Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical Studies

Subclonal accumulation of immune escape mechanisms in microsatellite instability-high colorectal cancers

Abstract

Background

Intratumor heterogeneity (ITH) in microsatellite instability-high (MSI-H) colorectal cancer (CRC) has been poorly studied. We aimed to clarify how the ITH of MSI-H CRCs is generated in cancer evolution and how immune selective pressure affects ITH.

Methods

We reanalyzed public whole-exome sequencing data on 246 MSI-H CRCs. In addition, we performed a multi-region analysis from 6 MSI-H CRCs. To verify the process of subclonal immune escape accumulation, a novel computational model of cancer evolution under immune pressure was developed.

Results

Our analysis presented the enrichment of functional genomic alterations in antigen-presentation machinery (APM). Associative analysis of neoantigens indicated the generation of immune escape mechanisms via HLA alterations. Multiregion analysis revealed the clonal acquisition of driver mutations and subclonal accumulation of APM defects in MSI-H CRCs. Examination of variant allele frequencies demonstrated that subclonal mutations tend to be subjected to selective sweep. Computational simulations of tumour progression with the interaction of immune cells successfully verified the subclonal accumulation of immune escape mutations and suggested the efficacy of early initiation of an immune checkpoint inhibitor (ICI) -based treatment.

Conclusions

Our results demonstrate the heterogeneous acquisition of immune escape mechanisms in MSI-H CRCs by Darwinian selection, providing novel insights into ICI-based treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of driver genes in MSI-H CRCs.
Fig. 2: HLA mutations and loss of heterozygosity (LOH) cause loss of antigen-presentation function.
Fig. 3: Mutation profiles and evolutionary trees of MSI-H CRCs.
Fig. 4: Multiregion immunohistochemistry (IHC) demonstrated the intratumor heterogeneity of the immune microenvironment.
Fig. 5: Darwinian selection mainly shapes ITH in MSI-H CRCs.
Fig. 6: Simulation model demonstrated Darwinian selection shapes ITH under the high immune selective pressure.

Similar content being viewed by others

Data availability

Raw sequencing data were deposited in the Japanese Genotype-phenotype Archive under the accession number JGAS000322.

References

  1. Saito T, Niida A, Uchi R, Hirata H, Komatsu H, Sakimura S, et al. A temporal shift of the evolutionary principle shaping intratumor heterogeneity in colorectal cancer. Nat Commun. 2018;9:2884.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Uchi R, Takahashi Y, Niida A, Shimamura T, Hirata H, Sugimachi K, et al. Integrated multiregional analysis proposing a new model of colorectal cancer evolution. PLoS Genet. 2016;12:e1005778.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–87.e2073.

    Article  CAS  PubMed  Google Scholar 

  4. Andre T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383:2207–18.

    Article  CAS  PubMed  Google Scholar 

  5. Kloor M, von Knebel Doeberitz M. The immune biology of microsatellite-unstable cancer. Trends Cancer. 2016;2:121–33.

    Article  PubMed  Google Scholar 

  6. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumours with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Friebel E, Kapolou K, Unger S, Nunez NG, Utz S, Rushing EJ, et al. Single-cell mapping of human brain cancer reveals tumour-specific instruction of tissue-invading leukocytes. Cell. 2020;181:1626–42.e1620.

    Article  CAS  PubMed  Google Scholar 

  8. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumours to PD-1 blockade. Science. 2017;357:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ, Quist M, et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 2018;8:730–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takatsuno Y, Mimori K, Yamamoto K, Sato T, Niida A, Inoue H, et al. The rs6983267 SNP is associated with MYC transcription efficiency, which promotes progression and worsens prognosis of colorectal cancer. Ann Surg Oncol. 2013;20:1395–402.

    Article  PubMed  Google Scholar 

  11. Shiraishi Y, Kataoka K, Chiba K, Okada A, Kogure Y, Tanaka H, et al. A comprehensive characterization of cis-acting splicing-associated variants in human cancer. Genome Res. 2018;28:1111–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

    Article  PubMed  Google Scholar 

  13. Kurashige J, Hasegawa T, Niida A, Sugimachi K, Deng N, Mima K, et al. Integrated molecular profiling of human gastric cancer identifies ddr2 as a potential regulator of peritoneal dissemination. Sci Rep. 2016;6:22371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977;81:2340–61.

    Article  CAS  Google Scholar 

  16. Iwasaki WM, Innan H. Simulation framework for generating intratumor heterogeneity patterns in a cancer cell population. PLoS One. 2017;12:e0184229.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sato K, Kawazu M, Yamamoto Y, Ueno T, Kojima S, Nagae G, et al. Fusion kinases identified by genomic analyses of sporadic microsatellite instability-high colorectal cancers. Clin Cancer Res. 2019;25:378–89.

