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Ex vivo drug sensitivity screening predicts response to
temozolomide in glioblastoma patients and identifies
candidate biomarkers
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BACKGROUND: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research;
however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model.
We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between
in vitro and patient response to temozolomide (TMZ).
METHODS: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was
screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-
transcriptome data.
RESULTS: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune
interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith
providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ
sensitivity of which 21were validated in external datasets.
CONCLUSION: GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening
using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential
biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine
for glioblastoma.
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BACKGROUND
Over the past 5 decades, great efforts have been put towards
development of new anti-cancer therapies for the incurable brain
tumour GBM. Promising preclinical results have been obtained for
a plethora of new drugs, however, these results have not
translated into improved outcomes in patients. One reason for
this translational disconnect is that preclinical research in the past
made use of clonal GBM cell line-based model systems that do not
accurately reflect the molecular and phenotypic characteristics of
these aggressive tumours [1]. The second cause of failure stems
from the longstanding ambition in neuro-oncology to develop a

one-size-fits-all treatment for GBM patients. However, multiple
large cohort GBM characterization studies have demonstrated
clinically-relevant intratumoral and interpatient variation with
respect to driving mutations and targetable vulnerabilities [2, 3].
As such, clinically relevant screening models to address these
variabilities may add valuable insights into trial stratification and
responder identification to new treatments. Such models are
expected to lead to the identification of effective therapies for
subtypes of GBM and potentially even for individual patients.
Focus has therefore shifted to the use of patient tumour tissue in
preclinical research and culturing of patient-derived glioblastoma
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cells under serum-free conditions has now become the gold
standard. A variety of in vitro models have been developed and
these cultures are referred to as glioma stem(-like) cells (GSCs),
brain-tumour initiating cells (BITCs), tumour neurospheres, or
glioblastoma organoids. GSCs can be cultured in 2D on
extracellular matrix or in 3D in non-adherent plates (neuro-
spheres), whereas organoids are always grown in 3D. These
models have been shown to preserve the core molecular and
phenotypic signatures of GBM [1, 4–7] as well as its heterogeneity
[4, 8, 9]. Additionally, when injected into mouse brains, GSCs or
organoids give rise to invasively growing GBMs with character-
istics of the parental tumour [5, 6, 10].
In keeping with these findings, we set up a drug-screening platform

based on serum-free culture of low passage patient-derived GSCs in
monolayers. Culture in 2D offers the advantage of rapid and
straightforward assessment of drug sensitivity while preserving
genomic stability and interpatient tumour subtype signatures [11]. In
vitro cell culture, however, detaches GBM cells from their in situ
microenvironment and it is becoming increasingly clear that interac-
tions with local immune environment as well as neuronal networks
and non-cellular components, contribute to the growth and survival of
GBM [12–14]. It is therefore unknown to what extent a 2D in vitro drug
screening assay on isolated GSCs can predict clinical efficacy of
tumour-targeted agents and can ultimately support the identification
of successful new treatment options. To assess this, we performed a
retrospective analysis of patient and tumour-derived cell culture
response to TMZ, the only chemotherapeutic agent currently
integrated in the standard-of-care treatment [15, 16]. We correlated
different in vitro readouts for TMZ response to the predictive biomarker
MGMT (O6-methylguanine–DNA methyltransferase) promoter methy-
lation status, as well as to clinical outcome after TMZ therapy.
Furthermore, availability of both tumour and culture transcriptome
data allowed identification of additional genes and pathways
associated with this response.
The results of our retrospective study demonstrate the value of a

simple and straightforward 2D assay on patient-derived GSCs for
predicting clinical response to TMZ, despite the absence of the in situ
microenvironment. Not only could responders and non-responders
be identified but also an intermediate responding group, which offers
a marked improvement to the binary classification by MGMT
promoter methylation analysis. Moreover, our results suggest that
this model may offer a tool in preclinical research and drug
development to identify effective new tumour-targeted therapies
for (subtypes of) GBM, as well as corresponding biomarkers of
response. Taken together, our study provides support for further
development of patient-derived GBM stem cell monolayer drug
screening assays toward implementation in preclinical drug devel-
opment programs as well as precision medicine approaches.

