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BACKGROUND: Survival rates for oral squamous cell carcinoma (OSCC) have remained poor for decades, a fact largely attributable
to late-stage diagnoses and high recurrence rates. We report analysis of serum miRNA expression in samples from patients with
high-risk oral lesions (HRL, including OSCC/carcinoma in situ lesions) and healthy non-cancer controls, with the aim of non-
invasively detecting primary or recurrent disease before it is clinically evident.
METHODS: Discovery, test, and validation sets were defined from a total of 468 serum samples (305 HRL and 163 control samples).
Samples were analysed using multiple qRT-PCR platforms.
RESULTS: A two-miRNA classifier comprised of miR-125b-5p and miR-342-3p was defined following discovery and test analyses.
Analysis in an independent validation cohort reported sensitivity and specificity of ~74% for this classifier. Significantly, when this
classifier was applied to serial serum samples taken from patients both before treatment and during post-treatment surveillance, it
identified recurrence an average of 15 months prior to clinical presentation.
CONCLUSIONS: These results indicate this serum miRNA classifier is effective as a simple, non-invasive monitoring tool for earlier
detection of recurrent disease when lesions are typically smaller and amenable to a wider array of treatment options to improve survival.
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BACKGROUND
Oral squamous cell carcinoma (OSCC) is the most commonly
diagnosed form of head and neck cancer and the eighth most
commonly diagnosed cancer type worldwide [1]. Survival rates for
oral cancer are poor, driven by frequent late-stage diagnoses and
high recurrence rates. The 5-year recurrence rate for oral cancer is
~50%, with most cases recurring in the first two years after
treatment. Current post-treatment standard of care is ‘watchful
waiting’; however, detecting recurrent disease by clinical exam
alone is challenging, often relying on presentation of new
symptoms (bleeding, pain, etc.). Thus, ~90% of recurrent cases
have progressed to metastasis at the time of diagnosis (leaving
limited treatment options). As a result, the 5-year overall survival
rate for patients with recurrent oral tumours is only ~30%. Earlier
detection of recurrent lesions and/or primary lesions – when they
are smaller and have yet to spread – is advantageous from a
treatment perspective, as surgery and radiation treatments may still
be feasible. In practice, tools that facilitate earlier detection of
disease will improve on visual inspection by triggering earlier
evaluation by confirmatory imaging (e.g., CT or PET) and facilitating
expanded use of treatments known to improve disease outcomes.
Advances in RNA detection sensitivity have led to the discovery

of extracellular RNA species in bodily fluids, which may have utility
as biomarkers for delineating disease states. This includes mRNA,

ribosomal RNA, long non-coding RNA, exonic circular RNA, and
small non-coding RNA molecules like miRNA [2]. The majority of
extracellular RNA species are detected in vesicles like exosomes,
nano- and micro-vesicles, or apoptotic bodies. Multiple reports
have described the isolation of extracellular miRNAs from body
fluids such as saliva, serum, plasma, urine, breast milk, and CSF
[3–6]. It is believed that the extracellular vesicle protects the RNA
cargo from degradation and therefore lends itself as a good
source for biomarker discovery. For oncology, circulating tumour-
specific miRNAs have been identified for numerous cancer types,
including head and neck cancer, and are believed to have utility as
non-invasive biomarkers [7–9]. MiRNAs are well known for their
role in cell growth and proliferation as they regulate several
biological processes related to cancer development [10, 11]. They
are often deregulated in tumour cells themselves, as well as within
extracellular vesicles that the tumour cells release into circulation
[12]. There are several reports analysing miRNA expression in
serum or plasma of individuals with oral cancer, although these
reports are often of limited utility due to small sample sizes, biased
miRNA candidate selection, or lack of proper validation [13–18].
Herein, we report on the discovery and validation of a miRNA

classifier that is capable of discriminating serum from patients
with early-stage oral squamous cell carcinoma (OSCC) and/or
carcinoma in situ (CIS) from demographically matched non-cancer

Received: 21 November 2022 Revised: 3 August 2023 Accepted: 17 August 2023
Published online: 5 October 2023

1Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada. 2Department of Statistics, University of British Columbia, Vancouver, BC,
Canada. 3Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC, Canada. ✉email: cgarnis@bccrc.ca

www.nature.com/bjc British Journal of Cancer

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02405-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02405-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02405-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-023-02405-9&domain=pdf
http://orcid.org/0000-0002-3991-5764
http://orcid.org/0000-0002-3991-5764
http://orcid.org/0000-0002-3991-5764
http://orcid.org/0000-0002-3991-5764
http://orcid.org/0000-0002-3991-5764
https://doi.org/10.1038/s41416-023-02405-9
mailto:cgarnis@bccrc.ca
www.nature.com/bjc


control patients with high sensitivity and specificity. Significantly,
this miRNA classifier was also able to identify recurrent OSCC
before it was clinically evident.