    Article  CAS  PubMed  Google Scholar 

  18. Jonchere V, Marisa L, Greene M, Virouleau A, Buhard O, Bertrand R, et al. Identification of positively and negatively selected driver gene mutations associated with colorectal cancer with microsatellite instability. Cell Mol Gastroenterol Hepatol. 2018;6:277–300.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tikidzhieva A, Benner A, Michel S, Formentini A, Link KH, Dippold W, et al. Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer. 2012;106:1239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Miranda NF, van Dinther M, van den Akker BE, van Wezel T, ten Dijke P, Morreau H. Transforming growth factor β signaling in colorectal cancer cells with microsatellite instability despite biallelic mutations in TGFBR2. Gastroenterology. 2015;148:1427–37.e8.

    Article  PubMed  Google Scholar 

  21. Matsumoto A, Shimada Y, Nakano M, Oyanagi H, Tajima Y, Nakano M, et al. RNF43 mutation is associated with aggressive tumour biology along with BRAF V600E mutation in right-sided colorectal cancer. Oncol Rep. 2020;43:1853–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. von Loga K, Woolston A, Punta M, Barber LJ, Griffiths B, Semiannikova M, et al. Extreme intratumor heterogeneity and driver evolution in mismatch repair deficient gastro-oesophageal cancer. Nat Commun. 2020;11:139.

    Article  Google Scholar 

  23. Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O'Brien T, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal. Cell. 2018;173:611–23.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68:820–3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Demeulemeester J, Dentro SC, Gerstung M, Van Loo P. Biallelic mutations in cancer genomes reveal local mutational determinants. Nat Genet. 2022;54:128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohsaka S, Nagano M, Ueno T, Suehara Y, Hayashi T, Shimada N et al. A method of high-throughput functional evaluation of EGFR gene variants of unknown significance in cancer. Sci Transl Med. 2017;9;eaan6566.

  27. Madsen RR, Knox RG, Pearce W, Lopez S, Mahler-Araujo B, McGranahan N, et al. Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner. Proc Natl Acad Sci USA. 2019;116:8380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saito Y, Koya J, Araki M, Kogure Y, Shingaki S, Tabata M, et al. Landscape and function of multiple mutations within individual oncogenes. Nature. 2020;582:95–99.

    Article  CAS  PubMed  Google Scholar 

  29. McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell. 2017;171:1259–71.e1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aguiar VRC, Masotti C, Camargo AA, Meyer D. HLApers: HLA typing and quantification of expression with personalized index. Methods Mol Biol. 2020;2120:101–12.

    Article  CAS  PubMed  Google Scholar 

  31. Fayen J, Huang JH, Meyerson H, Zhang D, Getty R, Greenspan N, et al. Class I MHC alpha 3 domain can function as an independent structural unit to bind CD8 alpha. Mol Immunol. 1995;32:267–75.

    Article  CAS  PubMed  Google Scholar 

  32. Brusic V, Petrovsky N, Zhang G, Bajic VB. Prediction of promiscuous peptides that bind HLA class I molecules. Immunol Cell Biol. 2002;80:280–5.

    Article  CAS  PubMed  Google Scholar 

  33. Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol. 2015;33:1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.

    CAS  PubMed  Google Scholar 

  35. Buhard O, Cattaneo F, Wong YF, Yim SF, Friedman E, Flejou JF, et al. Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumours. J Clin Oncol. 2006;24:241–51.

    Article  CAS  PubMed  Google Scholar 

  36. Reiter JG, Makohon-Moore AP, Gerold JM, Bozic I, Chatterjee K, Iacobuzio-Donahue CA, et al. Reconstructing metastatic seeding patterns of human cancers. Nat Commun. 2017;8:14114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Graham TA, Sottoriva A. Measuring cancer evolution from the genome. J Pathol. 2017;241:183–91.

    Article  PubMed  Google Scholar 

  38. Kawazu M, Ueno T, Saeki K, Sax N, Togashi Y, Kanaseki T, et al. HLA class I analysis provides insight into the genetic and epigenetic background of immune evasion in colorectal cancer with high microsatellite instability. Gastroenterology. 2022;162:799–812.

    Article  CAS  PubMed  Google Scholar 

  39. Montesion M, Murugesan K, Jin DX, Sharaf R, Sanchez N, Guria A, et al. Somatic HLA class I loss is a widespread mechanism of immune evasion which refines the use of tumour mutational burden as a biomarker of checkpoint inhibitor response. Cancer Discov. 2021;11:282–92.