MATERIALS AND METHODS
Patient selection and outcome
GSC cultures were obtained from our biobank containing tissue and derived
cell cultures from primary brain tumour samples from the Erasmus Medical
Centre, Rotterdam and Elisabeth Tweesteden Hospital, Tilburg, both in the
Netherlands. The use of patient tissue for this study was approved by the
local ethics committees of these hospitals and all patients signed informed
consent forms according to the guidelines of the Institutional Review Boards
of the respective hospitals. Tumour classification was performed by the local
neuropathologist according to guidelines of the WHO 2007 and 2016
classification of primary brain tumours. The biobank was searched for
samples obtained between September 2009 and May 2019 matching the
following criteria: primary glioblastoma (no recurrent), IDH wild type, fresh
frozen tumour material available, successful GSC culture below passage 10
available, patient received standard treatment (radiotherapy with concomi-
tant and adjuvant temozolomide [15]), and availability of complete follow-up
data. Of the 421 glioblastoma IDH wildtype tissue samples received in the
lab, 66 GSC cultures were ultimately available derived from patients treated
with Stupp regimen (Supplementary Fig. 1).

As primary endpoints for outcome, we used progression-free survival
(PFS) and overall survival (OS). PFS was calculated from the day of
operation to the first evidence of radiological and/or clinical progression,
as concluded in radiology reports of follow-up MRI scans. OS was
calculated from the day of operation until death.

Tumour processing and cell culture
Fresh glioma tissue samples obtained directly from the operating room
were processed according to protocols previously described to obtain
monolayer GSC cultures under serum-free conditions [17, 18]. Details are
available in the supplementary methods. Samples not matching parental
tumours or infected with mycoplasma were removed from further analysis
(Supplementary Fig. 1). GSC cultures below passage 10 were used, as
heterogeneity of patient-derived GSC cultures is reported to decrease at
higher passage numbers [19].

Methylation-specific polymerase chain reaction PCR for MGMT
DNA was extracted from snap frozen primary tumour material and the
derived GSC cultures using the QIAamp DNA mini kit (Qiagen) according to
manufacturer’s instructions. Isolated DNA was modified with sodium
bisulphite using the EZ DNA Methylation GoldTM kit (Zymo Research,
Baseclear) and used as a template for methylation specific (MS) PCR.
Primers specific for methylated and unmethylated MGMT promoter DNA
and PCR conditions were used as described previously [19–21]. This
procedure is used on a daily basis for patient diagnostics.

In vitro temozolomide sensitivity testing
Each of the 66 GSC cultures was screened for temozolomide (Sigma-
Aldrich) sensitivity according to the following protocol (Supplemental
Fig. 2). Cells were seeded onto 96-well plates coated with extracellular
matrix (BD Bioscience) at 1000 cells/well. A stock solution of Temozolomide
was diluted in serum-free culture medium to obtain a starting concentra-
tion of 400 μM in 0.4% DMSO, which was further diluted in twofold steps.
For controls, the same 2-fold dilution steps were applied starting with 0.4%
DMSO. Serial dilutions of TMZ and DMSO controls were added after 24 h
and cell viability was assessed by CellTiter GLO 2.0 after six days (Promega).
For details see supplementary methods. For each of the 66 GSC cultures,
one biological and three technical replicates were included for the TMZ
and DMSO dose-range. Using the same set up, reproducibility of the assay
by different operators was confirmed in 40 cell cultures, in which TMZ
sensitivity was determined by two or three different operators over
multiple years, and which revealed acceptable to excellent coefficient of
variation in 90% of the samples. (Supplementary Table 2).

DNA sequencing
DNA extracted from 56 primary GBM samples and of 19 derived cell
cultures was isolated using DNeasy Blood and Tissue kit (Qiagen) as
described previously [22]. The DNA libraries were prepared using the KAPA
library prep kit for Illumina (KAPA HTP Library Preparation Kit for low
coverage whole genome sequencing (LC-WGS)) and sequenced on an
Illumina HiSeq4000 using a flow-cell generating 1 × 51 bp single reads,
aiming for 5,000,000 unique reads per sample. Raw reads were mapped to
the human reference genome (hg19) using Burrows-Wheeler Aligner
version 0.7.12 [23], duplicate reads were removed using Picard tools
(version 1.43) (http://broadinstitute.github.io/picard) and copy-numbers
profiles were generated by binning reads in windows of 50 kb using
QDNAseq [24]. The resulting log R-values were segmented with the ASCAT
algorithm (v2.0.7) [25].