METHODS
Sample acquisition
Initial blood samples used for discovery and validation were collected from
patients with either CIS or OSCC (collectively termed high-risk lesions [HRLs]).
Control serum samples from individuals without cancer were demographi-
cally matched for sex, age, and smoking history. Control samples were
obtained from a pan-Canadian study on the early detection of lung cancer
[19]. Serial samples were collected from patients treated by head and neck
surgeons at Vancouver General Hospital. Consent was obtained from all
patients prior to serum collection and use of human specimens in this work
was approved by the University of British Columbia ethics board (H14-
00349). Demographic information is listed in Supplemental Table 1.
All blood samples were collected in SST vacutainer tubes then allowed

to clot for 30min at room temperature. Samples were then centrifuged at
room temperature for 15min at 1500 rcf, with serum then collected and
frozen in aliquots at −80 °C within 2 hours of collection.

RNA extraction
RNA was extracted from 200 μl of serum using the miRNeasy Mini Kit
(Qiagen) as previously described [18].

qRT-PCR
Initial training cohort (51 non-cancer, 48 HRL) qRT-PCR analysis was
performed using the miRCURY LNA Universal RT miRNA PCR Human Panel I
and II (Exiqon) (742 miRNAs). Generation of cDNA was completed using a
miRCURY LNA Universal cDNA synthesis kit on 19.2 μl of serum RNA, with
cDNA then quantified using SYBR Green master mix according to
manufacturer recommendations. All assays were examined for distinct
melting curves, and samples with multiple Tm or CT > 35 were excluded
from analysis.
TaqMan qRT-PCR was performed on selected candidate miRNAs using

either custom pre-spotted plates or individual TaqMan assays with each
assay run in triplicate. RNA extracted from serum was quantified using a
Qubit 3.0 (Thermo Fisher) using the RNA HS reagents. The list of TaqMan
miRNA primers and assay IDs is available in Supplemental Table 2. Reverse
transcription was performed on 300 ng of RNA using TaqMan miRNA
reverse transcription kits. A 12-cycle preamplification step was performed
using the TaqMan PreAmp master mix. For qPCR, Universal Master Mix II
was used according to manufacturer recommendations.

Data analysis
For SYBR qRT-PCR, miRNAs were excluded from analysis if they were not
expressed with a CT < 35 in at least half of the control group or half of the
disease group. We excluded 162 miRNAs present on Human Panel I and II
that had been shown to have altered detection dependent on sample
haemolysis [20].
SYBR and TaqMan analysis expression was normalised to an endogen-

ous control miR-23b-3p chosen based upon its value using the geNorm
algorithm showing it was the least variable across samples [21]. CT values
for miRNAs that were not detected were set to the threshold of detection
(35 for SYBR and 37 for TaqMan). To normalise the CT of potential
candidate miRNAs, the CT value was subtracted from the CT of the chosen
normalising miRNA (ΔCT). The ΔCT data was linearised using the formula
CTlinear= 2(−ΔCT normalised).
The normality of data was determined using the Shapiro-Wilk test and

equality of variance using a F-test. A two-tailed Mann-Whitney U test was
used to determine significance between two groups. Significance within
more than two groups was determined by the Kruskal-Wallis test. The
appropriate sample size for our initial training set was calculated to be 49
HRL and 49 control based on a recurrence prevalence of 50%, power of
80%, and alpha of 5% [22].

