc-393941, 1:100 dilution). The sections were deparaffined
for an hour in a heated chamber at 65 °C. Then, rehydrated in Clearify for
15 min, 100% ethanol for 10 min, 95% ethanol for 10 min, 70% ethanol for
5 min, and water for 10 minutes. Then, antigen retrieval was performed by
immersing the slides in 95 °C, 10 mM citrate buffer (pH= 6.0) for 30 min.
After cooling the slides to room temperature, tissues were covered in 3%
hydrogen peroxide for 5 min to block endogenous peroxidase activity.
Slides were then blocked with 2.5% horse serum diluted in 1xPBS for an
hour in a humidified chamber under room temperature. After blocking,
sections were incubated overnight with biotin-conjugated primary anti-
ACAA2 antibody at 4 °C (1:100 dilution in blocking solution). The next day,
slides were washed three times with 1XPBS and incubated with
streptavidin-horseradish peroxidase (SA-5004, 1:200, Vector Laboratories)
for an hour at room temperature. After washing the slides three times in
1XPBS again, a DAB substrate kit (Dako, as per the manufacturer’s
protocol) was used to visualise the staining signal. The sections were then
stained with hematoxylin and dehydrated. After mounting and adding
coverslips to the slides, all slides were scanned using a NanoZoomer
(Hamamatsu).

Tissue microarrays (TMAs) and patient tissue samples
The patient TMAs with benign and localised prostate cancer cores was
constructed at Stanford University, Department of Urology.
ACAA2 staining on these TMAs included 35 patients with benign prostate
(101 cores) and 18 patients with localised prostate cancer (50 cores). All
sample collection was approved by the Institutional Review Board (IRB),
and informed consent was provided by all patients under the protocol
number IRB: 5628. The LuCaP prostate cancer patient-derived xenograft
(PDX) TMA was constructed at the University of Washington. 38 models
are present on this TMA, with three cores of three different tumours of
each model. ACAA2 staining on this PDX TMAs included 29 adeno-CRPC
PDXs with 86 cores and 9 NEPC PDXs with 27 cores. Cores that were
damaged or lost during IHC staining were excluded. 10 SCLC, 12 lung
carcinoid, and 15 lung adenocarcinoma patient tumour samples were
purchased from the Stanford Cancer Institute (SCI) Tissue Bank, and the
diagnoses were validated by pathologists. Informed consent was
provided by all patients for sample collection under the approved IRB
protocol (IRB: 11977). ACAA2 staining in 20 NE neoplasms from 9 organs
(mediastinum, cardia, gallbladder, colon, small intestine, pancreas,
rectum, stomach, and lung), 16 adenocarcinomas, and 8 normal tissues
were performed on an TMA (2 cores per case) purchased from
tissuearray.com (#NE921). All staining was scored without awareness of
patient clinical information on an intensity-based scale from 0 to 3 (0 is
negative, 1 is low, 2 is medium, and 3 is high). All statistical significance
was obtained through z-score calculator for 2 population proportions
(https://www.socscistatistics.com/tests/ztest/) between a group with
scores 0 and 1(negative to low intensity) and a group with scores 2
and 3 (medium to high intensity).

Analysis of ACAA2 mRNA levels in patient datasets
ACAA2 mRNA levels across various cancer cell lines were assessed via
Cancer Cell Line Encyclopaedia (CCLE) [34]. ACAA2 mRNA levels were also
assessed from 5 independent, previously published datasets: 3 for
prostate cancer patients [35–37] and 2 for lung cancer patients [38, 39].
Data were accessed via cBioPortal for Cancer Genomics (https://
www.cbioportal.org). The ACAA2 mRNA expression z-scores relative to
all samples were obtained from the datasets, and data analysis was
performed via Prism 9.0 software. Student’s t-test was performed to
compare the ACAA2 mRNA levels in these two groups. For the Abida et al.
(2019) dataset, AR scores and NEPC scores were used to sort patients into
NEPC and CRPC groups [36]. The top 30 patients with the highest NEPC
score and the lowest AR score were determined into the NEPC group, and
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the top 30 patients with the lowest NEPC score and the highest AR score
were characterised into the adeno-CRPC group (Supplementary Fig. S1C).
ACAA2 mRNA z-scores between lung adenocarcinoma and SCLC in the
Rohrbeck et al. (2008) dataset, and ACAA2 mRNA expression between
normal lung, lung adenocarcinoma, and SCLC were compared in the
Bhattacharjee et al. (2001), dataset. All patient groups were assumed to
follow a normal distribution. Information on patient exposure to platinum-
based therapy was also utilised from the Rohrbeck et al. (2008) dataset.
Samples where ACAA2 mRNA expression information is not available are
excluded from the analysis.