    Article  CAS  PubMed  Google Scholar 

  40. Lakatos E, Williams MJ, Schenck RO, Cross WCH, Househam J, Zapata L, et al. Evolutionary dynamics of neoantigens in growing tumours. Nat Genet. 2020;52:1057–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boudreau JE, Mulrooney TJ, Le Luduec JB, Barker E, Hsu KC. KIR3DL1 and HLA-B density and binding calibrate NK education and response to HIV. J Immunol. 2016;196:3398–410.

    Article  CAS  PubMed  Google Scholar 

  42. D'Amico S, D'Alicandro V, Compagnone M, Tempora P, Guida G, Romania P, et al. ERAP1 controls the interaction of the inhibitory receptor KIR3DL1 With HLA-B51:01 by affecting natural killer cell function. Front Immunol. 2021;12:778103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lipinski KA, Barber LJ, Davies MN, Ashenden M, Sottoriva A, Gerlinger M. Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer. 2016;2:49–63.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kakiuchi N, Yoshida K, Uchino M, Kihara T, Akaki K, Inoue Y, et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature. 2020;577:260–5.

    Article  CAS  PubMed  Google Scholar 

  45. Househam J, Heide T, Cresswell GD, Spiteri I, Kimberley C, Zapata L et al. Phenotypic plasticity and genetic control in colorectal cancer evolution. Nature. https://doi.org/10.1038/s41586-022-05311-x (2022).

  46. Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M, et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med. 2022;386:2363–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, et al. Impaired HLA Class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7:1420–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D'Amico S, Tempora P, Melaiu O, Lucarini V, Cifaldi L, Locatelli F, et al. Targeting the antigen processing and presentation pathway to overcome resistance to immune checkpoint therapy. Front Immunol. 2022;13:948297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer. 2021;9:e002899.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8:1136.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Institute for Department of Surgery of Kyushu University Beppu Hospital for sample collection and analysis. We also thank K. Oda, M. Kasagi, S. Sakuma, N. Mishima, T. Kawano, M. Oshiumi, and M. Utou for their technical assistance.

Funding

This project was supported by Science (JSPS) Grant-in-Aid for Science Research (15H05912, 19K09220, 22H04925:PAGS, 20H05039, 20K08930, 20K17556, 21K07179, 22K02903, 22K09006, 23K06765, and 23K08074), Priority Issue on Post-K computer (hp170227, hp160219), OITA Cancer Research Foundation (JP20cm0106475h0001), the Project for Cancer Research and Therapeutic Evolution (19 cm0106504h0004, 21 cm0106475h0002), AMED under Grant Number (23ck0106825h001, 23ck0106800h001, 22ama221501h0001, 21ck0106690s0201, 20ck0106547h0001, 20ck0106541h0001 and 22ama221XXXh0001), a research grant from the Takeda Science Foundation, and The Princess Takamatsu Cancer Research Fund. This study used the supercomputing resources provided by the Human Genome Center, Institute of Medical Science, University of Tokyo (http://sc.hgc.jp/shirokane.html).

Author information

Authors and Affiliations

Authors

Contributions

YK: Study design, sample collection, sample preparation, data analysis, and manuscript writing. AN, KSaeki, KT and HHaeno: Study design, project management, data analysis, and manuscript writing. SN: Study design, project management, sample collection, and sample preparation. TTobo: Histopathological diagnosis. SH, YO, HS, TH, and HN: Data analysis. AK, KSato, DS, HHirata, YH, TToshima, YY, TM, MO, SM, MU, MM, YD, and HE: Study design. TU, HM, and SI: Sample collection. YS: Sequence data assembly and study design. TS and KM: Project supervision, study design, and final approval of the article.

Corresponding author

Correspondence to Koshi Mimori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study design was approved by the institutional review boards and ethics committees of hospitals where the study participants were admitted (Cancer Institute Hospital, Japanese Foundation for Cancer Research Institutional Review Board: Protocol Number 2011-1075, Kyushu University Institutional Review Board: Protocol Number 2020-74). The study was conducted in accordance with the principles of the Declaration of Helsinki. All patients provided informed consent.

Consent for publication

Consent was obtained from all participants to publish supporting data including Supplementary Table 1.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, Y., Niida, A., Nagayama, S. et al. Subclonal accumulation of immune escape mechanisms in microsatellite instability-high colorectal cancers. Br J Cancer 129, 1105–1118 (2023). https://doi.org/10.1038/s41416-023-02395-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02395-8

Search

Quick links