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BACKGROUND: Increasing data indicate that HER2-positive (HER2+ ) breast cancer (BC) subtypes exhibit differential responses to
targeted anti-HER2 therapy. This study aims to investigate these differences and the potential underlying molecular mechanisms.
METHODS: A large cohort of BC patients (n= 7390) was utilised. The clinicopathological characteristics and differential gene
expression (DGE) of HER2+ immunohistochemical (IHC) subtypes, specifically HER2 IHC 3+ and IHC 2+ /Amplified, were assessed
and correlated with pathological complete response (pCR) and survival in the neoadjuvant and adjuvant settings, respectively. The
role of oestrogen receptor (ER) status was also investigated.
RESULTS: Compared to HER2 IHC 3+ tumours, BC patients with IHC 2+ /Amplified showed a significantly lower pCR rate (22%
versus 57%, P < 0.001), shorter survival regardless of HER2 gene copy number, were less classified as HER2 enriched, and enriched
for trastuzumab resistance and ER signalling pathway genes. ER positivity significantly decreased response to anti-HER2 therapy in
IHC 2+ /Amplified, but not in IHC 3+ BC patients.
CONCLUSION: In HER2+ BC, overexpression of HER2 protein is the driver of the oncogenic pathway, and it is the main predictor of
response to anti-HER2 therapy. ER signalling pathways are more dominant in BC with equivocal HER2 expression. personalised anti-
HER2 therapy based on IHC classes should be considered.
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INTRODUCTION
Human epidermal growth factor receptor 2 positive (HER2+ )
breast cancer (BC) accounts for 13–15% of BC [1]. HER2 positivity is
defined either by protein overexpression as defined by immuno-
histochemical score (IHC) 3+ or equivocal protein expression
(IHC 2+ ), with evidence of HER2 gene amplification (defined here
as IHC 2+ /Amplified) [1–4]. To date, BCs with HER2 IHC 3+ or IHC
2+ /Amplified are equally considered candidates for anti-HER2
therapy [5]. However, the response rate in HER2+ BC patients
is not uniform, and predictors of response are variables and
complex, including protein expression level, HER2 gene copy
number level and others [6–8].
A meta-analysis of response rates to neoadjuvant therapy

showed that the pathologic complete response (pCR) in HER2+ BC
was 46% when targeted anti-HER2 therapy (trastuzumab) was used,
compared to 25% in the chemotherapy alone group [9]. In the latter
group, the pCR rates varied from 16 to 33% within the hormone
receptor (HR) positive and negative groups, respectively [9]. Other
studies have confirmed these findings [10, 11], and have also shown
substantial variability in the response rate among HER2+ BC
patients treated with the same anti-HER2 therapies. This variability
raises a concern about whether HER2 protein overexpression or
HER2 gene amplification is the key driver of response. Some studies
have shown that pCR rates are significantly higher in HER2 IHC

3+ BC patients compared to those with IHC 2+ /Amplified [12–17].
Furthermore, patients with HER2 IHC 3+ were reported to have
longer survival than those with IHC 2+ /Amplified, when treated
with anti-HER2 therapy [18]. In studies comparing the response rate
in relation to HER2 gene amplification levels, some studies have
indicated that the therapeutic response to anti-HER2 therapy
correlates with the level of HER2 gene amplification [19–23].
However, no association between HER2 gene copy number and
survival was identified [11, 23–25]. In the NeoALTTO Phase III clinical
trial, a significant association between HER2 gene copy number and
pCR was reported [26], but the effect of HER2 gene amplification
status ceased to have predictive value when HER2 protein
expression level was considered [26]. Within the HER2 IHC 2+ /
Amplified class, Dowsett et al. [27] found no association between
HER2 gene copy number or HER2/CEP17 ratio and outcome.
The crosstalk between the oestrogen receptor (ER) and

HER2 signalling has also attracted a great deal of attention and
has been studied in several clinical trials [7, 8, 11, 28, 29]. Both HER2
and ER drive BC proliferation by a complex network of molecular
signalling processes [30]. The complexity of response to anti-HER2
therapy varies among the different ER expression groups, as
reported in the literature. ER-negative (ER-)/HER2+ tumours have
shown higher response rates compared to ER+ /HER2- tumours [9].
However, some studies suggest that ER+ tumours also exhibit a
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good response to anti-HER2-targeted therapy [30, 31]. On the other
hand, some studies found no relationship between ER status and
response to anti-HER2 therapy [12]. Furthermore, the impact of ER
status on the response to anti-HER2 therapywithin each HER2+ IHC
class has not been fully addressed.
In this study, we hypothesised that the level of HER2 protein

expression, rather than HER2 gene amplification level, is the key
determinant in predicting response to anti-HER2 therapy. We aimed
to decipher the clinical, biological, and molecular signatures of
HER2+ IHC classes of BC with a particular emphasis on the
difference in pCR and outcome as well as the role of ER expression
within these two categories.

MATERIALS AND METHODS
Study cohort
A total of 10,139 invasive BC cases were initially included in this study and
comprise multiple large cohorts:

● The first cohort comprised Nottingham University Hospitals (NUH) BC
patients (n= 7485).

