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BACKGROUND: The effectiveness of conservative treatment of endometrial carcinoma (EC) with oral progesterone therapy, such as
medroxyprogesterone acetate (MPA), can be blunted due to primary or acquired resistance, but the underlying mechanisms remain
incompletely defined.
METHODS: Genome-wide CRISPR screening was performed to identify potential regulators in response to MPA in Ishikawa cells.
Crystal violet staining, RT–qPCR, western blotting, ChIP–qPCR and luciferase assays were employed to elucidate the p53-AarF
domain-containing kinase 3 (ADCK3) regulatory axis and its roles in sensitizing EC cells to MPA treatment.
RESULTS: ADCK3 is identified as a previously unrecognized regulator in response to MPA in EC cells. Loss of ADCK3 in EC cells
markedly alleviated MPA-induced cell death. Mechanistically, loss of ADCK3 primarily suppresses MPA-mediated ferroptosis by
abrogating arachidonate 15-lipoxygenase (ALOX15) transcriptional activation. Moreover, we validated ADCK3 as a direct
downstream target of the tumor suppressor p53 in EC cells. By stimulating the p53-ADCK3 axis, the small-molecule compound
Nutlin3A synergized with MPA to efficiently inhibit EC cell growth.
CONCLUSIONS: Our findings reveal ADCK3 as a key regulator of EC cells in response to MPA and shed light on a potential strategy
for conservative EC treatment by activating the p53-ADCK3 axis to sensitize MPA-mediated cell death.
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BACKGROUND
EC is one of the most common gynecological malignancies, and it
ranks third in incidence among female cancers [1]. EC accounts for
nearly 5% of female cancer cases and over 2% of cancer-related
deaths worldwide in women [2]; the lifetime risk of EC in women is
~3%, and the median age at diagnosis is ~61 years old [3].
According to global cancer statistics, it is estimated that there
were 417,000 newly diagnosed cases and nearly 97,000 deaths
from EC in 2020 [1]. Epidemiological evidence has indicated that
EC exhibited a steady increasing tendency in age-standardized
incidence in recent decades [4], and more importantly, the
incidence of EC is expected to continue to increase over the next
decade [5].
Although surgical treatment provides a favorable prognosis for

patients with early-stage EC, it is not ideal for young women who
wish to preserve their fertility [6]. Oral progesterone therapy, such
as MPA, represents an alternative strategy for conservative
treatment of stage IA, low-grade EC patients or patients in
advanced stages who cannot tolerate surgery [7, 8]. Although
50–70% of patients respond well to high-dose progesterone
initially, de novo or acquired resistance is still a major problem

during conservative EC treatment [9–11]. Dysfunction of proges-
terone receptor (PR) is thought to largely account for progester-
one resistance [12]. In clinical practice, constant stimulation of
progesterone may reduce PRB levels, which, in turn, results in an
imbalance between PR- and estrogen receptor (ER)-mediated
signaling and consequently leads to EC cell growth and invasion
[12]. The aberrant expression of PR can be achieved through
epigenetic mechanisms [13]. Evidence has shown that epigenetic
modulators can upregulate functional PR and restore the
sensitivity of EC to progesterone therapy [14]. Additionally, the
metabolic alterations and redox imbalance upon EC onset are also
highly relevant to progesterone resistance, and multiple molecular
disorders are involved [15–18]. However, due to the complexity of
progesterone-mediated conservative treatment of EC, the regula-
tors and molecular mechanisms governing progesterone resis-
tance in EC cells remain incompletely defined.
ADCK3 (also known as COQ8A) is a mitochondrial protein that

acts as an atypical kinase involved in the biosynthesis of
coenzyme Q (CoQ) [19]. Based on its structural features, ADCK3
is assumed to play a regulatory, rather than a catalytic, role during
CoQ biosynthesis [19]. Recently, ADCK3 was reported to possess
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ATPase activity that is responsible for the integrity of the CoQ
biosynthesis-related protein complex [20, 21]. Mutations in ADCK3
are associated with the development of progressive neurological
disorders caused by primary CoQ deficiency due to ADCK3
dysfunction [22–24]. Mechanistically, decreased CoQ levels in
ADCK3-deficient cells lead to impaired sulfur oxidation pathways,
resulting in sulfide accumulation and consequent increased
oxidative stress [25]. Replenishment of exogenous CoQ may
partially rescue CoQ-dependent enzymatic activity, ATP produc-
tion, and cellular levels of oxygen-free radicals in the fibroblasts of
patients with ADCK3 mutations [26, 27]. To date, the potential
roles of ADCK3 in tumorigenesis or tumor progression have been
poorly characterized. Whether and how ADCK3 participates in
regulating progesterone resistance during conservative EC treat-
ment remain largely unknown.
The RNA-guided CRISPR/Cas9 can be programmed to induce