RESULTS
Biomarker training analysis
SYBR qRT-PCR analysis. The study design and an overview of the
sample distribution is illustrated in Fig. 1. We initially analysed

miRNA expression in 99 serum samples, including samples from
48 individuals with HRLs and 51 control cases using the Ready-to-
Use PCR, Human panel I and panel II with the miRCURY LNA
Universal RT miRNA PCR. Of the 742 miRNAs that were queried by
qRT-PCR, 162 were known to be affected by haemolysis and were
excluded from further analysis [20]. Of the remaining miRNAs, 415
were detected in at least one serum samples with only 14 miRNAs
being detected in every sample. We further limited analysis to the
miRNAs which were expressed in ≥50% of the HRL group or ≥50%
of the control group. After this selection, 106 miRNAs remained.
We performed a LASSO analysis on the qRT-PCR data for the

remaining 106 miRNAs to select those that would best discrimi-
nate between the two groups (HRL and non-cancer cases). This
analysis selected 16 miRNAs as the best classifiers (Fig. 2a). Using a
random forest analysis this classifier was determined to classify
the samples with 70.6% sensitivity and 82% specificity. The
miRNAs selected and the order they were included in or excluded
from the model is shown in Supplemental Table 3.
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Fig. 1 Flow chart describing study design. a Determination of
classifier first with SYBR LNA technology and then with TaqMan
qPCR identifying a final 2 miRNA classifier panel. This panel was
subsequently validated using an independent sample set (b) and
tested on a panel of 12 paired Pre- and Post-Surgery samples (c).
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TaqMan qRT-PCR Analysis
To ensure that the classifier we identified was not skewed by
potential LNA primer artefact, we evaluated the same training set
samples (two control samples were excluded from this second
analysis due to insufficient input RNA) using the TaqMan platform,
analysing the top 14 miRNAs comprising the classifier defined by
the SYBR LASSO analysis. LASSO and bootstrap analyses were
repeated (Fig. 2b). The top 14 miRNAs from the SYBR analysis were
re-evaluated. Two were eliminated based on the LASSO action
accuracy plot (Fig. 2a) where the input of each additional action
(miRNA) into the classifier is minimal after 13 lasso actions.
Additionally, analysis of these two miRNAs individually revealed
neither was statistically significant between the control and
tumour samples.
Using the TaqMan system the model reached peak accuracy

with nine LASSO actions (six miRNAs [Supplemental Table 4]). A
comparison between selected miRNAs from the training sets for
both SYBR and TaqMan Lasso analyses (Supplemental Tables 3
and 4) shows that the six most relevant miRNAs were consistent
between groups despite having different primer designs and
amplification detection systems. Analysis for each miRNA for both
methods is presented in Supp. Figs. 1 and 2. The ROC analysis
using TaqMan data for the six miRNA candidates resulted in an
AUC of 0.938 and sensitivity and specificity of 91.7% and 85.7%,
respectively (Fig. 2c).
To evaluate the contribution of each of the six candidate

miRNAs, we performed a forward stepwise linear discriminate
analysis (LDA) using the TaqMan training set (n= 145) (Fig. 1a).
This analysis revealed miR-125b-5p gives the strongest perfor-
mance (65% correct classification), with a moderate increase in

performance with the addition of miR-342-3p (Fig. 3). The impact
on the classifier by adding the remaining miRNA candidates was
negligible.

Biomarker validation analysis
Expression analysis of this two-miRNA classifier in an independent
validation set of serum samples was completed using TaqMan
qRT-PCR. This set included 65 HRL samples and 69 control
samples. The validation ROC resulted in an AUC of 0.801, a modest
decrease from the training set (Fig. 2d). Both sensitivity and
specificity were calculated to be 74% for the independent
validation set.

Defining a threshold
For this test to have clinical utility, a threshold for determining a
positive or negative result for an individual test must be defined.
There are several approaches for identifying a threshold or cut point.
However, the threshold ultimately has to make sense clinically. We
selected the threshold to have the highest positive predictive value
(PPV= 89%, Fig. 4). While creating a conservative threshold with a
high PPV will result in some false negative results for which the
patient would continue with the current standard of care (i.e., clinical
exam), we can be quite certain that the positive biomarker results are
indicative of the presence of disease. This would limit hesitation to
undertake further investigative tests such as PET CT or MRI and limit
any undue stress to the patients caused by false positives.

Effect of treatment on biomarker results
To demonstrate that the classifier is specific to the presence of the
tumour, we analysed 12 samples that were obtained at the time of
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diagnosis and post-treatment (an average of 145 days post-
treatment). Samples were included in this analysis if (1) the pre-
treatment serum was positive for the classifier (i.e., the classifier
indicated the presence of disease) and (2) surgical margins were
free of severe dysplasia or any higher grade lesion. The majority
(83%) of post-treatment samples showed an altered classifier
score trending towards normal (Fig. 5).