● The second cohort was available from the publicly available BC
datasets (PABCD) including The Cancer Genome Atlas (TCGA, https://
identifiers.org/cbioportal:brcatcga) BC cohort (n= 855), a subset of
the Molecular Taxonomy of BC International Consortium (METABRIC,
https://identifiers.org/cbioportal:brca_metabric) (n= 289) and Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/gds)
(n= 136). NUH, TCGA and METABRIC had available clinicopatholo-
gical data, including age at diagnosis, tumour size, histological
tumour grade, axillary lymph node (LN) status, histologic tumour
type, lymphovascular invasion (LVI), Nottingham prognostic index
(NPI), HER2 IHC scores (0–3), HER2 gene amplification, HR status
(including ER and progesterone receptors (PR) in addition to long
term follow up data. Data about treatment regimens (chemotherapy
and anti-HER2) in the adjuvant settings were available from the NUH
cohort, while intrinsic molecular subtypes were available through

the PAM50 classification and integrative cluster subtypes in TCGA
and METABRIC cohorts, respectively.

● The third cohort was derived from the previously published multicentre
(MC) study of HER2+ BC patients [6] (n= 1374). From that cohort, data
about neoadjuvant therapy, pCR, HER2 IHC scores, HER2 gene
amplification, HER2/CEP17 ratio, HR status, histologic tumour grade on
the core biopsy and histologic tumour type were available. That cohort
was enriched for HER2 IHC 2+ /Amplified cases to assess the differential
response between both HER2+ categories in the neoadjuvant settings.

Cases without HER2 IHC score and/or gene amplification status were
excluded, and the final number of cases enrolled in this study was 7390
patients, of which 1052 received neoadjuvant therapy and 751 had data on
pCR (Fig. 1). In addition, data from six studies with differential response of
HER2+ BC patients to therapy [12–16, 32] were considered in this study
and the average response of HER2+ classes to anti-HER2 therapy was
calculated (Supplementary Table 1A).
HER2 staining was completed on the Ventana Benchmark ULTRA

immunohistochemistry automated staining system using the Ventana
PATHWAY anti-HER-2/neu (4B5) rabbit monoclonal ready-to-use primary
antibody in combination with Ventana detection kits. ER IHC staining was
carried out following a standard protocol, the 4-µm sections were
prepared, and slides were processed through pre-diluted Tris-based buffer
with a basic pH (Roche, Ventana) for 64min at 95 °C for antigen retrieval,
an anti ER rabbit monoclonal antibody SP1 clone (Roche) was applied and
incubated for 16min. ER and PR positivity were assessed according to
ASCO/CAP guidelines if ≥1% of the invasive tumour cell nuclei are
immunoreactive [33]. HER2 IHC was scored in all included cohorts as
positive (IHC 3+ ), equivocal (score 2+ ) or negative (score 1+ /0). IHC
score 2+ patients were tested for HER2 gene amplification by fluorescence
in situ hybridisation (FISH) or chromogenic in situ hybridisation (CISH)
[2, 5]. HER2 cases with equivocal protein expression were considered
positive if HER2 gene copy number was ≥6.0 and/or HER2/CEP17 ratio was
≥2.0 [5]. HER2-negative BC cases defined as HER2 IHC score 2+ /non-
amplified and those with IHC scores 1+ and 0 were used as control groups.
The sample size for this study was determined based on a power analysis,
considering the primary research objectives, desired effect size, statistical

Multicenter collaboration
Dataset (N = 1374)

Publically avaiable
dataset (N = 1144);
TCGA, METABRIC

Nottingham University
Hospital (N = 7485)

Total cases studied
(N = 10139)

Cases included
(N = 7390)

Differential
gene expression

and pathway
analysis

NCB GEO dataset
(GSE136300,
GSE55005,
GSE161420,

GSE121105 and
GSE60182)
(N = 136)

Data execluded (N = 2749)
due to unavailable HER2 IHC

score and/or gene amplification
status

Published reports with data on
response of HER2+ BC
patients to neoadjuvant

anti-HER2 therapy (N = 2029)
were collected and analysed

separately

Fig. 1 Schematic illustration of the different cohorts used in this study. Cases with HER2 status only (positive/negative) and without HER2
IHC score and/or HER2 gene amplification status were excluded from the study.
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significance level (0.05), power level of 0.95 and expected variability in the
data and to ensure robust and reliable statistical analysis and meaningful
interpretation of the study findings.

Correlation between HER2 classes and response to therapy in
the neoadjuvant settings
The response to neoadjuvant therapy was evaluated. pCR was defined as
no residual invasive carcinoma in both breast and axillary lymph nodes
regardless of the presence of residual ductal carcinoma in situ (DCIS)
(ypT0/is ypN0) [14]. Differences in pathologic response were evaluated
according to HER2 protein expression level, HER2 gene amplification level,
ER status and whether patients received anti-HER2 targeted therapy with
the neoadjuvant chemotherapy (NACT). To investigate the impact of the
levels of HER2 gene amplification on the pathologic response in tumours
with equivocal protein expression, cases were stratified into; low (HER2
gene copy number ≥6.0 to <9.0, and/or HER2/CEP17 ratio ≥2.0 to <4.0) [5]
and high (HER2 gene copy number ≥9.0 and or HER2/CEP17 ratio ≥4.0)
amplification status. These cut-offs were based on the median of HER2
gene copy number or HER2/CEP17 ratio within the HER2 IHC 3+ group,
which was used as a benchmark for gene amplification level in this study.