DNA double-strand breaks (DSBs), resulting in frameshift indel or
premature termination codon mutations at specific genomic loci
[28]. CRISPR/Cas9 has been combined with genome-scale guide
RNA libraries to investigate gene function in a genome-wide
manner and elucidate genotype–phenotype interactions in terms
of cell proliferation, immunotherapy and drug resistance in human
diseases, including cancer [29].
In this study, we performed genome-wide CRISPR knockout

screening to uncover potential factors involved in regulating EC
cell responsiveness to MPA therapy. Among these identified
candidates, we confirmed that loss of ADCK3 rendered EC cells
resistant to MPA. Loss of ADCK3 repressed MPA-induced
ferroptosis through transcriptional downregulation of ALOX15.
Interestingly, we validated that ADCK3 was a direct downstream
target of p53 in EC cells. Combined therapy with Nutlin3A and
MPA synergistically suppressed EC cell growth. This effect was
achieved partially through Nutlin3A-induced activation of the p53-
ADCK3 axis, which, in turn, sensitized EC cells to MPA-induced
cell death.

METHODS
Cell culture, constructs, transfection, and reagents
The Ishikawa, HEK293T and H1299 cell lines were cultured in DMEM
(Corning, 10-013-CVR) supplemented with 10% (v/v) FBS (Gibco,
10099141). The HEC-265 cell line was cultured in EMEM (M&C Gene
Technology, CM10010) with 15% FBS. The AN3CA cell line was cultured in
EMEM supplemented with 10% FBS, 1× NEAA (Gibco, 11140050) and 1mM
sodium pyruvate (M&C Gene Technology, CC007). The cell lines were
originally purchased from ATCC or Cell Resource Center of IBMS-CAMS,
freshly thawed from our stock and cultured for no longer than 2 months.
All cell lines were negative for mycoplasma contamination. The transfec-
tions were conducted by using Lipofectamine 2000 (Invitrogen, 11668500)
according to the manufacturer’s protocol. To generate a luciferase reporter,
annealed oligos were cloned into a pGL3-basic vector (Promega, E1761).
MPA was purchased from Selleck (S2567). The following reagents were
used as: Z-VAD-FMK (Solarbio, IZ0050) 10 µg/ml; necrostatin-1 (Sigma‒
Aldrich, N9037) 10 µg/ml; ferrostatin-1 (Sigma‒Aldrich, SML0583) 2 µM;
3-MA (Sigma‒Aldrich, M9281) 2 mM; PD146176 (Selleck, S6956) 5 µM;
liproxstatin-1 (Selleck, S7699) 2 µM; UAMC-3203 (Selleck, S8792) 2 µM. The
antibodies and the sequence of siRNA, sgRNA and primers are listed in
Supplementary Table S1.

CRISPR screening
In total, 400 ng human Brunello library (Addgene, 73178) was transformed
into 100 μl MegaX DH10B T1R Electrocomp™ Cells (Invitrogen, C6400-03)
for electroporation, and then the cells were seeded into 15-cm dishes and
incubated in a shaker incubator for 11–14 h at 32 °C, 220 rpm. The plasmid
DNA was extracted with an EndoFree Plasmid Maxi Kit (Qiagen, 12362). The
lentivirus was produced by lipofectamine-mediated transfection of
Brunello library and packaging plasmids in HEK293T cells cultured in
UltraCULTURETM Serum-free Medium (Lonza, BEBP12-725F). The viruses
were harvested every 24 h for next 3 days. A total of 2 × 107 Ishikawa cells
were infected with lentivirus (MOI= 0.3) for 48 h and further selected with

puromycin for 2 days. The selected cells were grown in regular medium for
7 days, and then treated with 40 µM MPA for 4 days. After that, the cells
were cultured in regular medium for additional 10 days. gDNA from each
cell group was isolated using a Blood&Cell Culture DNA Maxi Kit (Qiagen,
13362) and amplified by PCR. The PCR products were purified and
subjected to NGS by using the Novaseq 6000-PE150 platform (Novogene,
Beijing).