Serial assessment of the miRNA classifier during post-
treatment follow-up
To assess the potential utility of the classifier as a tool for post-
treatment surveillance, we obtained serial blood samples from 42
patients. Patients were followed for a minimum of two years with
an average of 36.5 months where samples were collected at each
post-treatment follow-up appointment for a total of 145 samples.
Of the 42 cases, seven had recurrent disease. Using the threshold
defined via the validation and test sets, the sensitivity and

specificity for this group were 75% and 62.5% respectively.
However, adjusting the threshold vastly improved the sensitivity
to 92% and specificity remained at 75% (Fig. 6). We asked whether
treatment type had an impact on either the individual normalised
Ct values for each of the miRNAs or the classifier score. No
differences were detected (Supplemental Fig. 3). The average time
for recurrence detected clinically was 31 months with the
minimum being seven months and the maximum at 61 months.
The classifier was able to detect the recurrent disease in all cases
except one (Fig. 6a). However, we were only able to obtain blood
samples for this case 30 months before clinical recurrence;
therefore, the recurrent disease may not have been present at
that time. The classifier detected recurrence on average 15 months
post-treatment, with a minimum of five months and a maximum
of 38 months. In addition, the classifier was able to detect
recurrent disease an average of 17 months earlier than the clinical
exam (Fig. 6a). The remaining 35 patients that were followed were
recurrence-free by clinical exam at the last date examined by a
physician (Fig. 6b). The false positive rate for the non-recurrent
samples was ~2%, assuming the patients remain recurrence-free.

DISCUSSION
In this report, we describe a robust serum miRNA expression
classifier capable of delineating recurrence in OSCC before it is
clinically evident. The lack of reproducibility in previous studies
seeking to identify serum or plasma miRNA biomarkers for oral
cancer detection may be attributable to multiple factors [13–17].
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One is possible bias in classification due to the use of a small
training set. Another driver of unreproducible results may be
limiting the analysis to a small set of pre-selected miRNAs.
Multiple groups have selected miRNAs based on deregulation
observed in OSCC tissues [16, 17]; however, it is now known that
miRNAs released by tumour cells do not always reflect the miRNA
signature from the donor cell or tissue [23]. Ignoring the impact of
haemolysis on serum miRNA expression can also drive a lack of
reproducibility since the rupture of red blood cells and
subsequent release of their contents (including miRNAs) into the
surrounding fluid (e.g., blood plasma or serum) can impact a
blood-based biomarker [20]. Significantly, small RNA candidates

defined as salient for oral cancer detection in other instances have
included miRNAs that are known to be impacted by haemolysis
[20]. Finally, the absence of an independent sample set for
validation can limit reproducibility.
In addition to addressing the above confounding factors in the

design for the work reported here, we also used two different qRT-
PCR systems as a technical confirmation (a locked nucleic acid
SYBR-based system and TaqMan). These systems use two different
primer designs, thus ensuring that the miRNA values we obtained
were not PCR artefacts. As miRNAs are generally only ~22
nucleotides in length, it can be difficult to generate primers that
generate reproducible PCR data. We observed this in our data with
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miR-346, which we initially found to be more highly expressed in
cancer-associated serum samples as compared to controls (where
it was mostly undetected) using the SYBR-based qRT-PCR system.
However, with the use of TaqMan primers, miR-346 was
undetectable (>35 Cts) in both cancer and non-cancer serum
samples. Because of this unreliability across platforms, we
excluded miR-346 from further analysis.
There are several factors that must be considered when

analysing the performance of a biomarker and deciding on the
correct threshold to be used clinically. AUC, sensitivity, and
specificity values are useful for the evaluation of a marker;
however, they do not specify “optimal” cut points directly. There
are several approaches that use both sensitivity and specificity for
threshold selection [24–29]. Ultimately, the threshold selected
must be clinically useful. In this vein then, there are two main
points to consider for an oral cancer biomarker. The first is how
well the biomarker performs compared to the current gold
standard (clinical exam/watchful waiting) and the second is what
is the consequence of a positive test. In this case, it would result in
additional imaging. The riskier the consequence (i.e., invasive
surgery vs. imaging) the higher the required specificity. In our
case, we selected a threshold with higher sensitivity and with
lower specificity as we wanted to limit the number of false
positives (and the number of people receiving additional,
unnecessary imaging) as much as possible. While this results in
increased false negatives, these would occur no more often than
the current gold standard of care. This could explain why in some
of the serial recurrence cases (Fig. 6a) we observe a positive and
then a negative test. However, what is striking is that the
recurrence cases often (71% of cases) have multiple positive cases
over time whereas the non-recurrent cases do not. This could
potentially be useful in the clinical interpretation of the test in the
future. As we accrue additional samples and follow patients over
longer periods of time, we will be able to hone this threshold to
give more robust results.
The miRNA classifier identified in this work includes miRNAs