RNA sequencing
RNA of 56 primary GBM samples and of 19 derived cell cultures was
isolated using Trizol (ThermoFisher Scientific) as described in supplemen-
tary methods. RNA libraries were prepared from 2 ug total RNA, using
KAPA stranded mRNA library prep and sequenced single-end 50 bp on an
Illumina HiSeq 4000. Before mapping, the optical duplicates and adaptors
were removed with clumpify and fastx-toolkit, respectively. Next the reads
were mapped to the human reference genome GRCh38 with STAR2.6 and
gene-expression matrices were generated with HTSeq. The cell line RNA
sequencing data were preprocessed using R package “EdgeR” [26]. Low
expressed genes were first filtered out using the function “filterByExpress”
after which the raw count matrix was normalized using TMM method in
log2 scale (“CalcNormFactors” function).
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Correlation analysis of DNA and RNA sequences between cell
cultures and matched tissues
Matched tissue and cell culture correlation analyses were computed using
the “cor.test” function in R with Pearson method. The correlation of the
copy number variation was performed on normalized logR values
associated to the same chromosome regions, corresponding to 81.4% of
the sequenced regions. The correlation of gene expression was performed
on the normalized gene expression values. All p values were corrected for
multiple comparison using the False Discovery Rate (FDR).
Gene Set Enrichment Analysis (GSEA) and over-representation analysis

utilizing Enrichr API was performed in python with the use of GSEApy [27].
In short, the previously normalized transcriptomic data of matching tissue
and cell culture samples, containing only genes shared across the two
biological groups, underwent GSEA utilizing the Enrichr libraries MSigDB_-
Hallmark_2020, GO_Biological_Processes_2021, GO_Molecular_Func-
tion_2021, and GO_Cellular_Component_2021 [28–30]. A combination of
the nominal (nom) p value, false discovery rate (FDR) q-value, and family-
wise error rate (FWER) p value were used to determine the significance of a
gene set normalized enrichment score (NES). Seaborn cluster mapping
capabilities were used to elucidate and visualize further structure in GSEA
data [31]. To further understand the relationship between cell culture and
tissue data, violin plots were generated via Seaborn to compare the
expression of hallmark GBM genes across model systems. Wilcoxon signed-
rank statistical testing and Spearman’s correlation analysis was done via
SciPy [32]. In addition, GSEApy’s Enrichr based over-representation analysis
was used to perform GO enrichment analysis on genes uniquely present in
either tissue or cell samples utilizing the GO libraries available on Enrichr.
Further details are available in the Supplementary methods.

Correlation analysis of the TMZ response with RNA-seq data of
cell cultures and tumour tissues
Differential expression analysis was conducted to compare the expressed
genes in cell culture and tissue RNA-seq data. The cell culture data (n= 19)
was categorized based on % viability at 100 uM TMZ, while the patient
tissue samples (n= 56) were categorized into three groups: responders,
intermediates, and non-responders based on overall survival. Lowly
expressed genes were filtered out before identifying DE genes using the
DESeq2 package [33] in R. Spearman correlation analysis was performed on
the significant DE genes of cell culture data to determine genes correlated
with TMZ response, using the R function “cor.test” [34]. Cox proportional
hazards analysis was conducted using the with R function “survival”
[35, 36], on the significant DE genes of tissue data to identify genes with an
effect on survival or TMZ response in patients. To validate the overlapping
genes between cell culture and tissue data sets, a Cox proportional hazards
analysis was conducted on two additional cohorts (the GLIOTRAIN dataset
and TCGA dataset). For details see supplementary methods. The pathway
analysis was carried out in the Gene Set Enrichment Analysis (GSEA)
program [37], using the Hallmark gene sets from Molecular Signatures
Database (MSigDB). The cut-off values for significantly correlated pathways
were set at FDR q-values < 0.15. For details see supplementary methods.

Statistical analysis
GraphPad Prism software version 9 (GraphPad Software) was used for
defining IC50, percentage viability and Area Under the Curve (AUC) values
and related statistical analysis. Nonlinear regression (curve-fit) and the
equation [inhibitor] vs normalized response with variable slope model was
applied to calculate the IC50 values. The reported IC50 is the concentration
of TMZ that gives a response half way between the highest and lowest
value of each curve. In some cases this value may deviate from Y= 50.
Survival curves were generated using GraphPad Prism and survival
analyses were performed using SPSS (IBM Statistics 28.0.1.0). Student’s
t test was used to correlate in vitro sensitivity of TMZ with MGMT status.
P values below 0.05 were considered significant for these analyses.

RESULTS
Molecular comparison of GBM tissues and derived GSC
cultures
To establish whether in vitro culture systems retain the genetic
programs of matched tumours, total DNA and RNA was isolated
and sequenced from a panel of tumours and derived cell cultures
(n= 19). Correlation analysis was performed to assess similarity
between the paired samples. Results revealed that DNA sequences

remained largely conserved between the tumours and their
corresponding cell cultures as shown in Fig. 1a and as individual
plots of paired samples in Supplementary Fig. 3 (Pearson’s mean
r= 0.77, median r= 0.77, range 0.48–0.92, Supplementary
Table 3A).
Transcriptome comparison also revealed a strong correlation