Generation of ADCK3-KO cells
The oligos producing sgRNA to target ADCK3 were annealed and cloned
into the BbsI-linearized lentiCRISPR v2 construct (Addgene, 52961). The
lentivirus expressing Cas9 and the indicated sgRNA were collected from
HEK293T cells transfected with the expression construct and the packaging
constructs, including pMD2.G (Addgene, 12259) and psPAX2 (Addgene
12260). Ishikawa cells were infected with the lentivirus and subjected to
selection with puromycin (1 μg/ml; Invitrogen, A1113803). Two positive
clones that were confirmed by western blot and sequencing were used for
subsequent experiments.

RT–qPCR
Total RNA was extracted from cultured cells using TRIzol reagent
(Invitrogen, 15596018). cDNA was synthesized from 1 μg RNA using
iScript™ Reverse Transcription Supermix (Bio-Rad, 1708841) according to
the manufacturer’s protocol. The relative expression of each gene was
measured in a Bio-Rad CFX Connect Real-Time PCR System by using the
SYBR Green method (Tiangen, FP205-02). The expression of each target
gene was normalized to β-Actin or B2M.

Western blotting
Cells were harvested and lysed in NP-40 buffer with 1× protease inhibitor
(Sigma–Aldrich, P8340) for 30min on ice. Cell lysates were centrifuged at
15,000 rpm for 15min at 4 °C, and the supernatant was collected. Equal
amounts of protein from each sample denatured with 1× loading buffer
were separated by SDS–PAGE, transferred to nitrocellulose membranes,
recognized with indicated antibodies and exposed with ECL substrate
(Pierce, 32106 or 34076).

Luciferase assay
A firefly reporter containing wild-type or mutated p53-binding elements of
the ADCK3 promoter and a Renilla control reporter were cotransfected with
or without p53-expressing constructs for 24 h, followed with or without
indicated treatment for an additional 24 h. The relative luciferase activity
was measured by the Dual-Luciferase Reporter Assay System (Promega,
E1910) according to the manufacturer’s protocol.

ChIP‒qPCR
Cells were fixed with 1% formaldehyde for 10min at RT and lysed in ChIP
Lysis Buffer for 10min at 4 °C. After sonication, the lysates were centrifuged
at 15,000 rpm for 10min at 4 °C, and the supernatants were collected and
precleaned in dilution buffer with 1× protease inhibitor incubated with
salmon sperm DNA–saturated protein A agarose (Millipore, 16-157) for 1 h
at 4 °C. The precleaned lysates were aliquoted equally and incubated with
the indicated antibodies overnight at 4 °C. Then, each sample was
incubated with saturated Protein A agarose for 2 h at 4 °C. After incubation,
the agarose was washed sequentially with TSE I, TSE II, Buffer III and Buffer
TE. The agarose-binding complex was eluted by elution buffer and reverse
cross-linked for at least 6 h at 65 °C. Purified DNA was extracted by a PCR
purification kit (QIAGEN, 28106), and qPCR was performed to detect the
relative enrichment of the indicated transcription factor.

In vitro cell proliferation assay
Cells were seeded at a density of 3 × 105 into six-well plates with three
replicates and cultured for three consecutive days. Then, the cell number
was analyzed by crystal violet staining. The relative cell number was
calculated by measuring the extracted crystal violet absorption at 590 nm.

Xenograft tumor growth
A total of 1 × 107 living cells were mixed with Matrigel (Corning, 354248) at
a 2:1 ratio for a total volume of 200 μl. The cell-Matrigel mixture was then
subcutaneously injected into B-NDG mice (NOD-PrkdcscidIl2rgtm1/Bcgen;
6 weeks old, female; Biocytogen). When the tumors grew to an average of
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100mm3, MPA (12mg/kg) [30] and/or Nutlin3A (25mg/kg) [31, 32] were
administered daily by intraperitoneal injection. Approximately 2 weeks
after treatment, the mice were sacrificed, and the tumor weight was
measured.

Lipid ROS measurement
The cells treated with or without MPA for 36 h were then incubated with
C11-BODIPY staining solution (10 µM; ABclonal Technology, RM02821) in
PBS for 20min at 37 °C in the dark. The cells were rinsed twice with PBS
and immediately analyzed by flow cytometry.