Correlation between HER2+ BC classes and patients’ outcome
in the adjuvant settings
The correlation between HER2+ BC classes and the outcome was assessed
in the combined NUH, TCGA and METABRIC cohorts in BC patients who
received adjuvant anti-HER2 therapy using BC-specific survival (BCSS),
defined as the time from the initial diagnosis to the time of BC-related
death, and distant metastasis-free survival (DMFS) defined as the time from
surgery to development of distant metastasis.

Differential gene expression (DGE) analysis
The molecular characteristics of both HER2+ classes were analysed using
gene set enrichment (GSEA) and pathway analysis to understand the
related mechanisms of differential response to therapy. For that, the
PABCD cohort was used.
RNA-seq counts were obtained from the TCGA-BRCA RNAseqV2 dataset [34].

We also accessed the METABRIC cohort on cBioPortal website [35, 36] for gene
expression and clinical data. Five independent gene expression datasets
(GSE136300, GSE55005, GSE161420, GSE121105 and GSE60182), were down-
loaded from the GEO database and exploited as discovery cohorts to identify
DEGs involved in HER2 signalling pathway, trastuzumab response and
resistance. Briefly, raw reads were obtained from NCBI-GEO, adaptors removed,
and low-quality reads (phred <30) were removed using TrimGalore, with
resultant reads aligned to the GRCh38 version of the human reference
genome using STAR, and gene expression was quantified using FeatureCounts.
Detailed information on datasets is listed in (Supplementary Table 2).
The DESeq2 tool in R software (version 3.4.3; https://cran.r-project.org/)
was used for differential analysis of gene expression using matrices
defining trastuzumab treatment in both drug-sensitive and drug-resistant
samples, as well as between HER2 siRNA knockdown and control groups. The
significantly differentiated expressed genes were defined as log2 fold
change (≥±1) and false discovery rate (FDR) < 0.05 between high and low
score groups and common DEGs between conditions were identified using
Venn diagrams. The web-based gene set enrichment analysis tool (WebGes-
talt) [37] was used to explore significantly enriched pathways based on the
identified DEGs in IHC 2+ /Amplified samples. ER related genes from the
Reactome pathway website reactome.org, were identified within the DEG
among HER2+ classes. Detailed methodology is mentioned in Supplementary
Materials 1.

Statistical analysis
Statistical package of social science (IBM-SPSS) statistical software v. 27.0
(SPSS, Chicago, IL, USA) was used to carry out the statistical analysis.
Correlations between HER2 IHC scores, pCR and clinicopathologic
parameters were analysed using Chi-square (χ2) test, Fisher’s exact test,
Kruskal–Wallis where appropriate. Univariate and multivariable logistic
regression analyses were performed to investigate the association of each
variable with pCR and the effect of other confounders. Odds ratios (ORs)
and 95% CIs were calculated for each variable. Outcome analysis was
assessed using Kaplan–Meier curves and the log-rank test. The difference
between gene expression among two groups was calculated through t test
or ANOVA using GraphPad software. For all analyses, a P value of <0.05
(two-tailed) was considered statistically significant.

RESULTS
Table 1 summarises the demographic and pathological character-
istics of the included cohorts. In the whole cohort, the median value
of HER2 gene copy number was 2.0 (range 0.8–440) and HER2/CEP17
ratio was 1.5 (range 0.42–32). When HER2+ BC was stratified based
on IHC classes, in the HER2 IHC 3+ , the median HER2 gene copy
number was 9.0 (range 2–440) and themedianHER2/CEP17 ratio was
4.0. In HER2 IHC 2+ /Amplified, themedian HER2 gene copy number
was 4.4 (range 1.7–370) and HER2/CEP17 ratio was 2.3, respectively.
Eighty percent of HER2 IHC 2+were ER-positive compared to 60% in
HER2 IHC 3+ .
There was a significant correlation between HER2 IHC 3+ and

features characteristic of aggressive tumour behaviour, including
larger tumour size, higher tumour grade, high NPI risk group,
positive LN status and ER and PR negativity (P < 0.001). These
associations were maintained when IHC 3+ tumours were
compared to IHC 2+ /Amplified BC (Table 2).
HER2 IHC 3+ tumours showed significant association with HER2

enriched (HER2-E) molecular subtype as compared to 2+ /
Amplified (64% versus 25% respectively; P < 0.001). Contrasting
this, when HER2 gene copy number or HER2/CEP17 ratio were
considered, no correlation with HER2-E molecular subtype was
detected (Supplementary Fig. 1). Moreover, when HER2 IHC 2+
with high HER2 gene amplification level (≥9.0 copies) is compared
to HER2 IHC 3+ , HER2-E molecular subtypes and HR negativity
continue to exhibit a statistically significant association with the
HER2 IHC 3+ category (P= 0.01, P= 0.03 and P= 0.008 for ER and
PR, respectively).