between cell cultures and patients’ tissues. Mean overall Pearson’s
correlation coefficient between all tissues and all cultures was
r= 0.76 (p < 0.0001) (Fig. 1b). The individual correlations coeffi-
cients of tissue-culture pairs also revealed high correlations
coefficients ranging from r= 0.64–0.86 (median 0.77) (Supple-
mentary Table 3B and Supplementary Fig. 4). As expected, distinct
changes were also noted between parental tissue and derived
cultures. Unsupervised clustering of the 18,058 genes commonly
expressed between the parental tumours and derived cell cultures
(consensus genes) demonstrates that there is a clear delineation
between cell cultures and tissues. Two gene clusters show an
inverse relationship and a third demonstrating no clear delinea-
tion (Supplementary Fig. 5). GSEA of the two data sets, utilizing
the MSigDB Hallmark 2020 as a reference, found cell culture
samples to possess higher expression of genes relating to cell
cycle replication, including G2M checkpoint, E2F and MYC targets
[38]. Conversely, tissue samples displayed an increased expression
in genes relating to immune processes including inflammatory
responses and IL-6/JAK/STAT pathway (Fig. 1c, d). Further GSEA
analysis across 3 additional reference libraries (GO series)
reinforces this data. Tissues contain increased expression of
cytokine, lysosome and MHC complex related processes. In
contrast, cell cultures contain increased expression of nuclear,
chromosome, RNA, and DNA related genes (Supplementary
Fig. 6A–C). These trends are further reinforced when analysing
the genes unique to tissue samples, where an overrepresentation
of genes implicated in neuronal intercellular communication were
identified, including serotonin, calcium and chloride channels, as
well as neuropeptide activity. Furthermore, processes related to
cytokine and chemokine activity as well as regulation of immune
response were identified (Supplementary Fig. 6D).
Whether these changes affect the expression patterns of hallmark

genes in GBM between tissues and derived cultures, was assessed by
comparing expression levels of the hallmark genes EGFR, PDGFRA,
PTEN, CDK4, RB1, TP53, MET, MYC, HIF1A, PIK3CA, STAT3 as well as
MGMT (Fig. 1e). A complete list of hallmark genes is provided in
Supplementary Table 4. For some genes, including EGFR, significant
up or downregulation of the mean expression was noted between
tissues and derived cell cultures. However, the interpatient expres-
sion profiles were generally well-maintained between the sample
sets, as noted by the limited number of crossings of connector lines
and the fact that there were no significant negative Spearman
correlation values. However, results from genes based on CDK6,
FGR1 and BCL2 may need to be interpreted with caution
(Supplementary Table 4).
Taken together, our data implies that tumour samples undergo

a transcriptomic shift from intercellular communication in situ to
increased cell cycle and growth activity in vitro. Despite these
changes, hallmark gene expression profiles are maintained in a
patient-specific manner.

Sample selection and analysis of representativeness of the
cohort
To assess whether these changes in microenvironment affect the
potential of ex vivo glioblastoma cultures to predict response to
treatment, we retrieved tumour samples and derived GSC cultures
from our glioma biobank for a retrospective study to correlate
in vitro response to TMZ to clinical response. We identified
66 samples fulfilling the inclusion criteria of this study (Supple-
mentary Fig. 1). The median age of the 66 patients in our cohort
was 61.5 (35.4–81.0) years (Supplementary Table 1). In all patients,
radiotherapy with concomitant TMZ treatment was initiated
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between 4–6 weeks after surgery. Eleven of the 66 patients
received a short-course chemoradiation schedule by physicians’
choice (mainly because of age >60 and/or low Karnofsky
performance score) and with the exception of one patient no
adjuvant cycles of TMZ. The remaining 55 patients received a
median of 5 adjuvant TMZ cycles. Median PFS and OS of the 66
patients was 6.65 (1–36.4) months and 13.69 (2.8–37.4) months,
respectively (Supplementary Table 5).
The MGMT promoter methylation status was determined for all

tumour and cell culture samples included in the study. The
distribution of this prognostic and predictive tumour biomarker
within our cohort was 47% methylated and 53% unmethylated.
Median PFS and OS of the MGMT methylated group was 8.55 and

17.19 months, respectively, versus 5.92 and 12.4 months in the
unmethylated group (Supplementary Table 5). These results are
comparable to the results of the Stupp trial [16], indicating that
our cohort is representative for the GBM population.