Correlation analysis
GSE121367 dataset containing RNA-seq information of parental or
acquired MPA-resistant Ishikawa cells was re-analyzed for the expression
of ADCK3. The correlation of ADCK3 expression with MPA resistance was
analyzed based on TCGA dataset. Specifically, a total of 6056 DEGs were
identified in the GSE121367 dataset using “limma” analysis, filtered by
|log2FC | >1, adjusted P value < 0.05. The 2975 upregulated genes were
used as signatures of MPA resistance activity. ssGSEA was used to calculate
MPA resistance activity in 548 EC samples of TCGA. Pearson analysis was
used to calculate the correlation of ADCK3 expression with MPA resistance
activity. “ggplot2” and “ggpubr” were used for visualization.

Statistical analysis
The results are presented as the means ± SD. The difference was determined
using a two-tailed, unpaired Student’s t test, one-way or two-way ANOVA,
and PERMANOVA. P < 0.05 was denoted as statistically significant.

RESULTS
Design of CRISPR screening for MPA resistance-related genes
The Brunello library used in this study is an optimized CRISPR
knockout sgRNA library that is characterized by improved on-
target and reduced off-target activity toward the human genome
[33]. In general, the Brunello library comprises 4 unique sgRNAs for
each of 19,114 genes along with 1000 nontargeting control
sgRNAs [33]. We first expanded the library and assessed the
distribution of sgRNA in the amplified library by next-generation
sequencing. The histogram of sgRNA reads represents a great
evenness of the library after amplification (Supplementary Fig.
S1A). In addition, a scatter plot of sgRNA reads between the
Brunello library and the sgRNA pool collected from the infected
cells after puromycin selection showed that the complexity of the
Brunello library was well maintained during the infection and
selection processes (Supplementary Fig. S1B). In summary, the
representation of our prepared sgRNA library was validated for
qualifying the following screening applications.
We sought to identify novel regulators involved in MPA-induced

EC cell death by performing genome-wide CRISPR screening with
the highly optimized Brunello CRISPR sgRNA library (Fig. 1). To this
aim, we employed Ishikawa cells, a human EC cell line, as model
cells since Ishikawa cells highly express PR [34]. We adopted a
positive selection strategy in which the genes whose loss allowed
cell survival in the presence of MPA were screened (Fig. 1).

Specifically, Ishikawa cells successfully transduced with the
Brunello sgRNA library and selected with puromycin were treated
with MPA for 4 days, and the cells were allowed to grow and
proliferation in MPA-null culture conditions for an additional
10 days (T14). The cells subjected to infection and selection but
not treatment with MPA were set up as control cells (T0). Deep
sequencing was performed to compare the abundance of all
sgRNAs between the initial pooled cells (T0 cells) and MPA-treated
pooled cells (T14 cells) (Fig. 1).

CRISPR screening of the candidates in regulating MPA
responsiveness
To enrich the genes that are extremely critical in the regulation of
MPA resistance during our screening, we treated Ishikawa cells
with 40 μM MPA, a relatively high concentration of MPA used in
vitro that dramatically reduced cell viability up to 80% in
comparison with the control cells without MPA treatment (Fig. 2a).
As shown in Fig. 2b (left panel), the histogram of sgRNA read
counts from T0 cells revealed a great evenness of sgRNA
distribution with a low number of missing sgRNAs, indicating
good quality of cell preparation during the infection and selection
processes. In contrast, MPA treatment resulted in an obviously
heterogeneous distribution of sgRNA read counts across the
target genes (Fig. 2b, right panel), indicating that the majority of
sgRNA was lost due to MPA overselection-mediated cell death
during our screening. Compared with T0 cells, 662 sgRNAs that
corresponded to 166 genes were specifically enriched in T14 cells
(Fig. 2c and Supplementary Tables S2 and S3). We noted the top
25 candidate genes whose enrichment levels were relatively
higher than the others (Fig. 2d) since they could likely be more
important in mediating MPA resistance than other less enriched
genes. Interestingly, principal component analysis (PCA) of the
gene expressional profiles of these top 25 screened candidate
genes in EC samples from the TCGA dataset showed a dramatic
discrepancy between the normal and malignant groups (Fig. 2e),
further supporting that dysfunction of such candidate genes is
critically involved in EC onset. In addition, we noticed that the
mutation rate of these candidate genes, such as ADCK3, B4GALT5,
LPCAT3 and UNC80, was much lower than that of classical
oncogenes (e.g., PIK3CA) or tumor suppression genes (e.g., PTEN),
further prompting us to speculate that expression changes in
these candidate genes could be a major mechanism involved in
EC initiation or progression (Supplementary Fig. S2). Along with
this notion, we paid much attention to ADCK3 since ADCK3 was
the most enriched candidate and the four sgRNAs showed similar
effects during screening (Fig. 2f), suggesting that downregulation
of ADCK3 is most likely to render EC cells resistant to MPA.