Differential response of HER2+ classes to therapy in the
neoadjuvant setting
Overall, the pCR rate in the whole neoadjuvant BC cohort was
26%, while in HER2+ tumours it was 36%. When stratified based
on HER2 classes, HER2 IHC 3+ tumours had significantly higher
pCR than IHC 2+ /Amplified (57% vs 22%) (P < 0.001). In the whole
HER2+ tumour cohort, no significant difference in pCR rates
between BC patients with low (< 9.0) and high (≥ 9.0) HER2 gene
copy number levels was identified (P= 0.13). The same was found
for patients with HER2/CEP17 ratios ≥2.0 to <4.0 or ≥4.0. Moreover,
patients with HER2 IHC 2+ tumours and high HER2 gene
amplification level had lower pCR rate when compared with all
HER2 IHC 3+ tumours regardless of their gene amplification levels
(17% vs 57%, P= 0.001). Considering the whole spectrum of HER2
expression, there was a significant positive association between
pCR and HER2/CEP17 ratio (P= 0.0.03), however, significance was
lost within patients with IHC 2+ /Amplified tumours (P= 0.5).
Supplementary Fig. 2A summarises pCR at different HER gene
copy number amplification levels scenarios).
The average pCR from the current study and previously

published reports [12–16, 32] was 46% with an average of 56
and 23% in HER2 IHC 3+ and IHC 2+ /Amplified, respectively
(Supplementary Table 1A).
ER+ tumours were significantly associated with a lower rate of

pCR among HER2+ patients (33% with pCR vs 67% with no
response). Within HER2 IHC 3+ BC patients, there was no statistically
significant association between ER status and pCR rates, unlike BC
patients with HER2 IHC 2+ /Amplified where negative ER status
were significantly associated with increased pCR rates (P < 0.001)
(Supplementary Fig. 2B and Supplementary Table 3).
Among IHC 2+ /Amplified tumours, the pCR following NACT

alone was 13% compared to 39% for HER2 IHC 3+ tumours.
Following anti-HER2 therapy the pCR in HER2 IHC 3+ patients was
augmented (57%) compared to 21% in IHC 2+ /Amplified patients
(Supplementary Fig. 2B).
Multivariate logistic regression model for factors affecting

pathologic response among BC patients with over and equivocal
HER2 protein expression revealed that HER2 IHC 3+ is an
independent predictor of pCR over HER2 gene amplification level;
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(OR, 18.00; 95%CI, 89.07–2.66; P= 0.004). Also, histologic tumour
grade and ER status were an independent predictor of pCR (OR,
3.12; 95% CI, 1.60–6.00; P= 0.001), (OR, 0.35; 95%CI, 0.18–0.67;
P= 0.001, for grade 3 and ER+ tumours, respectively) (Fig. 2).

HER2+ groups and patients’ survival
In the non-treated (anti-HER2 therapy-naive) patients, HER2 IHC
3+ BC patients had significantly shorter BCSS (mean value 84
months) compared to patients with IHC 2+ /Amplified tumours
(mean value 119 months), (P= 0.01). Following anti-HER2 therapy,
the mean BCSS of HER2 IHC 3+ increased to 110 months close to
IHC 2+ /Amplified patients (P= 0.23) (Supplementary Fig. 3).
Among HER2 3+ BC patients, administration of adjuvant anti-

HER2 in addition to chemotherapy significantly increased 10-year
survival (P < 0.001 and P= 0.006, for BCSS and DMFS, respectively).
However, in patients with HER2 IHC 2+ /Amplified tumours, no
significant difference in survival was observed (P= 0.08 and
P= 0.14, respectively) (Fig. 3).
When cases were stratified based on ER expression, patients with

ER- and HER2 IHC 2+ /Amplified BC showed improved outcome
upon treatment with anti-HER2 therapy (BCSS P= 0.02). However,
no similar improvement in the outcome was observed in the
ER+HER2 IHC 2+ /Amplified BC patients’ group after receiving of
anti-HER2 therapy (BCSS P= 0.47) (Fig. 3). Contrasting this, IHC
3+ BC patients the association between longer survival and anti-
HER2 therapy was observed in both ER- and ER+ groups (BCSS
P < 0.001 and P= 0.005, for ER- and ER+ , respectively). Supple-
mentary Table 1B summarises data about the differential response
of HER2+ patients to anti-HER2 therapy in the adjuvant settings
from previously published reports.

Molecular profile of HER2+ classes and its impact on response
to therapy
We next performed an analysis to identify genes responsible for
HER2 oncogenic signalling pathway and response to trastuzumab
therapy among the 2 HER2 IHC classes (HER2 IHC 3+ and 2+ /
Amplified) as well as in the 2+ /non-amplified tumours. HER2
oncogenic signalling pathway genes were significantly enriched
in HER2 IHC 3+ compared to HER2 2+ /Amplified (Fig. 4 and
Supplementary Tables 4 and 5). However, the differential expression
of these genes was not as significant between the two classes of

Table 1. Descriptions of the basic clinicopathologic parameters in our
cohort.