that have been individually implicated in malignant processes in
the past. The miR-125 family of miRNAs, consisting of three
homologous members (miR-125a, miR-125b-1, and miR-125b),
are involved in a wide variety of cellular processes including cell
differentiation, proliferation, metastasis, apoptosis, drug resis-
tance, and tumour immunity [30]. MiR-125b has been variably
reported as up-regulated in several cancer types and down-
regulated in several other cancer types [31]. This functioning of
miR-125b as either an oncogene or tumour suppressor is
dependent on different molecular contexts and tumour micro-
environments. In OSCC, miR-125b has been reported as down-
regulated and functioning as a tumour suppressor [32–34]. This
down-regulation in OSCC is also associated with poor prognosis
[35]. Interestingly, we observed an up-regulation of miR-125b in
serum samples from HRL patients as compared with samples
from non-cancer control subjects. Circulating miRNAs are
released from all cell types and vesicles originating from tumour
cells have been reported to have a miRNA signature that is not
always reflective of the miRNA expression pattern observed
within the tumour cells from which they originated [23]. Further,
some miRNAs may be selectively packaged into extracellular
vesicles and function as cell-cell communicators that promote
tumorigenesis [23, 36, 37]. Similarly, miR-342 has been reported
to function as a tumour suppressor in various cancer types,
playing a role in proliferation, migration, apoptosis, metabolism,
and drug resistance [38–44]. In oral cancer, miR-342 has been
reported as being down-regulated, functioning as a tumour
suppressor by targeting of LASP1 [45]. In our analysis, miR-342-
3p was observed to be down-regulated in serum samples from
oral cancer patients as compared to serum samples from non-
cancer controls. It is possible in this instance that a marked
absence of miR-342-3p expression in tumour cells precluded

packaging of this miRNA into vesicles for release into the blood,
thus accounting for its reduced expression.
The dire need for new tools to help manage follow-up for post-

treatment oral cancer is driving the investigation of circulating
tumour cells, HPV blood markers, and saliva proteomics and
methylomics [46–50]. However, results are preliminary for these
markers and none of these findings are currently available as
commercial tools. Earlier detection of recurrent lesions and/or
primary lesions –when they are smaller and have yet to spread – is
advantageous from a treatment perspective, as surgery and, in
some cases, radiation treatments are still feasible. These treatments
have the potential to increase survival rates by 20% [51, 52]. The
current standard for post-treatment follow-up – clinic visits with a
physical exam every 3–6 months for several years – has limited
efficacy for detecting early recurrence [53]. Post-treatment imaging
by PET or PET/CT following baseline assessment (within six
months) has a high sensitivity for detecting recurrence (0.95 and
0.91, respectively) compared to conventional CT (0.67) [54–56].
However, all current imaging methods are prone to false positives,
require radiation exposure, and are often inaccessible/costly.
Therefore, they are not routinely used for long-term follow-up
[51, 57]. The classifier for oral cancer recurrence we have described
herein will significantly improve on visual inspection/ physical
exam. It will do this by facilitating more stringent follow-up for
select patients and the strategic use of confirmatory imaging at
earlier time points, setting the stage for wider use of treatments
known to improve oral cancer patient outcomes.
High rates of disease recurrence are a key barrier to improving

oral cancer survival. Currently, recurrence is only detected by
clinical exam as prescribed by ‘watchful waiting’, which often
misses the earliest stages of recurrent disease. We have developed
a simple, non-invasive test that detects disease recurrence before
it is clinically evident. This test, upon further validation, will have
significant positive impacts on disease management, facilitating
earlier, more aggressive monitoring as well as more effective
surgical and/or radiation treatment of recurrence.

DATA AVAILABILITY
Analysed and raw data is available upon request.
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