ADCK3 is critical for sensitizing EC cells to MPA treatment
ADCK3 was considered an atypical protein kinase involved in CoQ
biosynthesis [19]. However, the biological functions of ADCK3 in
response to MPA-mediated conservative therapy for EC are
unclear. We depleted endogenous ADCK3 by siRNA in Ishikawa

Ishikawa

Brunello library

Puromycin MPA
Culture 

without MPA

DNA extraction

Amplification of sgRNANGS

(4 days) (10 days)

T0 T14

Fig. 1 Design of CRISPR screening for MPA resistance-related genes. The pipeline of genome-wide CRISPR screening for Ishikawa cells in
response to MPA treatment.
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cells, and the knockdown (KD) efficiency was confirmed by
RT–qPCR (Fig. 3a). ADCK3-KD alone had no obvious effect on cell
growth (Fig. 3b). However, MPA-induced cell death was markedly
alleviated upon ADCK3-KD (Fig. 3b, c). In addition, we also
evaluated other candidate genes. As shown in Supplementary Fig.
S3A, MIGA2, LPCAT3 and UNC80 were efficiently depleted in
Ishikawa cells. However, to our surprise, knockdown of these
candidate genes individually showed minor rescue of MPA-
induced cell death (Supplementary Fig. S3B, C). These results
may reflect a functional complementation of these three
candidate genes during MPA-induced cell death.

To further validate the effect of ADCK3 on MPA-induced cell
death, we generated Ishikawa ADCK3 knockout (KO) cells by the
CRISPR/Cas9 technique. We successfully obtained two indepen-
dent KO clones, as confirmed by western blotting and DNA
sequencing (Fig. 3d, e). Consistently, both single clonal cell lines
with ADCK3 deletion exhibited obvious resistance to MPA
treatment compared with parental cells (Fig. 3f, g). Since we
used a relatively high concentration of MPA (40 μM) that was
expected to display harsh cytotoxicity to EC cells, we then
investigated the effect of ADCK3 on cell death in response to a
low dosage of MPA. Treatment of parental Ishikawa cells with a
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low concentration of MPA (20 or 30 μM) also induced marked
cell death (Supplementary Fig. S4A, B). More importantly, under
such conditions, ADCK3-KO cells exhibited much stronger
resistance to MPA-induced cell death, especially in response to
20 μM MPA treatment, where MPA-induced cell death was
almost completely abrogated by ADCK3-KO (Supplementary Fig.
S4A, B).
To measure whether ADCK3-mediated regulation of EC cell

sensitivity to MPA is a general phenotype, we employed another
PR-positive EC cell line, HEC-265, for testing. The KD efficiency of
ADCK3 was confirmed in HEC-265 cells (Supplementary Fig. S4C).

Similar to the results in Ishikawa cells, depletion of ADCK3 in HEC-
265 cells also led to obvious rescue of MPA-induced cell death
(Supplementary Fig. S4D, E). Progressive loss of PR expression in
EC cells may confer acquired MPA resistance during conservative
EC treatment in clinical practice [12], suggesting that PR is
required for EC cells in response to MPA. To evaluate whether the
effect of ADCK3 on cell death upon MPA treatment is reliant on
the presence of PR, we knocked down ADCK3 in AN3CA cells, a PR-
negative EC cell line (Supplementary Fig. S4F). We found that
AN3CA cells were highly resistant to MPA treatment, even at the
relatively high concentration used in this assay (40 μM)
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(Supplementary Fig. S4G, H). Accordingly, depletion of ADCK3
showed no effect on MPA-induced cell death (Supplementary Fig.
S4G, H), supporting that PR is required for ADCK3-mediated
sensitization of EC cells to MPA.
To corroborate our findings in vivo, we established a xenograft

tumor growth model to observe potential MPA-mediated regres-
sion of tumor growth (Fig. 3h). As shown in Fig. 3i, j, MPA
treatment inhibited the tumor growth of parental Ishikawa cells.
However, the tumor growth of Ishikawa cells with ADCK3-KO
exhibited no obvious responsiveness to MPA treatment (Fig. 3i, j).
Furthermore, by analyzing the TCGA-UCEC dataset, we observed
that the low expression of ADCK3 was significantly correlated with
MPA resistance (Fig. 3k). Long-term treatment with a low dosage
of MPA can induce acquired MPA resistance in EC cells [12].
Interestingly, by analyzing the dataset containing gene expres-
sional profiles of parental Ishikawa cells and Ishikawa cells with
acquired MPA resistance [35], we found that ADCK3 expression
was reduced in MPA-resistant Ishikawa cells (Supplementary Fig.
S4I), suggesting that ADCK3 downregulation might also be

relevant to acquired MPA resistance in EC cells. Taken together,
our data indicate that ADCK3 is critically involved in sensitizing EC
cells to MPA treatment.