Parameter Patients
received
adjuvant
therapy

Patients
received
neoadjuvant
therapy

N % N %

Age at diagnosis (years)

<50 1631 24.6 392 31.7

≥50 4995 75.4 843 68.3

Tumour size (cm)

<2.0 3745 59.0 NA

≥2.0 2637 41.0

Tumour grade

1 1079 17.6 88 6.5

2 828 46.0 884 65.4

3 2240 36.4 379 28.1

Lymph node status

Negative 4554 70.0 NA

Positive 1902 30.0

Histologic tumour type

Invasive carcinoma of no special type 4310 65.2 1239 90.6

Invasive lobular carcinoma 798 12.1 80 5.9

Other types 1500 22.7 48 3.5

Lymphovascular invasion

No 4998 79.0 NA

Yes 1340 21.0

NPI risk group

Good 1627 47.0 NA

Moderate 1504 43.0

Poor 345 10

HER2 IHC score

3+ 550 9.3 149 10.9

2+/Amplified 254 4.3 384 28.0

2+ ISH non-amplified 796 13.5 591 43.0

1+/0 4284 72.9 249 18.1

HER2 gene copy number

<6.0 2491 81.8

≥6.0 to <9.0 279 9.2

≥9.0 277 9.0

HER2/CEP17 ratio

<2.0 1386 70.5

≥2.0 to <4.0 538 27.4

≥4.0 41 2.1

ER status

Negative 1208 18.2 309 25.0

Positive 5386 81.7 925 75.0

PR status

Negative 2193 33.4 447 38.0

Positive 4365 65.6 728 62.0

PAM50 molecular classes

Luminal A 513 49.0 NA

Luminal B 221 20.0

Her2 enriched 86 8.0

Basal-like 184 18.0

Normal like 48 5.0

Integrative cluster subtype

Non-HER2 cluster 253 88.0 NA

HER2 cluster 35 12.0

Table 1. continued

Parameter Patients
received
adjuvant
therapy

Patients
received
neoadjuvant
therapy

N % N %

Type of neoadjuvant therapy

Chemotherapy only NA 744 70.6

Anti-HER2+ chemotherapy 310 29.4

Adjuvant chemotherapy

No 4101 64.7 NA

Yes 2234 35.3

Adjuvant anti-HER2

No 6122 95.4 NA

Yes 504 4.6

Response to neoadjuvant therapy

No or partial response NA 557 74.0

Pathologic complete response 194 26.0

ER oestrogen receptor, PR progesterone receptor, NPI Nottingham
prognostic index.
Some cases are missing within each parameter as they were collected from
different datasets.
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equivocal HER2 protein expression (2+ /Amplified and 2+ /non-
amplified).
Differential analysis of genes responsible for resistance to

trastuzumab therapy between HER2 IHC 3+ and 2+ /Amplified
groups revealed 82 genes; of them, 50 genes were significantly
upregulated in IHC 2+ /Amplified (Supplementary Fig. 4). The
predictive validity of those genes was tested through the online
database; rocplot.org. Twelve genes were significantly associated
with no pathologic response to anti-HER2 therapy in HER2+ BC
(Supplementary Fig. 5 and Supplementary Table 6).
ER signalling pathway genes were significantly enriched in HER2

IHC 2+ /Amplified class compared to HER2 IHC 3+ (P= 0.008)
(Fig. 5). Supplementary Table 7 summarises the mean values of ER
signalling pathway genes between BC patients with over and
equivocal protein expression. Further details are mentioned in
Supplementary Materials 2.

DISCUSSION
The response of HER2+ BC patients to anti-HER2 therapy is
variable [7, 9, 11, 38–44] and whether the protein expression or
the gene amplification levels, when considered together, are the
key driver remains to be confirmed. Although most anti-HER2
targeted therapy exerts their action on HER2 protein and no
response is observed in IHC scores 0 or 1+ BC patients, there is
high concordance between IHC and HER2 gene copy number [45]
and no response is observed in ISH-negative cases. Moreover,
there is an excellent correlation between HER2 IHC 3+ and high
HER2 gene amplification level [46, 47], which may explain why
most cases with high amplification levels respond well to anti-
HER2 therapy. The main discrepancy is among HER2 IHC 2+
tumours, which typically show borderline gene amplification
[1, 16, 45]. These results together with the finding that 4% of cases
with HER2 IHC scores 0 and 1+ show evidence of gene
amplification [45], argue against using ISH alone as a predictive
of response to anti-HER2 therapy. In addition, the differential
response based on interactions between IHC classes and ISH
status and the molecular characteristics of these HER2+ IHC
classes are not well-defined. In this study, we aimed to decipher
the clinical, biological, and molecular mechanisms involved in
anti-HER2 therapy response among these classes.
In the neoadjuvant setting, the overall pCR rate of HER2+ BC