MGMT status is preserved in the majority of primary GSC
cultures and predicts in vitro response to TMZ
The MGMT status was available for 64 of the 66 GSC cultures and
compared to the parental tumours. This revealed that in 49 out of
64 cases (76%) the MGMT status was preserved. In 5 cases MGMT
was unmethylated in the parental tumour, whereas it was found
methylated in the derived cell culture (UM→M, 8%). In 7 cases,
MGMT promoter methylation in the tumour was lost in culture
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(M→UM, 11%). A small percentage of samples revealed a selection
from a mixed signal in the tumour to a homogeneous signal in
culture (5%) (Fig. 2a).
Dose-response analysis was performed upon screening of

temozolomide on the panel of 66 primary GBM cultures
(Supplementary Fig. 7). Based on the results, three readouts for
TMZ efficacy were determined: IC50 values, area under the curve
(AUC) and percentage cell viability at 100 μM. This concentration is
close to the maximum reported cerebrospinal fluid (CSF)
concentration of 75 μM for TMZ and was previously found to
differentiate between sensitive versus resistant GSC cultures to
TMZ in our drug testing model [39, 40].
As expected, MGMT methylated GSC cultures displayed higher

sensitivity to TMZ than unmethylated cultures in all three readouts,
with AUC revealing the largest difference (Fig. 2b–d). Contrary to
other anti-cancer agents tested in this platform [18], TMZ treatment
can yield a steep dose response curve within the effective range
(25–300 μM) (Supplementary Fig. 7), generating larger variability in
calculated IC50 values between replicates. Moreover, for highly
resistant cultures which retain >50% viability at the highest TMZ
dose (16 of 66 samples), the IC50 values are based on extrapolation
and are therefore less reliable. As a result, using the percentage cell
viability and AUC values as readouts, yields more robust results
which also show stronger correlation to MGMT status.

In vitro response to TMZ is predictive for clinical response of
corresponding patients
Two types of analyses were performed to assess whether in vitro
response to TMZ correlates with clinical outcome of patients receiving

Stupp protocol. Patients who received short-course radiotherapy plus
TMZ (n= 11) were excluded from analysis to increase the uniformity of
the cohort with regard to other prognostic factors such as age or
Karnofsky Performance Score (KPS). For the remaining 55 patients, we
performed Spearman correlation analysis and Cox regression between
the in vitro response data (IC50, AUC, and % viability at 100μM values)
and their clinical outcome (PFS and OS). For the Spearman correlation
analysis, % viability at 100 μM gave the strongest correlation with both
PFS (r=−0.38, p= 0.014) and OS (r=−0.495, p= 0.0002) (Fig. 3a, b).
AUC also correlated significantly with PFS (r=−0.29, p= 0.03)

and OS (r=−0.399, p= 0.0026) whereas IC50 values revealed non-
significant correlation with PFS (r=−0.206, p= 0.132) but
significant correlation with OS (r=−0.35, p= 0.009) (Supplemen-
tary Fig. 8). Cox regression analysis also revealed statistically
significant correlation of % viability at 100 μM with PFS (p= 0.012)
and OS (p < 0.00005) (Supplementary Table 6).
The distribution of the in vitro results revealed a gradient in

TMZ response. We therefore visualized the correlation of in vitro
response (%viability) vs. OS by Kaplan-Meier analysis using 3
groups to emphasize that the response is non-binary. Dividing the
group by quartiles of % viability into responders (<50%),
intermediate responders (50–75%) and non-responders (>75%)
at 100 μM TMZ, revealed significantly different survival curves for
the three groups (median survival of 27.8, 15.9, and 12.3) months
for responders (R), intermediates (I) and non-responders (NR),
respectively (log-rank R vs NR p= 0.0001, R vs I p= 0.0023, and I
vs NR p= 0.011) (Fig. 3c). This segregation is again confirmed by
the Cox regression analysis, where 3-group segregation was used
as the covariate (p < 0.00005). The outcome of responders and
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non-responders generally aligned with the cell culture MGMT
status, however, for 33% of patients (the intermediates) cell
culture MGMT status did not predict response to TMZ (Fig. 3d).
The patients categorized in these response groups did not
significantly differ in terms of age or KPS scores, nor in number
of adjuvant TMZ cycles received or extent of tumour resection
(Supplementary Fig. 9). Segregation of the group by quartiles of
AUC values (<50%, 50–75%, >75%) or IC50 values (<100, 100–300,
>300 uM TMZ) did not significantly differentiate non-responders
from intermediates but did discriminate responders from these
groups (Supplementary Fig. 10, Supplementary Table 6). Segrega-
tion of the cohort by tumour MGMT status revealed a less
significant and less specific overall survival prediction (p= 0.001)
(Fig. 3e). For 19 samples, we also assessed whether MGMT gene
expression levels are better correlated to TMZ response than
MGMT promoter methylation status. This revealed slightly more
consistency between the MGMT expression levels and the

response groups (p= 0.002) than between the MGMT levels and
promoter methylation status (p= 0.011). Thus, compared to the
established biomarker MGMT methylation status, which postulates
a bimodal response to TMZ, our assay provides a means to
separate patients more specifically into three distinct response
categories.
To further substantiate these results, MRI images at follow-up