Overall survival
Kaplan–Meier curve in lung adenocarcinoma was plotted with data from
KM Plotter (https://kmplot.com/analysis/) [40]. Kaplan–Meier curve in
neuroblastoma was generated via Prism 9.0. Patient overall survival and
ACAA2 mRNA expression were obtained from Target, 2018
(phs000467.v21.p8) through cBioPortal for Cancer Genomics. Hazard ratio
with confidence intervals and Log-rank P-values (Mantel-Cox test) were
calculated. ACAA2 high and low groups were sorted using the median
ACAA2 expression as the threshold for cut-off.

Statistical analysis
When comparing the statistical significance between two groups,
Student’s t-test was performed on Prism 9.0 software. All t-tests were
two-tail, unpaired, and parametric, and P-values of 0.05 or less were
considered statistically significant (*P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001, ns= non-significant). Significance levels for contingency
plots were obtained as z-score for 2 populations proportions via online
calculators (socscistatistics.com).

RESULTS
ACAA2 protein level is elevated in NEPC
ACAA2 expression was significantly elevated (P= 5.9*10-6) in TD-
NEPC tumours with a fold-change of 3 (Fig. 1a) relative to the
control, non-SCNC LNCaP tumours in analysis of previously
published proteomic profiling [26]. ACAA2 mRNA expression was
also elevated in the NEPC cell line, NCI H660, relative to non-
SCNC prostate cancers when assessing cell line mRNA levels
using data from the Cancer Cell Line Encyclopaedia (CCLE)
(Fig. 1b) [34]. To assess the correlation of ACAA2 with prostate
cancer malignancy, western blot (WB) was performed to assess
ACAA2 protein expression (Fig. 1c). We also generated tumour
xenografts from the same cell lines and performed immunohis-
tochemistry (IHC) analysis. WB and IHC results indicated that
ACAA2 protein level positively correlated with SCNC phenotypes
as ACAA2 was highly expressed in both NEPC strains (H660 and
TD-NEPC) (Fig. 1c, d). ACAA2 was also expressed in DU145 and
PC3 xenografts, both of which exhibit AR loss and are, therefore,
resistant to androgen deprivation therapies (Fig. 1c, d). DU145
has recently been characterised as double-negative prostate
cancer (DNPC), which, like NEPC, also stems from CRPC and
occurs in 20% to 15% of metastatic CRPC cases [15]. DNPC is
highly aggressive due to enhanced metastasis and stemness
signature, and treatment options remain limited [15]. We also
observed that ACAA2 was expressed in ARCaP, which is an AR-
low, androgen-repressed prostate cancer cell line that exhibits
increased metastatic potential to bones [41, 42]. WB and IHC
results consistently demonstrated high ACAA2 expression in the
NEPC cell lines H660 and TD-NEPC (Fig. 1c, d). In addition,
increased ACAA2 expression also corresponded with increases in
standard NE markers, SYP, CD56, and CHGA, in two published
mCRPC datasets (Supplementary Fig. S1A, B). In both the Abida
et al. (2019) and the Nguyen H. et al. (2017) datasets, our results
demonstrated a significant positive correlation between ACAA2,
SYP (P= 0.0002, 0.0044), CD56 (P= 0.001), and CHGA
(P= 0.0001, 0.0087) (Supplementary. Fig. S1A, B). These results
suggest an association between ACAA2 expression and the NE
phenotype.