patients to NACT with anti-HER2 therapy in our study was 36%.
However, when the cases were stratified based on the IHC classes,
the pCR rate was significantly higher in HER2 IHC 3+ compared to
HER2 IHC 2+ /Amplified BC patients. High HER2 gene amplifica-
tion status was significantly associated with high pCR when all
HER2 IHC categories were compared. However, when HER2+ IHC
subgroups were considered, such association between HER2 gene
amplification levels and pCR rate was lost. In the current study,
HER2 protein overexpression (IHC 3+ ), was also an independent
predictor of pCR, while different levels of HER2 gene amplification
were not. These results are similar to the HERA and N9831 trials,
which concluded that HER2/CEP17 ratio and HER2 gene copy
number were not associated with patient outcome [25, 27, 48].
These results also are consistent with several previous studies,
which demonstrated that HER2 protein overexpression is a strong
predictor of response to anti-HER2 therapy [12–16, 18, 25, 32, 49].
Other studies have also indicated that the rate of pCR in the
subset of patients with evidence of HER2 gene amplification in the
absence of HER2 protein overexpression was significantly lower
(17% vs 66%) [16, 32].
The stronger correlation between HER2 protein overexpres-

sion and response to anti-HER2 therapy is likely to reflect the
fact that HER2 oncogenic pathways are driven by HER2 protein
overexpression and not merely by HER2 gene copy number
independent of the HER2 protein level as is the case in HER2 IHC

2+ /Amplified tumours. Therefore, the response of these
patients with equivocal HER2 protein expression to therapies
that target the HER2 oncogenic pathways is limited and the
clinical response of these patients to chemotherapy combined
with anti-HER2 therapies is not significantly different from that
of HER2 IHC 2+ without evidence of HER2 gene amplification to
chemotherapy alone.
Some studies have shown that the therapeutic response to

anti-HER2 therapy is correlated with the level of HER2 gene
amplification [19, 20, 22]. Singer an colleagues [22] evaluated the
HER2/CEP17 ratio and response to therapy but they did not
consider HER2 IHC protein expression in the analysis. Also,
Arnold and colleagues [19] compared the response rate between
cases with medium and high levels of gene amplification, yet
only 1 case was HER2 IHC 2+ /Amplified, and the rest of the
cases were IHC 3+ . Salmon et al. [18] demonstrated that
trastuzumab efficacy of trastuzumab was consistently observed
in both IHC and ISH HER2+ groups. However, in their study
patients with HER2 protein overexpression experienced better
survival than those with HER2 gene amplification but equivocal
protein expression.
In the CLEOPATRA Phase III trial, HER2 IHC 3+ was associated

with improved survival [49]. This is consistent with our study
where patients with HER2 IHC 3+ benefited from adjuvant anti-
HER2 therapy in terms of prolonged BCSS and DMFS compared to
HER2 IHC 2+ /Amplified BC patients. Previous studies have
demonstrated that the level of HER2 gene amplification is not a
prognostic factor in patients with HER2+ BC treated with anti-
HER2 therapy [24, 27]. The N9831 Phase III trial assessed disease-
free survival of patients on adjuvant trastuzumab according to
protein expression, HER2 gene copy number and HER2/CEP17
ratio. It reported that patients with normal HER2 protein-
expressing tumours (0,1,2+ ) and ISH amplified had no improve-
ment in survival with additional trastuzumab, while patients with
IHC 3+ had a significant response to treatment [25].
Some authors have indicated that the level of HER2 protein

expression in HER2+ tumours has no role in clinical management
with anti-HER2 therapy [50]. However, that study was not based
on a dichotomised classification (IHC 3+ versus 2+ ), but rather
on a spectrum of HER2 staining. Other reports have suggested
that the optimum strategy for choosing individuals for anti-HER2
therapy is to measure HER2 gene amplification by ISH testing
[51, 52]. This was based on studies that included tumours with IHC
scores of 3+ and 2+ and the ISH-negative group included only
IHC 2+ tumours, resulting in an overemphasis of the value of ISH
testing [51, 52].
Unlike conventional anti-HER2 therapies, which inhibit HER2