time points post TMZ/RTx treatment were collected from 3
predicted responders (viability below 50%) and 3 predicted non-
responders (viability above 75%). As shown in Fig. 4, clear tumour
progression is seen between 3 and 9 months after surgery (during
TMZ/RTx treatment) in the non-responder patients. In the
responder patients, the residual tumour after surgery remains
stable during TMZ/RTx treatment (GS295, GS911) (Fig. 4). Alto-
gether, our results indicate that in vitro TMZ response data, in
particular % cell viability at 100 µM, is predictive of treatment
response to TMZ/RTx in patients.
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Transcriptome analysis of cell cultures identifies markers in
relation to TMZ response
Drug response data was compared to transcriptome data
obtained for 19 GSC cultures to identify genes related to in
vitro response to TMZ. This analysis identified 637 differentially
expressed genes significantly correlated to TMZ response,
including MGMT (Spearman’s r= 0.71, p= 0.0006) (Supplemen-
tary file 1). Figure 5a depicts a heatmap in which the top
100 signature genes, 50 for resistance and 50 for sensitivity, are
plotted ranked by the coefficients of the correlation analysis.
MGMT is marked by an arrow and the response groups are
marked at the top in green (R), blue (I) and red (NR). Notably, the
responders clearly show the most differential gene signature
compared to the other samples. Distribution of the established
GBM transcriptomic subtypes (classical, mesenchymal, pro-
neural) within TMZ response groups revealed a slightly higher
number of mesenchymal-like GBM cases in the non-responders
(6 of 10) compared to responders (2 of 4). The only 3 proneural
GBM cases were grouped in the non-responders (Supplementary
Fig. 11).

Validation of cell culture response signatures with tissue
transcriptomic data
Transcriptome data of tumour tissue of the GLIOTRAIN Erasmus
MC samples (n= 56), of which n= 19 corresponding to the cell
cultures, was correlated to the patients’ overall survival. Of note, all
patients in the GLIOTRAIN cohort received TMZ + radiation
therapy. This analysis revealed 2542 differentially-expressed genes
which significantly correlated to survival, including MGMT (Hazard
ratio= 1.85, p < 0.0001) (Supplementary Fig. 12, Supplementary
file 1). Interestingly, MGMT promoter methylation status did not

correlate with OS (p= 0.16). Of the 2542 genes, 121 genes
overlapped with the genes correlated to TMZ response in the in
vitro data set (Fig. 5b, Supplementary file 1).
Pathway analysis performed on the 2542 differentially

expressed genes from the tumours and the 637 genes from GSC
cultures identified 10 significant overlapping pathways, many of
which have previously been related to TMZ resistance including; (i)
DNA repair, (ii) G2M check point, (iii) E2F targets (iv) PI3K/Akt/
mTOR signalling and (v) myc targets (Fig. 5c, Supplementary file 1).
Validation of the identified genes related to TMZ response was

performed on two additional data sets. We compared our gene list
to the remaining GLIOTRAIN (non-Erasmus) samples not included
in the initial analysis (n= 70) as well as to the publicly-available
TCGA data considering only GBM patients who received TMZ
treatment (n= 89). Within the GLIOTRAIN data set, 16 of 121
genes were significantly correlated to survival, including MGMT
(HR1.21, p < 0.024) (Table 1A). Likewise, the TCGA data provided
6 significantly correlated genes. One overlapping gene between
both cohorts was identified, the transcriptional repressor Zinc
Finger protein 540 (ZNF540) (HR 0.66, p= 0.025) (Table 1B).
Interestingly, in the GLIOTRAIN cohort 13 of 16 identified genes
were related to improved survival (HR < 1) versus only 1 of 6 in
TCGA. This may be related to the fact that GLIOTRAIN samples
were selected to contain a relatively high percentage of long-term
(>36 months) survivors (30%) compared to TCGA (5.6%), whereas
TCGA had more short-term (<9 months) survivors (42.7%)
compared to GLIOTRAIN (7%). All together, these results
demonstrate that in vitro sensitivity testing on molecularly
characterized cell cultures can help identify signatures related to
drug response, which in the case of TMZ could be validated on
external data sets.
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DISCUSSION
In this retrospective study we assessed whether loss of interactions
between GBM cells and their tumour microenvironment affect the
predictive value of a 2D functional screen testing a clinically-relevant
pharmaceutical intervention. To do this, we charted the transcriptomic
differences between GSC cultures and corresponding parental
tumours, and we assessed the feasibility of the GSC monolayer screen
to predict clinical efficacy of TMZ for GBM patients.
Correlation analysis of DNA and RNA sequences from low-