High levels of ACAA2 correlate with prostate cancer
progression in patient samples
To validate the positive correlation between ACAA2 expression
and the NE phenotype, we analysed three published patient
datasets via cBioPortal, and compared ACAA2 mRNA expression in
NEPC and adeno-CRPC tumours. ACAA2 levels were significantly
elevated in NEPC patient groups relative to adeno-CRPC patient
groups from all three datasets, including Beltran et al. (2016)
(P= 8.2*10-3), Abida et al. (2019) (P= 5.6*10-4), and Nguyen et al.
(2017) (P= 9.3*10-3) (Fig. 2a and Supplementary Fig. S1B, C). These
results implicated ACAA2 as a candidate molecular indicator for
the SCNC phenotype and suggested a positive association
between ACAA2 expression and prostate cancer progression. In
addition, patient samples from the Abida (2019) [36] dataset were
sorted based on the metastatic site, and samples from each site
were then compared to localised prostate cancer samples. There
was a significant increase of ACAA2 mRNA expression in samples
from liver metastasis when compared to samples from localised
prostate cancer (Fig. 2b). Studies have shown that the prevalence
of liver metastasis is increased in NEPC patients and correlates
with reduced overall survival in CRPC patients [43]. The correlation
between ACAA2 expression and increased liver metastasis further
suggests its association with the aggressive clinical course
observed in NEPC patients.
To assess the profile of ACAA2 expression in prostate cancer

tumours, we stained patient tissue microarrays (TMAs) for ACAA2
(Fig. 3a, b). Two TMAs were utilised: one containing benign
prostate cores and localised prostate cancer cores (35 patients/101
cores with benign prostate; 18 patients/50 cores with localised
prostate cancer), and another containing adeno-CRPC and NEPC
PDX cores (29 PDX/ 86 cores with adeno-CRPC; 9 PDX/27 cores
with NEPC). IHC revealed that ACAA2 was selectively expressed in
cancerous cores relative to benign cores (Supplementary Fig. S2).
Only 2 out of the 101 (1.98%) normal prostate cores stained
positive (staining intensity score >= 1) for ACAA2 while 93 of the
163 (57%) prostate cancer cores (including localised, adeno-CRPC,
and NEPC) stained positive for ACAA2 (P < 10-4), demonstrating
ACAA2’s selective elevation in cancerous phenotypes (Supple-
mentary Fig. S2). Importantly, ACAA2 staining from PDX TMAs of
NEPC and adeno-CRPC tumours revealed an increase in ACAA2
protein levels in NEPC when compared to adeno-CRPC PDXs
(Fig. 3b–c). Only 33% (28 out of 86) of adeno-CRPC cores stained
with medium/high intensity (intensity scores of 2 and 3) for
ACAA2, while 78% (21 out of 27) of NEPC cores stained medium/
high for ACAA2 (Fig. 3c). None of the benign prostate tissues, only
2 out of 50 (4%) localised prostate cancer samples, and 10 out of
86 (12%) in adeno-CRPC stained high for ACAA2, which is
significantly lower than the 11 out of 27 (41%) of NEPC samples
(Fig. 3c). This indicates that ACAA2 level is upregulated in patients
with more advanced prostate cancers and positively correlates
with prostate cancer progression. IHC results also indicate that
protein expression of ACAA2 positively associates with protein
levels of NE markers: CHGA (P= 3.95*10-2) and SYP (P= 8.3*10-3),
which further supports the correlation between elevated ACAA2
protein expression and the SCNC phenotype (Supplementary
Fig. S3).