ADCK3 contributes to MPA-induced ferroptosis by
upregulating ALOX15
MPA may induce cell death in various ways [36–38]. To determine
the underlying mechanism(s) by which the MPA-ADCK3 axis
promotes EC cell death, we sought to inhibit the potential cell
death pathways employed by MPA. To this end, Z-VAD-fmk,
ferrostatin-1 (Fer-1), 3-methyladenine (3-MA) and necrostatin-1
(Nec-1) were used to block apoptosis, ferroptosis, autophagic cell
death and necroptosis, respectively. As shown in Fig. 4a, b, the
inhibition of the ferroptosis pathway by Fer-1 markedly, but not
completely, blocked MPA-induced cell death in Ishikawa cells. In
contrast, blockade of either apoptosis, autophagic cell death or
the necroptosis pathway alone had a negligible effect on MPA-
induced cell death (Fig. 4a, b). In addition, we monitored major cell
death pathway(s) in response to MPA treatment in HEC-265 cells.
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Similarly, we noticed that only Fer-1 successfully alleviated MPA-
induced cell death (Supplementary Fig. S5A, B). To exclude the
potential bias of Fer-1 in terms of its efficacy among different
types of tumor cells, we attempted to block the ferroptosis
pathway by using distinct ferroptosis inhibitors, including
liproxstatin-1 and UAMC-3203. Interestingly, both inhibitors
rescued MPA-induced cell death to similar levels (Fig. 4c, d), and
these levels were comparable to those after Fer-1 treatment
(Fig. 4b vs. d). These results indicate that multiple cell death
pathways may cooperate in MPA-induced cell death and that
ferroptosis could be a major pathway involved in MPA-induced
cell death in EC.
The accumulation of lipid reactive oxygen species (ROS)

represents a hallmark feature of ferroptosis [39]. Indeed, we
observed that MPA treatment elevated lipid ROS levels in parental
Ishikawa cells (Fig. 4e). Although the basal levels of lipid ROS were
slightly increased in ADCK3-KO cells, we still found that the
abrogation of ADCK3 profoundly blocked MPA-induced lipid ROS
production (Fig. 4e). These results suggested that loss of ADCK3
blunts MPA-induced ferroptosis of EC cells.
Ferroptotic cell death is a complex process that is modulated by

different pathways involving numerous regulatory factors [39].
Therefore, we evaluated whether ADCK3 contributed to MPA-
induced ferroptosis by regulating these key factors (Fig. 4f). To this
end, we performed an RT–qPCR assay to detect their expression
changes in the presence or absence of ADCK3 in response to MPA
treatment. Among these factors, ALOX15, SLC7A11 and SLC3A2 had
markedly increased expression in parental Ishikawa cells by MPA,
and the effect was dose-dependent (Fig. 4g and Supplementary
Fig. S6). Notably, the elevated expression of ALOX15, SLC7A11 and
SLC3A2 in response to MPA treatment was almost completely
abrogated upon ADCK3 knockout (Fig. 4g and Supplementary Fig.
S6). SLC7A11 and SLC3A2 form a heterodimer that functionally
serves as a cystine/glutamate antiporter system [40]. Since
accumulated evidence indicates that blocking cysteine uptake
by inhibition or downregulation of SLC7A11 triggers ferroptosis
[41], we speculated that the upregulation of SLC7A11 and its
functional partner SLC3A2 might not account for MPA-induced,
ADCK3-involved ferroptosis. In contrast, ALOX15, an enzyme that
oxidizes polyunsaturated fatty acids, has been reported to
increase lipid ROS and participate in ferroptosis induction in
cancer cells [42]. Therefore, our data suggest that ALOX15 is a key
effector downstream of ADCK3 during MPA-induced ferroptosis in
EC cells. To validate this point, we treated Ishikawa cells with
PD146176, an ALOX15 inhibitor, to measure the potential changes
in MPA-induced cell death. As shown in Fig. 4h, i, despite not
completely rescued, inhibition of ALOX15 activity indeed markedly
alleviated MPA-induced cell death. Taken together, our data reveal
that ADCK3 contributes to MPA-induced ferroptosis at least in part
by upregulating ALOX15.