oncogenic pathways, HER2-based antibody-drug conjugates
(ADCs) such as T-DM1 and DS-8201 mainly uses HER2 as a target
to facilitate internalisation of the cytotoxic agent into HER2-
expressing cells and their response is not proportional to the
amount of HER2 protein [53]. The differential response of HER2+
tumours to T-DM1 was reported in Phase III KATHERINE trial of
adjuvant T-DM1 versus Trastuzumab for residual invasive disease
after neoadjuvant therapy for HER2+ BC. In the subgroups of
patients defined by HER2 status, there was less pronounced
treatment benefit in HER2 IHC 2+ compared to IHC 3+ in the
trastuzumab arm, while in the T-DM1 arm, the 3-year invasive
disease-free survival (IDFS) rate was not statistically significant
between the two HER2+ classes (89% in the IHC 3+ subgroup and
85% in the IHC 2+ subgroup. Further supporting evidence in the
same trial is that the IDFS of patients with heterogenous HER2
expression, mostly evident in HER2 IHC 2+ cases, was too close to
homogenous expression, mostly in HER2 IHC 3+ in the T-DM1 arm
(89 and 88%, respectively) compared to the trastuzumab arm
where less benefit was seen in tumours with heterogenous HER2
expression [54].
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In vitro studies that compared trastuzumab and T-DM1 in
HER2+ cell lines revealed that T-DM1 is more efficacious in
trastuzumab-sensitive as well as in trastuzumab-insensitive
HER2+ cell lines. Using trastuzumab-resistant xenograft tumour
models, it was also demonstrated that T-DM1 can induce both
apoptosis and mitotic catastrophe in vivo [55, 56]. However, the
focality of HER2 expression might attenuate T-DM1 activity,
which was unable to induce a bystander effect for surrounding
HER2-negative cells due to a non-cleavable linker [54]. This issue
was resolved through T-Dxd (DS-8201) that proved to overrate
T-DM1 in HER2+ as well as in HER2 low BC (HER2 IHC 1+ or 2+
without HER2 gene amplification according to results of
DESTINY-Breast04 trial [57, 58]. In that trial, the clinical outcome
was similar in patients with a score of 1+ on IHC analysis and
those with a score of 2+ [58].
Based on the previously mentioned experimental and clinical

trial evidence, our evidence support that the differential response
of HER2+ IHC classes to anti-HER2 therapy should be considered
in treatment decision-making and that further trials to explore the
differential response of HER2 IHC 2+ /Amplified to T-Dxd or
T-DM1 compared to trastuzumab or other anti-HER2 targeting
agents are warranted.
There is increasing evidence that response to anti-HER2

targeted therapy is closely related to intrinsic molecular subtypes.
A study of the intrinsic molecular classes of HER2+ BC revealed
that BC assigned to the HER2-E subtype by RNA-seq analysis
is more likely to achieve a pCR compared to other intrinsic
subtypes [17]. Recent systematic review and meta-analysis studies
[17, 59–62] concluded that HER2-E biomarker identifies patients
with increased likelihood of achieving a pCR following neoadju-
vant anti-HER2-based therapy. Furthermore, in the PAMELA Phase
2 trial, they concluded that HER2-E subtype is the predictor of pCR
following trastuzumab and lapatinib without chemotherapy in
early-stage HER2+ BC [63]. Not all clinically HER2+ tumours are of
the HER2-E intrinsic molecular subtype and only ∼50% of clinically
HER2+ tumours fall into this category. Also, HER2 protein
overexpressing tumours showed significantly higher expression
of several receptor tyrosine kinases (RTKs) including FGFR4, EGFR,
HER2 itself, as well as genes within the HER2 amplified region on

Chr17q12-q21 (including GRB7). Our study supports such data
as we found that HER2-E subtype is significantly associated
with HER2 IHC 3+ rather than IHC 2+ / Amplified. In the same
context, differential expression of genes responsible for HER2
oncogenic signalling pathway was more significant in HER2 IHC
3+ compared to HER2 IHC 2+ /Amplified unlike both classes of
equivocal HER2 protein expression. Moreover, DGE analysis of
genes responsible for resistance to trastuzumab therapy in
HER2+ BC revealed that 60% of them are upregulated in HER2
IHC 2+ /Amplified tumours. ER status is also emerging as a robust
predictive marker within HER2+ disease. Several clinical trials and
studies highlighted the bidirectional crosstalk between HER2 and
ER when both receptors are expressed in BC cells, where the main
role of ER signalling in those tumours is to act as a mechanism of
resistance to HER2 inhibition [7, 8, 11, 28, 29, 64–66]. However, the
differential expression of ER within each HER2+ IHC class and its
impact on response to therapy within that class is not clear. In our
study ER positivity was a significant predictor of poorer response
to therapy in the whole cohort and in IHC 2+ /Amplified, but not
in HER2 IHC 3+ patients both in the neoadjuvant and adjuvant
settings. These results are similar to Harbeck et al. [31] study which
showed that in HER2 protein overexpression HR-positive patients
had high pCR rates close to HR negative patients [31]. In a
secondary analysis of the HERA trial, the largest of the adjuvant
trastuzumab trials, the role of ER IHC status levels combined with
HER2 levels, in predicting the magnitude of benefit from adjuvant
trastuzumab was investigated. The trial showed that patients with
ER-positive and HER2+ with low HER2 gene copy number derived
less benefit from adjuvant trastuzumab with all of these patients
received endocrine therapy [67]. Also, in a second analysis of
NeoALTTO clinical trial which aimed to quantify gene expression
levels of ESR1 and HER2 and their relation to pCR, it was revealed
that high levels of HER2 and low levels of ESR1 were associated
with higher pCR rates [68] They explained these findings based on
the increasing amount of genomic and clinical data reporting that
HER2-overexpressing tumours have distinct molecular and clinical
profiles [67] and that the HER2-E subtype, which is predominantly
ER-negative, achieved higher response to HER2-directed therapy
[69]. Conversely, the luminal B subtype (HER2+ and ER+ ) showed