ACAA2 expression is elevated in other SCNCs
We identified that ACAA2 protein expression is also elevated in NE
cell lines IMR32 (neuroblastoma), H82 (SCLC), and H29 (SCLC)
measured by WB (Fig. 4a). All non-small-cell lung cancer (NSCLC)
cell lines, including H1650 and H358, exhibited undetectable
levels of ACAA2 by WB (Fig. 4a). We also assessed ACAA2 mRNA
levels in CCLE [34] to demonstrate that ACAA2 mRNA expression is
also significantly increased in SCLC (N= 50) and neuroblastoma
cell lines (N= 16), both of which are NE cancers, relative to their
non-NE counterparts: NSCLC (N= 120) and glioma (N= 53) (Fig. 4b
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and Supplementary Fig. S4A, B). While glioma is not derived from
the same tissue of origin as neuroblastoma, it has been used as a
non-NE comparator for neuroblastoma [19, 44]. When compared
to glioma, ACAA2 expression level in neuroblastoma was
significantly elevated (P= 2.5*10-6) (Fig. 4b). The same trend was
observed in SCLC relative to NSCLC with P= 5.7*10-15 (Fig. 4b).
Then, IHC was performed on neuroblastoma, SCLC, and NSCLC
tumour xenografts and demonstrated enhanced expression of
ACAA2 in neuroblastoma and SCLC relative to NSCLC (Fig. 4c).
The correlation between ACAA2 and the SCNC phenotype was

further confirmed via ACAA2 mRNA level analysis in two
independent lung cancer patient datasets (Fig. 4d) [38, 39]. SCLC
exhibited significantly elevated ACAA2 mRNA expressions when
compared to lung adenocarcinoma [P= 2.52*10-5 (left panel);

7.2*10-7 (right panel)] and normal lung tissues (P= 2.2*10-4), which
further suggests a positive correlation between ACAA2 expression
and SCNCs (Fig. 4d). In addition, consistent with the relationship
observed in prostate cancer, ACAA2 mRNA expression also
positively correlated with expressions of CHGA and CD56
(Supplementary Fig. S5). In Rohrbeck et al. (2008) dataset,
increased ACAA2 correlated with the SCLC phenotype relative to
lung adenocarcinoma as well as an increased expression of NE
markers CHGA (P= 9.5*10-3) and CD56 (P= 3.81*10-2) (Supple-
mentary Fig. S5A). This is also observed in the Bhattacharjee et al.
(2001) dataset, with P < 10-4 for both positive correlations between
ACAA2, CHGA, and SYP (Supplementary Fig. S5B).
To assess the clinical relevance of the correlation between

ACAA2 and SCNC phenotypes, IHC staining of ACAA2 in lung
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[34] via cBioportal (http://www.cbioportal.org). c Western blot (WB) analysis of prostate cancer cell lines. Cell lines with NE features are
highlighted in red. d Immunohistochemistry (IHC) staining of ACAA2 protein expression across various prostate cancer cell line xenografts
shows that ACAA2 expression is notably increased in DU145, ARCaP, H660, and TD-NEPC. Images were taken using Leica microscope, and the
scale bar represents 20 microns (upper) and 10 microns (lower), respectively.
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adenocarcinoma patient tumour (N= 15) was compared to
ACAA2 staining in patient samples from lung carcinoid tumour
(N= 12) and SCLC (N= 10), both of which exhibit NE phenotypes
(Fig. 5a–d). Using a 0 to 3 intensity scale (Fig. 5a), we discovered
an increase of ACAA2 expression in lung carcinoid (P= 0.033) and
SCLC (P= 0.034), relative to the non-NE, adenocarcinoma patient
samples (Fig. 5b, c). The elevation of ACAA2 in NE lung cancers
was further confirmed in the contingency plot of intensity scores
(Fig. 5d). Compared to lung adenocarcinoma where 40% (6/15) of
cases stained with medium/high intensity, 83% (10/12) of lung
carcinoid tumours stained with medium/high intensity (P= 10-5)
(Fig. 5d). The same trend was observed in SCLC, where 90% (9/10)
of SCLC stained with medium/high intensity (Fig. 5d). This
elevation suggests a correlation between ACAA2 levels and NE
features in clinical patient samples. To explore ACAA2’s expression
in other tumour types with NE features, we stained ACAA2 in a
TMA (NE921) with 20 tumours with NE features, 16 adenocarci-
nomas, and 8 normal cases (Supplementary Fig. S6). While ACAA2
was detected in cases with NE features, there was no significant
difference in ACAA2 intensity relative to normal and adenocarci-
noma groups (Supplementary Fig. S6). This could be the result of a
small number of samples or differences in primary sites. Further
exploration in larger cohorts will be necessary to validate the