ADCK3 is a direct downstream target of p53 in EC cells
Since the presence of ADCK3 benefits EC cell sensitivity to MPA,
we attempted to investigate how ADCK3 is regulated in EC cells.
Interestingly, although ADCK3 is critical to MPA-induced cell
death, MPA did not regulate ADCK3 levels in EC cells (Supple-
mentary Fig. S7A, B). Previous literature showed that ADCK3 was
upregulated in response to the MDM2 inhibitor Nutlin3A or DNA
damage, and inhibition of ADCK3 expression partly suppressed
p53-induced apoptosis [43]. Given that EC patients who receive
conservative treatment with MPA are usually in stage IA, which
has a relatively high percentage of tumors harboring wild-type
p53 [44], we were then intrigued to evaluate whether p53
regulates ADCK3 in EC cells. As expected, Nutlin3A treatment
easily upregulated p21, a canonical target gene of p53, in HEC-265
cells (conserved wild-type p53), but not in Ishikawa cells
(conserved mutant p53, p53-M246V) (Fig. 5a). Under the same
conditions, the expression of ADCK3 was also elevated in response

to increasing amounts of Nutlin3A in HEC-265 cells (Fig. 5a).
Consistent with the changes in mRNA, the protein levels of both
p21 and ADCK3 were gradually increased by Nutlin3A in a dose-
dependent manner in HEC-265 cells but not in Ishikawa cells
(Fig. 5b). Similarly, the upregulation of ADCK3 at both the mRNA
and protein levels in HEC-265 cells was also observed in response
to Nutlin3A treatment in a time-dependent manner (Fig. 5c, d). In
summary, our data indicate that p53 transcriptionally regulates
ADCK3 in EC cells.
To investigate whether ADCK3 is a direct target of p53, we

performed a ChIP assay to measure p53 binding to ADCK3 loci.
We noticed a potential p53-binding element located within
intron 1 (+389− +409) of ADCK3 [45, 46], and p53 enrichment
at this locus was significantly enhanced upon Nutlin3A treat-
ment (Fig. 5e, f). To evaluate whether p53 binding to this
element has a functional consequence, we conducted a series of
luciferase assays with reporters containing the wild-type or
mutant p53-binding element of ADCK3 (Fig. 5g). As shown in
Fig. 5h, Nutlin3A treatment increased the luciferase activity of
the wild-type reporter in HEC-265 cells but not in Ishikawa cells.
In addition, only wild-type p53, but not the transactivation-
deficient p53-R175H mutant, was able to drive the expression of
the ADCK3 reporter containing the wild-type p53-binding
element (Fig. 5i). In contrast, wild-type p53 failed to activate
the luciferase reporter harboring a mutant p53-binding element
(Fig. 5j). All these results revealed that p53 drives ADCK3
transcriptional activation by binding with ADCK3 loci. Taken
together, our data identify ADCK3 as a downstream target gene
of p53 in EC cells.

Activation of the p53-ADCK3 axis synergizes with MPA to
suppress EC cell growth
The maintenance of wild-type p53 in tumor tissues is a favorable
marker for EC patients [47]. Therefore, we assessed whether p53-
mediated ADCK3 activation enhances the effect of conservative
EC treatment with MPA. Notably, MPA alone did not activate p53,
as neither stabilization of p53 nor upregulation of p21 (a p53
downstream target) was observed in response to MPA treatment
in HEC-265 cells (Supplementary Fig. S7B). To this aim, we
stimulated the p53-ADCK3 axis with Nutlin3A and evaluated the
potential synergistic effect of Nutlin3A and MPA on the growth
suppression of EC cells. As shown in Fig. 6a, b, individual treatment
with Nutlin3A or MPA exhibited a relatively modest antiprolifera-
tive effect on control HEC-265 cells, whereas the combination
treatment with Nutlin3A and MPA displayed a much stronger
suppressive effect on cell growth, confirming that Nutlin3A and
MPA synergize to antagonize EC cell growth. To investigate
whether ADCK3 contributes to such a synergistic effect, we
depleted ADCK3 in HEC-265 cells and observed a reduced
antiproliferative effect by combined treatment with Nutlin3A
and MPA (Fig. 6a, b), suggesting that upregulation of ADCK3 by
Nutlin3A in p53-wild-type cells is critically involved in enhancing
MPA-induced EC cell growth inhibition.
To corroborate the synergistic effect on tumor suppression by