0.35 [0.18, 0.67] 0.001

0.58 [0.15, 2.20] 0.44

1.22 [0.43, 3.42] 0.74

3.12 [1.60, 6.00] 0.001

18.00 [2.66, 89.07] 0.004

HR [95% Cl] P-value

2.50 [0.93, 6.70] 0.068

Variables

HER2 IHC score 3+/2+ Amplified

Tumour grade 3/2,1

ER status Positive/Negative

HER2 gene copy number ��9/<9

HER2 gene amplification: Yes/No

Type of neoadjuvant therapy:
Chemotherapy/Chemo + anti-Her2

0.15 1.50 15.00

Fig. 2 Forest plot of multivariate Cox regression model demonstrating the independent significant predictors of pathologic complete
response between HER2 IHC 3+ and IHC 2+ /Amplified. Significance value P < 0.05.
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higher expression of the luminal cluster of genes, including GATA3,
BCL2 and ESR1. Therefore, a larger proportion of these tumours
are driven by the ER pathways with a limited impact of HER2
oncogenic signalling pathways [70].
Furthermore, the DGE analysis performed in this study revealed

that HER2 IHC 2+ /Amplified tumours are more frequently ER+ ,
more enriched with ER signalling pathways and its associated
genes like ESR1 and BCL2 and less likely to include tumours with
HER2-E molecular subtype.
Treating HER2+ /ER+ BC is complex, particularly in the HER2

2+ /Amplified group. There is no single treatment or combination
of treatments that is most effective or suited to all patients with
this subtype. Identifying what is the biological driver of the
individual tumour can be of great help (i.e., whether ER or
HER2 signalling is dominating and driving the growth and
progression of the tumour), though pathway interaction and
crosstalk can cause the cancer to change course throughout
treatment.
In the preclinical setting, it has been shown that the expression

of ER and its downstream targets are increased in cells with
acquired resistance to anti-HER2 therapy [71, 72]. Reactivation of
ER expression and signalling, including a switch from ER-negative
to ER-positive status, were observed in clinical HER2+ tumours
after neoadjuvant lapatinib treatment [71].
Furthermore, HER2 overexpression affects endocrine therapy

responsiveness both to tamoxifen and to oestrogen deprivation

by aromatase inhibitors (AI) and ovarian suppression in preme-
nopausal women [71, 73–79].
Combining hormone therapy with an anti-HER2 agent

has proven beneficial to some specific HER2+ patients
[80, 81], particularly those who have high ER expression.
While some ER+ /HER2+ tumours behave more like the
luminal A subtype (i.e., ER-driven cancer) and others as HER2-E
tumour (HER2-driven cancer) or a combination of both which
require a multipronged targeted blockade of both ER and HER2
pathways.
Young premenopausal women with HR-positive BC are

mostly treated with oestrogen modulators, such as Tamoxifen,
ovarian function suppression alone or in combination with AI
[82]. Moreover, preclinical data supported the idea that PI3K
inhibitors and CDK4/6 could be attractive target that functions
downstream of both ER and HER2 pathways. PATRICA trial
which assessed palbociclib in combination with trastuzumab
with or without endocrine therapy in patients with HER2+
advanced BC revealed promising survival outcomes of patients
with ER+ /HER2+ BC with a PAM50 Luminal A or B subtype
treated with trastuzumab [83]. MonarcHER Phase II trial also
demonstrated that the combination of abemaciclib, fulvestrant,
and trastuzumab significantly improved progression-free survi-
val versus standard-of-care chemotherapy plus trastuzumab [84].
This study has some limitations, as it was performed on multiple

retrospective datasets with variable treatment options.
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Fig. 5 Illustrated diagram showing the distribution of oestrogen receptor (ER) signalling genes among HER2+ IHC classes and their
impact on response to anti-HER2 therapy among these classes. a Heatmap demonstrating the unsupervised clustering and distribution of
ER signalling genes among HER2 IHC 3+ and IHC 2+ /Amplified with significant expression in IHC 2+ /Amplified class (P= 0.008). b Principal
component analysis (PCA) showing that most of ER-positive tumours are within the HER2 2+ /Amplified category. c A visual diagram
delineates the significance of ER positivity in both HER2+ IHC categories. HER2 IHC 3+ predominantly hinges on the HER2 oncogenic
signalling pathway, rendering the efficacy of anti-HER2 therapy contingent upon obstructing this pathway (depicted on the left side).
Conversely, in HER2 IHC 2+ /Amplified tumours (depicted on the right side), the ER signalling pathway remains active. Here, cancer cells elude
the suppressive effects of anti-HER2 interventions, sustaining their proliferation.
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CONCLUSION
BC with HER2 protein overexpression (IHC 3+ ) appear to be
driven by HER2 oncogenic signalling pathway, more HER2-E,
which may explain their better response to anti-HER2. Patients
with HER2 IHC 2+ /Amplified tumours have limited response to
anti-HER2 therapy regardless of the HER2 gene amplification
status, particularly those with ER+ tumours. Further comparative
studies between conventional anti-HER2 therapy and HER2-
directed antibody-drug conjugate therapy in patients with IHC
2+ /Amplified BC could be warranted.
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