trend and to elucidate the differences between ACAA2 expression
in various primary sites.
Lastly, we assessed whether increased ACAA2 expression is

associated with patient clinical prognosis. We discovered that
ACAA2 expression is lower in lung cancer patients who were
exposed to platinum-based therapy relative to non-treated
patients, and that increased ACAA2 was associated with worse
overall survival in lung adenocarcinoma (P= 2.2*10-4) and
neuroblastoma patients (P= 2.77*10-2) (Fig. 6). Based on these
results, we hypothesise that increased ACAA2 is associated with
worse clinical outcome. Exploration of this association in
additional patient cohorts to elucidate the clinical potential of
ACAA2 will be critical to the translation of this knowledge into
clinics.

DISCUSSION
Based on our result, we hypothesise that ACAA2 has the potential
to differentiate cancers with NE features from their non-NE
counterparts in SCNCs like NEPC and SCLC. In addition, our study
suggests the role of ACAA2 in prostate cancer disease progression
and its potential as a therapeutic target for advanced, metastatic
prostate cancers.
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SCNCs exhibit similar molecular profiles and genetic alterations,
suggesting a common pathway of transdifferentiation in multiple
cancers [1, 4, 5]. Published studies have shown that converging
genetic expression profiles are observed as cancers progress into

the SCNC phenotype [4]. For instance, loss of REST transcriptional
repression, increased EZH2, amplified MYCN, loss of TP53, and loss
of RB1 have been suggested to foster the SCNC phenotype across
multiple tissue sites [35, 45, 46].
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Currently, the survival rate for patients with SCNCs remains low
due to their therapy resistance and the extensive metastasis that is
a hallmark of SCNCs and contributes to its worse clinical outcome
[4]. The platinum and etoposide-based chemotherapies that form
the frontline of SCNC treatments show short-term clinical effects
on patient survival [1, 4, 5]. As a result, there is an urgent need to
identify pathways crucial for NE transdifferentiation in order to
discover novel therapeutic targets to broaden the treatment
options for this lethal disease.

Since ACAA2 is overexpressed in various types of SCNCs and is
also upregulated by Trop2-driven NE transdifferentiation, ACAA2
might play a role in NE progression to SCNCs. ACAA2 is a key
enzyme in the mitochondrial fatty acid beta-oxidation pathway
[27–29]. As ACAA2 is consistently elevated in NEPC and SCLC, we
propose the possibility of a linkage between ACAA2, fatty acid
beta-oxidation, and NE progression. Thus, the inhibition of ACAA2
may have therapeutic benefits in NE cancers. In fact, a previous
study suggested a shared sensitivity towards the disruption of
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lipid metabolism in SCNCs [4]. Currently, there is a pharmacolo-
gical ACAA2 inhibitor, trimetazidine hydrochloride, that is
currently used to treat angina pectoris and myocardial ischaemia
as an anti-ischaemic (anti-anginal) metabolic agent in Europe [47].
As an identified fatty acid oxidation inhibitor, trimetazidine was
shown to elevate myocardial glucose metabolism and to increase
glucose level during ischaemia through the inhibition of fatty acid

metabolism [47–49]. Various studies have also demonstrated that
the inhibition of fatty acid beta-oxidation via trimetazidine
enhances glucose oxidation [47, 50, 51]. Our study supports
further exploration of this ACAA2 inhibitor to test its therapeutic
efficacy against NEPC and SCLC.
Our study demonstrates that ACAA2 expression is elevated in

cancers with NE phenotype through assessing the expression
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profile of ACAA2 in cell lines and xenografts of neuroblastoma as
well as cell lines, xenografts, patient mRNA, and patient tissue
samples from prostate and lung cancers. This study supports
further assessment of ACAA2 expression profile in larger,
independent patient cohorts across various types of SCNCs to
further delineate its candidacy as a molecular indicator for SCNCs
and a potential therapeutic target.
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