passage GBM cultures with parental tissues revealed in general a
strong correlation between paired samples, including expression
profiles for hallmark genes of GBM. However, transcriptomic
comparison also revealed marked differences, with pathways
related to neuronal intercellular communication and immune cell
interactions being exclusive for tissues, and pathways related to
cell cycle processes being upregulated in cell cultures. The origin
of this transcriptomic shift can be attributed to the selection of
cells from the in situ tumour environment that have an intrinsic
survival advantage in vitro, as well as the adaptation of these cells
to 2D culture condition. With the growing body of evidence that
tumour micro-environmental interactions play an important role
in GBM growth and development in situ [12–14], the question is
raised whether drug testing on patient-derived isolated tumour
cells can predict patient response to a tumour-targeted treatment.
To address this, we implemented a simple and straightforward 2D

drug screening approach, which allowed accurate and reproducible
drug efficacy assessment [40]. This offers an advantage to 3D model
systems where precise cell numbers and live-dead ratios can be
difficult to determine. Screening of 55 low-passage GSC monolayer

cultures for TMZ sensitivity revealed a robust correlation between
in vitro effects and survival of patients receiving treatment with TMZ
(Figs. 3, 4). Significant correlations to PFS and OS were found using
either AUC or percentage cell viability after treatment with 100 μM
TMZ, a dose selected based on therapeutic ranges found in cerebral
spinal fluid of TMZ treated patients [39]. Our assay is the first functional
screen to reveal 3 categories of TMZ response which significantly
correlate with patient survival. Known confounders, unrelated to the
2D-monolayer model, such as age, physical condition (KPS) or extent of
tumour resectionwere not significantly different between the response
groups. This classification into three groups offers a marked
improvement to the established dichotomous biomarker for TMZ
response, the MGMT promoter methylation status.
As expected, TMZ was more effective in MGMT methylated

than unmethylated cell cultures (Fig. 2b–d), confirming previous
studies [5, 41]. However, considerable inter-tumoral variability in
TMZ sensitivity within both groups was observed. This finding is
corroborated by the discovery of an intermediate response
group in patients which contains a near-equal distribution of
methylated and unmethylated samples (Fig. 3d). Indeed, gene
expression levels of MGMT also revealed a gradient, with
intermediate expression related to intermediate response to
TMZ (Fig. 3f), indicating that MGMT is not expressed in a binary
manner. MGMT gene expression levels also correlated better to
OS than the promoter methylation status, as clearly noted in the
GLIOTRAIN cohort (Supplementary Fig. 12). Resistance to TMZ in
the MGMT methylated group can also be explained by other
factors related to TMZ response, such as deficiency in functional
DNA mismatch-repair (MMR) [42]. Additionally, HOX signature,
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EGFR expression, as well as base excision repair enzymes have
been linked to TMZ resistance [43, 44]. Altogether, these factors
indicate that MGMT promoter methylation status alone is not
sufficient for predicting response to TMZ and that a direct
ex vivo functional test may provide a more accurate prediction.
In this context, functional screening can also aid in selecting
patients who are not expected to benefit from TMZ therapy.
These patients could be spared the burden of unnecessary
toxicity and offered alternative treatments or enrolment in
clinical trials in the up-front setting, an increasingly applied
strategy in GBM clinical research [45].
The use of patient-derived ex vivo tumour models for drug

testing may thus aid in treatment selection. Such approaches are
being undertaken for various types of cancer and the generated
data confirm the predictive power of patient-derived in vitro
assays, including GBM [46–49]. Howard et al. described a
technology combining in vitro TMZ sensitivity data from
separately cultured bulk tumour and bioreactor-cultured stem
cells which allowed prediction of patient response to TMZ [50].
More recently, Stockslager et al. described an interesting approach
to predict patient TMZ response based on GSC single-cell mass
[51]. Both previous studies confirm the predictive power of ex vivo
drug testing assays for GBM, however, the applied techniques and
analysis tools may not be easily translated to routine laboratory
and clinical use. In this respect, our simple monolayer culture with
ATP-based viability read-out as detailed in this paper offers an
important advantage.