combination therapy in vivo, we evaluated the combination
treatment of MPA and Nutlin3A in a HEC-265 cell-based xenograft
tumor model (Fig. 6c). As expected, treatment with MPA alone was
able to inhibit tumor growth (Fig. 6d, e), although the suppressive
effect on the growth of HEC-265 cells in vivo was relatively weak
compared with that of the Ishikawa cell-based xenograft model
(Fig. 3i, j). In addition, Nutlin3A treatment induced xenograft
tumor growth regression (Fig. 6d, e). More importantly, the
combination of MPA and Nutlin3A displayed a much more potent
suppressive effect on tumor growth than either treatment alone
(Fig. 6d, e). Taken together, our data reveal a potential therapeutic
strategy for EC involving activation of the p53-ADCK3 axis, which,
in turn, sensitizes EC cells to conservative treatment with MPA
(Fig. 6f).
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DISCUSSION
In this study, by employing genome-scale CRISPR screening, we
identified and confirmed ADCK3 as a key regulator in MPA-

induced EC cell death. During this screening, we adopted a
positive selection strategy to specifically enrich the sgRNAs
remaining in living EC cells after MPA treatment. However, we
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cannot exclude the possibility that certain genes targeted by
sgRNAs in dead cells render EC cells more sensitive to MPA
treatment. Therefore, a negative selection strategy could also be
worthy of future research. In addition, we deliberately over-
selected the cells by using a high concentration of MPA (Fig. 2b) to
discover candidates that are extremely important for impairing
MPA resistance in EC cells. Interestingly, the candidates revealed
by this strategy seemed to be highly associated with EC initiation
or progression, since the top 25 candidates already worked well as
markers to differentiate normal endometrial tissues and malignant
tumors of EC (Fig. 2e).
Ferroptosis is a novel form of programmed cell death driven by

iron-dependent lipid peroxidation [39]. A recent study showed
that ferroptosis-related genes may play a crucial role in EC
through multiple biological processes, including the p53 signaling
pathway [48]. For example, p53 reduces the production of
glutathione by transcriptionally decreasing SLC7A11 levels to
hamper the function of GPX4, leading to lipid peroxidation and
ferroptosis [39]. In addition, overexpression of spermidine/
spermine N1-acetyltransferase 1 (SAT1), a direct p53 target gene,
promotes ROS-induced ferroptosis by upregulating ALOX15 via
unclear mechanisms [42]. In our study, we found that MPA

elevated intracellular lipid ROS and induced ferroptosis in EC cells,
largely in a manner dependent on the presence of ADCK3 (Fig. 4e).
Given that we validated ADCK3 as a downstream target gene of
p53 (Fig. 5a–j), our study revealed an alternative p53-ADCK3-
ALOX15 axis in regulating ferroptosis, which could be comple-
mentary to the p53-SAT1-ALOX15 pathway in ferroptosis induc-
tion in response to lipid ROS. Furthermore, bioinformatic analyses
have revealed that the expression of ferroptosis-related genes
appears to predict prognosis and to be closely correlated with
drug resistance in EC [49, 50]. Since evidence has shown a
reduction in ALOX15 levels during the EC tumorigenesis process
[51], more studies are needed to determine whether ALOX15
could be a potential prognostic biomarker of EC in the future.
The maintenance of wild-type p53 in EC tissues represents an

important biomarker for patients with a favorable prognosis
[47, 52]. In fact, the majority of EC patients who are candidates for
conservative therapy with progesterone usually have stage IA and
low-grade tumors, and these cases have a relatively high rate of
wild-type p53 expression [44, 53, 54]. Therefore, it is reasonable to
speculate that activation of the p53 signaling pathway could
benefit progesterone-mediated conservative EC treatment.
Indeed, our observations revealed that stimulation of p53 with
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the small-molecule compound Nutlin3A sensitized EC cells to MPA
treatment in vitro and in vivo (Fig. 6a–e). This synergistic effect
could be partially attributed to p53-mediated ADCK3 transcrip-
tional upregulation in response to Nutlin3A, since ADCK3 was
critically required for MPA-induced EC cell death (Fig. 3a–j). Taken
together, our study provides mechanistic insights into how the
tumor suppressor p53 facilitates conservative EC treatment and
presents a potential strategy for enhancing MPA-induced
conservative EC treatment by stimulating the p53-ADCK3 axis.
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