The clinical relevance of TMZ testing in our GSC monolayer assay,
also prompted us to investigate whether molecular markers related to
TMZ sensitivity could also be identified using this system. The pathway
analysis identified 10 pathways present in both cell culture and tumour
data relating to TMZ response. Interestingly, many of these pathways
have previously been reported to play a role in TMZ resistance
mechanisms. DNA repair, G2/M checkpoint and E2F targets are closely
related cellular processes and important players in TMZ resistance by
regulating the cell cycle and allowing cells to repair genomic damage
[52]. Downstream effects of the transcription factorMyc have also been
reported to drive TMZ resistance [53], including the identified Myc
targets CDK2, PHB2 and PRDX3 [54–56]. Of the 121 identified genes, 16
could be validated in the GLIOTRAIN data set, including MGMT, and 6
in the TCGA data set. One overlapping gene was identified, ZNF540,
which is a member of the ZNF protein family reported to bind to major
vault protein to inhibit the ERK signalling pathway [57]. It was
previously also identified in a study into multi-gene signatures to
predict prognosis and treatment response in GBM [58]. Together, these
findings support our hypothesis that functional screening in patient-
derived GBM models can offer a tool to identify candidate novel
therapies and corresponding signatures of response. Larger scale
studies, powered for biomarker discovery, are required to validate our
biomarker findings for TMZ and future candidate drugs for GBM
treatment.
A platform that can predict drug sensitivities of individual tumours

may also advance the fulfilment of patient-tailored cancer treatment.
Indeed, our data shows that interpatient variability in GBM hallmark

Table 1. Gene lists external validation.

A. GLIOTRAIN data set

Gene Gene Name Hazard ratio P. value P. adj

RPS2 Ribosomal Protein S2 1.91 0.0167 0.144

APRT Adenine phosphoribosyl transferase 1.63 0.0391 0.263

MGMT O-6-Methylguanine-DNA Methyltransferase 1.21 0.0248 0.179

ZNF471 Zinc Finger Protein 471 0.69 0.0149 0.138

ZNF540 Zinc Finger Protein 540 0.67 0.0197 0.159

ZMAT1 Zinc Finger Matrin-Type 1 0.64 0.0081 0.089

ZNF585B Zinc Finger Protein 585B 0.60 0.0013 0.019

ZNF493 Zinc Finger Protein 493 0.60 0.0060 0.073

AMY2B Amylase Alpha 2B 0.58 0.0108 0.109

CLEC2D C-Type Lectin Domain Family 2 Member D/LLT1 0.56 0.0003 0.005

ZNF224 Zinc Finger Protein 224 0.54 0.0001 0.003

ZNF547 Zinc Finger Protein 547 0.52 0.0002 0.003

SWT1 SWT1 RNA Endoribonuclease Homologue 0.48 0.0001 0.003

RNPC3 RNA Binding Region (RNP1. RRM) Containing 3 0.43 0.0016 0.021

FTX Long noncoding RNA FTX 0.38 0.0001 0.003

PSMA3-AS1 PSMA3 Antisense RNA 1 0.28 0.0001 0.003

B. TCGA data set

Gene Gene Name Hazard ratio P. value P. adj

ARPC1A Actin Related Protein 2/3 Complex Subunit 1A 2.57 0.01 0.68

NTAN1 N-Terminal Asparagine Amidase 2.01 0.04 0.71

RPP25 Ribonuclease P and MRP Subunit P25 1.44 0.03 0.68

ANLN Anillin. Actin Binding Protein 1.39 0.03 0.68

SYNJ2 Synaptojanin 2 1.31 0.03 0.68

ZNF540 Zinc Finger Protein 540 0.67 0.03 0.68

External validation of genes significantly correlated to survival of TMZ/RTx-treated GBM patients
A) Table showing the n= 16 candidate genes related to TMZ response which correlated to GBM patient survival in the GLIOTRAIN data set.
B) Table showing the n= 6 candidate genes related to TMZ response which correlated to GBM patient survival in the TCGA data set. P values < 0.05 were
considered significant.
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gene expression levels is, in general, well-retained in the derived cell
cultures. However, genomics-based targeted therapies have thus far
not significantly improved outcome of GBM patients [59]. One cause
for this failure is the redundancy in compensatory mechanisms that
these highly heterogeneous tumours possess, making it difficult to
predict efficacy of a targeted agent [60]. Personalized drug screening of
individual tumours offers a tool to capture the functional effects of
candidate drugs on the heterogeneous tumour population, irrespec-
tive of the genomic make-up of the tumour, therewith providing
prediction of drug efficacy as well as the opportunity to identify
alternative (combination) treatment options. However, prior to
implementing stratified cohorts based on GSC screening, an additional
prospective cohort study should be performed to validate the findings
of this study, and confirmation of the assay’s predictive value by other
laboratories would contribute to its validity.
Taken together, despite a contextual shift in growing conditions

from the natural tumour microenvironment to in vitro culture
conditions, patient-derived GBM 2D ex vivo models offer a valuable
tool in preclinical research and functional drug screening may aid in
identifying effective therapies for subgroups or individual patients.
With the implementation of such model systems in drug development
programs, it is expected that promising agents will also perform better
in (stratified) clinical trials, therewith improving the outlook for GBM
patients.
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